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Inclusion of non-linear effects in periodically driven non-linear

oscillators yield interesting results which had been studied by

prominent Russian physicists (Landau, Bogoliubov, Mitropolsky

etc.) several decades back. In the near resonance situation a

plot of amplitude versus the difference of frequencies between

the forcing and the natural frequency of the oscillator takes a

peculiar structure much similar to the well known hysteresis phe-

nomenon in ferromagnetism. This is a jump phenomenon where

the amplitude shows sudden jumps at certain threshold values of

the frequency. This jump phenomenon has been studied using

the renormalization group approach.



As the phenomenon under investigation is very well known in
the non-linear dynamics literature, allow me to start with the
end result.

ω = difference between forcing and natural frequencies
a = amplitude



The system under investigation is a DUFFING oscillator sub-
jected to a damping and a periodic forcing. The governing
equation is:

ẍ + ω2
0x + kẋ− βx3 = F cosΩt (1)

There is a non-linearity carried by the β term that makes the
system interesting.

Putting Ωt = τ and dividing by Ω2 makes Eq.(1)

ẍ + ω2
r x + krẋ− λx3 = F cosΩt (2)

where the rescaled terms have their obvious meanings.



Our goal is to study the NEAR RESONANCE scenario. For

this purpose we introduce THREE PERTURBATION PARAM-

ETERS.

ω2
r = 1 + φω

F = φf

kr = εχ

and λ. The functions of these parameters are independent of

each other. ε takes care of the damping, λ the non-linearity and

φ the forcing. THIS IS AN IMMENSE FLEXIBILITY OFFERED

BY RG IN THE PRESENT STUDY.



All these considerations bring us to our starting point of our

study. The equation is:

ẍ + (1 + φω)x + εχ− λx3 = φf cos τ (3)

Accordingly we expand x in terms of these three parameters.

x = x0 + εx1ε + λx1λ + φx1φ (4)



Equating the first powers of the expansion parameters separately,

we get the following equations:

0th order: ẍ0 + x0 = 0 (5)

1st order in ε : ẍ1ε + x1ε = −χẋ0 (6)

1st order in λ : ¨x1λ + x1λ = x3
0 (7)

1st order in φ : ¨x1φ + x1φ = −ωx0 + f cos τ (8)



Solution of Eq.(5)

ẍ0 + x0 = 0

yields

x0 = A cos τ + B sin τ

= a cos(τ + θ) (9)

Wronskian is AB. Accordingly we can find out the other solutions

in straight forward manner. They go like this:



Rewriting Eq.(6) as

ẍ1ε + x1ε = χ sin(τ + θ)

yields

x1ε =
1

2
χa[−τ cos(τ + θ) +

1

2
sin(τ + θ)] (10)

The first term is divergent and with increasing time would give

an unbounded solution.



Rewriting Eq.(7) as

¨x1λ + x1λ = a3 cos3(τ + θ)

=
a3

4
[cos 3(τ + θ) + 3cos(τ + θ)]

yields

x1λ = −
a3

32
cos 3(τ + θ) +

3a3

16
cos(τ + θ) + τ

3a3

8
sin(τ + θ) (11)

Here the last term is divergent.



Similarly the φ equation yields

x1φ = −
ωa

4
cos(τ + θ)− τ

ωa

2
sin(τ + θ) +

f

4
cos τ + τ

f

2
sin τ (12)

Here the 2nd and 4th terms are divergent.

Whatever be the initial time (here τ = 0), these divergences

would appear.

GOAL IS TO CAPITALIZE ON THIS FREEDOM IN CHOICE

OF THE INITIAL TIME.



Thus in the final expression for x (upto first order) there are four

divergent terms. One in ε, one in λ and two in φ expressions.

We have

x = x0 + εx1ε + λx1λ + φx1φ

= a cos(τ + θ)

+ ε[
1

2
χa{−τ cos(τ + θ) +

1

2
sin(τ + θ)}]

+ λ[−
a3

32
cos 3(τ + θ) +

3a3

16
cos(τ + θ) + τ

3a3

8
sin(τ + θ)]

+ φ[−
ωa

4
cos(τ + θ)− τ

ωa

2
sin(τ + θ) +

f

4
cos τ + τ

f

2
sin τ ]

(13)



To deal with the divergent terms we reparametrize a and θ by

introducing renormalizing constants Z1 and Z2. They will be

calculated perturbatively as follows:

a = a(µ)Z1(µ) (Multiplicative)

= a(µ)(1 + εZ1ε + λZ1λ + φZ1φ + ...) (14)

θ = θ(µ) + Z2(µ) (Additive)

= θ(µ) + εZ2ε + λZ2λ + φZ2φ + ... (15)

What is µ anyway ? It is an ARBITRARY TIMESCALE.



In the expression for x in Eq.(13) all the divergent terms are
either of the form τ cos(τ + θ) or τ sin(τ + θ) excepting one that
occurs in the φ portion and has the form τ sin τ . We split this
expression as:

τ sin τ = τ sin(τ + θ − θ)

= sin(τ + θ) cos θ − cos(τ + θ) sin θ

= sin(τ + θ(µ)) cos θ(µ)− cos(τ + θ(µ)) sin θ(µ)

+ higher order terms (16)

where in the last line we have invoked Eqs.(14-15).

Using these expansions for a and θ, we get the expression for x

upto the first order in the perturbation parameters as:



x = a(µ) cos(τ + θ(µ))

+ ε

[{
−τ

1

2
χa(µ) + a(µ)Z1ε

}
cos(τ + θ(µ))

+
{
1

4
χa(µ)− a(µ)Z2ε

}
sin(τ + θ(µ))

]
+ λ

[{
3a3(µ)

16
+ a(µ)Z1λ

}
cos(τ + θ(µ))

+

{
τ
3a3(µ)

8
− a(µ)Z2λ

}
sin(τ + θ(µ))−

a3(µ)

32
cos 3(τ + θ(µ))

]

+ φ

[{
−τ

f

2
sin θ(µ) + a(µ)Z1φ

}
cos(τ + θ(µ))−

ωa(µ)

4
cos(τ + θ(µ))

+

{
τ
f

2
cos θ(µ)− τ

ωa(µ)

2
− a(µ)Z2φ

}
sin(τ + θ(µ)) +

f

4
cos τ

]
(17)



where we have rearranged the first order terms spawned by the
first line of Eq.(13) into the respective brackets and have clus-
tered the cos and sin terms accordingly.

Explicitly,

a cos(τ + θ) = a(µ)(1 + εZ1ε + λZ1λ + φZ1φ)

× cos(τ + θ(µ) + εZ2ε + λZ2λ + φZ2φ)

= a(µ)(1 + εZ1ε + λZ1λ + φZ1φ) cos(τ + θ(µ))

−a(µ)(εZ2ε + λZ2λ + φZ2φ) sin(τ + θ(µ))

+higher order terms

The curly brackets in Eq.(17) include only those coefficients of
cos and sin through which we can define the Z terms.



As µ is an arbitrary time scale, in all the divergent terms (where

τ occurs in the coefficients) we replace τ as

τ = τ − µ + µ (18)

The divergences are now carried by the µ terms. THE FREE-

DOM OF CHOICE IN THE INITIAL CONDITIONS LEADS US

TO CAST THE PROBLEM IN TERMS OF RG FLOW.

Our next aim is to REMOVE THESE DIVERGENCES. Look-

ing back at Eq.(17), and using Eq.(18) we get the following

set of equations WHICH FIX THE RENORMALIZATION CON-

STANTS.



ε expression:

coefficient of cos(τ + θ(µ)) ⇒ Z1ε =
1

2
µχ

coefficient of sin(τ + θ(µ)) ⇒ Z2ε = 0

λ expression:

coefficient of cos(τ + θ(µ)) ⇒ Z1λ = 0

coefficient of sin(τ + θ(µ)) ⇒ Z2λ = µ
3a2(µ)

8
φ expression:

coefficient of cos(τ + θ(µ)) ⇒ Z1φ =
µf

2

sin θ(µ)

a(µ)

coefficient of sin(τ + θ(µ)) ⇒ Z2φ =
µf

2

cos θ(µ)

a(µ)
−

ωµ

2



Absorbing (τ − µ) terms in renormalized a(µ) and θ(µ) yields:

x = a(µ) cos(τ + θ(µ))

+ ε

[
−

χa

2
(τ − µ) cos(τ + θ(µ)) +

χa

4
sin(τ + θ(µ))

]
+ λ

[
3a3(µ)

8
(τ − µ) sin(τ + θ(µ)) +

3a3(µ)

16
cos(τ + θ(µ))

−
a3(µ)

32
cos 3(τ + θ(µ))

]

+ φ

[
−(τ − µ)

f

2
sin θ(µ) cos(τ + θ(µ))

+
1

2
(τ − µ)(f cos θ(µ)− ωa(µ)) sin(τ + θ(µ))

−
ωa(µ)

4
cos(τ + θ(µ)) +

f

4
cos τ

]
(19)



Now we require that, µ BEING ARBITRARY, x SHOULD BE

INDEPENDENT OF µ. THIS BRINGS US TO THE EQUA-

TION FOR RG FLOW. By retaining derivatives only upto first

order we get,

dx

dµ
= 0 ⇒

da

dµ
cos(τ + θ(µ))− a(µ)

dθ

dµ
sin(τ + θ(µ))

+ ε

[
χa

2
cos(τ + θ(µ))

]
+ λ

[
−

3a3(µ)

8
sin(τ + θ(µ))

]

+ φ

[
f sin θ(µ)

2
cos(τ + θ(µ))

+
1

2
(ωa(µ)− f cos θ(µ)) sin(τ + θ(µ))

]
= 0 (20)



Equating the coefficients of cos(τ + θ(µ) and sin(τ + θ(µ) sepa-

rately to zero,

da

dµ
= −

1

2
εχa−

1

2
φf sin θ(µ) = F1(a, θ) (21)

dθ

dµ
= −λ

3a2(µ)

8
+ φ

ω

2
− φ

f cos θ(µ)

2a(µ)
= F2(a, θ) (22)

These are the RG equations whose fixed points would determine

the stability of the solutions.

For determining the fixed points we put



[
da

dµ

]
a0,θ0

=

[
dθ

dµ

]
a0,θ0

= 0 (23)

Here (a0, θ0) are the fixed points. How many ?

Combining Eqs(21) and (22) WE GET THE AMPLITUDE EQUA-

TION (cubic equation in a2
0). Putting the perturbation parame-

ters equal to 1, we get,

a6
0 −

8ω

3
a4
0 +

16

9
(ω2 + χ2)a2

0 −
16

9
f2 = 0 (24)



There are certain standard consequences of this equation. One

can treat this equation as a quadratic in ω to obtain

ω =
3a2

0

4
±

√√√√f2

a2
0

− χ2

For f > a0χ we get double root of ω. One can also differentiate

the cubic w.r.t ω and then put dω
da0

= 0 to obtain

a2
0 =

8ω

9
±

4

9

√
ω2 − 3χ2



and conclude that ω2 = 3χ2 (hence a2
0 = 8ω/9) correspond to a

critical value of f above which the tilt in the amplitude-frequency
curve ensues.

Testing the stability of the three roots of the cubic means solving
the determinant (all derivatives being taken at a = a0 and θ = θ0)

(∂F1/∂a)0 − η (∂F1/∂θ)0
(∂F2/∂a)0 (∂F2/∂θ)0 − η

=
−χ

2 − η f
2 cos θ0

−3a0
4 − f cos θ0

2a2
0

f sin θ0
2a0

− η
= 0

We write this as,

η2 − 2sη + d = 0 (25)



where

s =
1

4

[
f

a0
sin θ0 − χ

]
(26)

d =
1

4

[
f2

a2
0

cos2 θ0 −
fχ

a0
sin θ0 −

3fa0

2
cos θ0

]
(27)

From the condition
[
da
dµ

]
a0,θ0

= 0 given by Eq.(23) we get

f

a0
sin θ0 = −χ (28)

This with Eq.(26) above, yields a useful relation and that is



s = −
1

2
χ < 0 (29)

Thus in the two roots of Eq.(25) given by η = s ±
√

s2 − d, we

have s ALWAYS NEGATIVE for all the three roots of the cubic.

Thus the sign and magnitude of d decides the stability of the

fixed points.

0 < d < s2 ⇒ Stable fixed point

d < 0 ⇒ Unstable fixed point (30)



Solving the cubic and then testing the stability is what we should
call the direct approach. This is, however, cumbersome. THE
TWO RG EQUATIONS OFFER USEFUL HINT TO GO THE
OTHER WAY ROUND. How ?

Using the criteria of Eq.(30) in the expression for d in Eq.(27),
we shall examine what bounds it entails on θ0 (and hence on a0).
Writing Eq.(27) as

4d =
f2

a2
0

cos2 θ0 −
fχ

a0
sin θ0 −

3fa0

2
cos θ0

=

(
f

a0
cos θ0 −

3a2
0

4

)2

+ χ2 −
9a4

0

16

= A2 + χ2 −
9a4

0

16
(31)



with

A2 =

(
f

a0
cos θ0 −

3a2
0

4

)2

(32)

Now d < s2 means A2 + χ2 − 9a4
0

16 < χ2, i.e., A2 <
9a4

0
16 , yielding

f cos θ0

[
f

a2
0

cos θ0 −
3a0

2

]
< 0 (33)

This gives us the first bound on θ0 as



0 < cos θ0 <
3a3

0

2f
(34)

From Eq.(28) we learnt that sin θ0 is always negative and here

we see that cos θ0 is always positive. This implies that for all the

three solutions of the cubic, θ0 lies in the FOURTH QUADRANT

and here sin θ0 is monotonically increasing. Now let us see what

the other condition for stability, viz., d > 0 implies.

This would mean A2 >
9a4

0
16 − χ2. Using the expression for A2 we

get a quadratic inequation in cos θ0 as,



f2

a2
0

cos2 θ0 −
3fa0

2
cos θ0 + χ2 > 0

⇒ cos θ0 ≤
3a3

0

2f
−

a2
0

2f

√√√√9a2
0

4
−

4χ2

a2
0

or cos θ0 ≥
3a3

0

2f
+

a2
0

2f

√√√√9a2
0

4
−

4χ2

a2
0

(35)

Both the roots of the quadratic ”equation” are positive. One
should note that for χ = 0, this limit imposed by Eq.(35) reduces
to the former one, i.e., Eq.(34).

Thus the stability condition, i.e., 0 < d < s2 confines the value
of cos θ0 within two separate regions, viz.,



0 < cos θ0 <
3a3

0

2f
−

a2
0

2f

√√√√9a2
0

4
−

4χ2

a2
0

(36)

and
3a3

0

2f
+

a2
0

2f

√√√√9a2
0

4
−

4χ2

a2
0

< cos θ0 <
3a3

0

2f
(37)

The intermediate region, i.e.,

3a3
0

2f
−

a2
0

2f

√√√√9a2
0

4
−

4χ2

a2
0

< cos θ0 <
3a3

0

2f
+

a2
0

2f

√√√√9a2
0

4
−

4χ2

a2
0

(38)

corresponds to the condition d < s2 and d ≯ 0 which is equivalent
to saying d < 0. From Eq.(30), this implies instability.



Middle root of θ0 unstable implies middle root of a0 unstable,
because Eq.(28) implies sin θ0 = −χa0

f , and this is monotonically
increasing in the fourth quadrant.

stableunstablestable

0 < d < s2
d < s2

d > 0
d < 0

0 < d < s2

cos θ0DCBA
10



SUMMARY

1) RG has been used to study the problem of a forced Duffing

Oscillator.

2) To the first order in perturbation, secular terms appear. The

freedom in choice of initial conditions motivates the use of RG

in this context.

3) In the secular terms τ divergences have been removed by

writing τ = τ − µ + µ, where µ is an arbitrary timescale. The

amplitude and phase terms are renormalized accordingly.

4) The µ-independence of the dynamics leads to RG flow equa-

tions.



5) The RG equations thus derived provide a very simple way to

analyze the fixed points of the (cubic) amplitude equation.

6) This method of applying the RG has the immense flexibility

of dealing with several perturbation parameters where multiple

scale analysis leads to cumbersome calculations and often misses

hidden scales.
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