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OUTLINE

Intro: Analytic Perturbation Theory (APT) in QCD

Problems of APT and their resolution in FAPT:

Technical development of FAPT: thresholds

Resummation in APTand FAPT

Applications: Higgs decay H0 → bb̄

Applications: Adler function D(Q2) and ratio R(s) in
Nf = 4 region

Conclusions
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Analytic Perturbation Theory

in
QCD
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Intro: PT in QCD

coupling αs(μ
2) = (4π/b0)as[L] with L = ln(μ2/Λ2)

RG equation
d as[L]

d L
= −a2

s − c1 a3
s − . . .

1-loop solution generates Landau pole singularity:
as[L] = 1/L

2-loop solution generates square-root singularity:
as[L] ∼ 1/

√
L + c1lnc1

PT series: D[L] = 1 + d1as[L] + d2a
2
s[L] + . . .

RG evolution: B(Q2) =
[
Z(Q2)/Z(μ2)

]
B(μ2)

reduces in 1-loop approximation to
Z ∼ aν [L]

∣∣∣
ν = ν0 ≡ γ0/(2b0)
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Problem in QCD PT: Minkowski region?

Quantities in Minkowski region =

∮∮∮
f(z)D(z)dz.

•
−s + iε

•

Im z

Re z = Q2•
−s − iε

Resummation approach in (F)APT – p. 7



RG’08@JINR (Dubna)

Problem in QCD PT: Minkowski region?

In
∮∮∮

f(z)D(z)dz one uses D(z) =
∑∑∑
m

dmαm
s (z).

•−s + iε
•

Im z

Re z = Q2•−s − iε
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Problem in QCD PT: Minkowski region?
This change of integration contour is legitimate if D(z)f(z)
is analytic inside

•
−s + iε

•

Im z

Re z = Q2•
−s − iε
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Problem in QCD PT: Minkowski region?
But αs(z) and hence D(z)f(z) have Landau pole
singularity just inside!

•
−s + iε

•

Im z

Re z = Q2•
−s − iε

�
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Problem in QCD PT: Minkowski region?
In APT effective couplings An(z) are analytic functions ⇒
Problem does not appear! Equivalence to CIPT for R(s).

•
−s + iε

•

Im z

Re z = Q2•
−s − iε
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Basics of APT

Different couplings in Minkowskian (Radyushkin,
Krasnikov&Pivovarov; 1982) and Euclidean
(Shirkov&Solovtsov; 1996) regions

Based on RG + Causality
⇓ ⇓

UV asymptotics Spectrality

Euclidean: −q2 = Q2, L = lnQ2/Λ2, {An[L]}n∈N

Minkowskian: q2 = s, Ls = lns/Λ2, {An[Ls]}n∈N

PT
∑∑∑
m

dmam
s (Q2) ⇒

∑∑∑
m

dmAm(Q2) APT

m – power ⇒ m – index
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Spectral representation

By analytization we mean “Källen–Lehman” representation

[
f(Q2)

]
an =

∫∫∫ ∞

0

ρf (σ)

σ + Q2 − iε
dσ

with spectral density ρf (σ) = Im
[
f(−σ)

]
/π.
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[
f(Q2)

]
an =

∫∫∫ ∞

0

ρf (σ)
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dσ

Then

ρ(σ) =
1

L2
σ + π2

A1[L] =

∫∫∫ ∞

0
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1

eL − 1
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ρf (σ)

σ + Q2 − iε
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Then (note here pole remover):

ρ(σ) =
1

L2
σ + π2

A1[L] =

∫∫∫ ∞

0

ρ(σ)

σ + Q2
dσ =

1

L
−

1

eL − 1

A1[Ls] =

∫∫∫ ∞

s

ρ(σ)

σ
dσ =

1

π
arccos

Ls√
π2 + L2

s
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Spectral representation

By analytization we mean “Källen–Lehman” representation

[
f(Q2)

]
an =

∫∫∫ ∞

0

ρf (σ)

σ + Q2 − iε
dσ

with spectral density ρf (σ) = Im
[
f(−σ)

]
/π. Then:

An[L]=

∫∫∫ ∞

0

ρn(σ)

σ + Q2
dσ =

1

(n − 1)!

(
−

d

dL

)n−1

A1[L]

Resummation approach in (F)APT – p. 10



RG’08@JINR (Dubna)

Spectral representation

By analytization we mean “Källen–Lehman” representation

[
f(Q2)

]
an =

∫∫∫ ∞

0

ρf (σ)

σ + Q2 − iε
dσ

with spectral density ρf (σ) = Im
[
f(−σ)

]
/π. Then:

An[L]=

∫∫∫ ∞

0

ρn(σ)

σ + Q2
dσ =

1

(n − 1)!

(
−

d

dL

)n−1

A1[L]

An[Ls]=

∫∫∫ ∞

s

ρn(σ)

σ
dσ =

1

(n − 1)!

(
−

d

dLs

)n−1

A1[Ls]

Resummation approach in (F)APT – p. 10



RG’08@JINR (Dubna)
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APT graphics: Distorting mirror

First, couplings: A1(s) and A1(Q
2)
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0.2

0.4

0.6
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1

Q2 [GeV2]−s [GeV2]

A1(Q
2)�1(s)
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APT graphics: Distorting mirror

Second, square-images: A2(s) and A2(Q
2)
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Q2 [GeV2]−s [GeV2]

A2(Q
2)�2(s)

Resummation approach in (F)APT – p. 11



RG’08@JINR (Dubna)

Problems of APT.
Resolution:

Fractional APT
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Problems of APT

Open Questions

“Analytization” of multi-scale amplitudes beyond LO of
pQCD: additional logs depending on scale that serves
as factorization or renormalization scale
[Karanikas&Stefanis – PLB 504 (2001) 225]
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Problems of APT

Open Questions

“Analytization” of multi-scale amplitudes beyond LO of
pQCD: additional logs depending on scale that serves
as factorization or renormalization scale
[Karanikas&Stefanis – PLB 504 (2001) 225]

Evolution induces some non-integer, fractional, powers
of coupling constant

Resummation of gluonic corrections, giving rise to
Sudakov factors, under “Analytization” difficult task
[Stefanis, Schroers, Kim – PLB 449 (1999) 299;
EPJC 18 (2000) 137]
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Problems of APT

In standard QCD PT we have not only power series
F [L] =

∑∑∑
m

fm am
s [L], but also:
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Problems of APT

In standard QCD PT we have not only power series
F [L] =

∑∑∑
m

fm am
s [L], but also:

RG-improvment to account for higher-orders →

Z[L] = exp

{∫∫∫ as[L] γ(a)

β(a)
da

}
1-loop−→ [as[L]]γ0/(2β0)
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Problems of APT

In standard QCD PT we have not only power series
F [L] =

∑∑∑
m

fm am
s [L], but also:

RG-improvment to account for higher-orders →

Z[L] = exp

{∫∫∫ as[L] γ(a)

β(a)
da

}
1-loop−→ [as[L]]γ0/(2β0)

Factorization → [as[L]]n Lm
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Constructing one-loop FAPT
In one-loop APT we have a very nice recursive relation

An[L] =
1

(n − 1)!

(
−

d

dL

)n−1

A1[L]
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An[L] =
1

(n − 1)!

(
−

d

dL

)n−1
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and the same in Minkowski domain

An[L] =
1

(n − 1)!

(
−

d

dL

)n−1

A1[L] .
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Constructing one-loop FAPT
In one-loop APT we have a very nice recursive relation

An[L] =
1

(n − 1)!

(
−

d

dL

)n−1

A1[L]

and the same in Minkowski domain

An[L] =
1

(n − 1)!

(
−

d

dL

)n−1

A1[L] .

We can use it to construct FAPT.
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FAPT(E): Properties of Aν[L]

First, Euclidean coupling (L = L(Q2)):

Aν [L] =
1

Lν
−

F (e−L, 1 − ν)

Γ(ν)

Here F (z, ν) is reduced Lerch transcendent. function. It is
analytic function in ν.
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FAPT(E): Properties of Aν[L]

First, Euclidean coupling (L = L(Q2)):

Aν [L] =
1

Lν
−

F (e−L, 1 − ν)

Γ(ν)

Here F (z, ν) is reduced Lerch transcendent. function. It is
analytic function in ν. Properties:

A0[L] = 1;

A−m[L] = Lm for m ∈ N;

Am[L] = (−1)mAm[−L] for m ≥ 2 , m ∈ N;

Am[±∞] = 0 for m ≥ 2 , m ∈ N;
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FAPT(M): Properties of Aν[L]

Now, Minkowskian coupling (L = L(s)):

Aν [L] =
sin

[
(ν − 1)arccos

(
L/

√
π2 + L2

)]
π(ν − 1) (π2 + L2)

(ν−1)/2

Here we need only elementary functions.
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Now, Minkowskian coupling (L = L(s)):

Aν [L] =
sin

[
(ν − 1)arccos

(
L/

√
π2 + L2

)]
π(ν − 1) (π2 + L2)

(ν−1)/2

Here we need only elementary functions. Properties:

A0[L] = 1;

A−1[L] = L;

A−2[L] = L2 −
π2

3
, A−3[L] = L

(
L2 − π2

)
, . . . ;

Am[L] = (−1)mAm[−L] for m ≥ 2 , m ∈ N;

Am[±∞] = 0 for m ≥ 2 , m ∈ N
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FAPT(E): Graphics of Aν[L] vs. L

Aν [L] =
1

Lν
−

F (e−L, 1 − ν)

Γ(ν)

Graphics for fractional ν ∈ [2,3] :
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FAPT(M): Graphics of Aν[L] vs. L

Aν [L] =
sin

[
(ν − 1)arccos

(
L/

√
π2 + L2

)]
π(ν − 1) (π2 + L2)

(ν−1)/2

Compare with graphics in Minkowskian region :
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Development of FAPT:

Heavy-Quark Thresholds

Resummation approach in (F)APT – p. 20



RG’08@JINR (Dubna)

Conceptual scheme of FAPT

PT:
[
a(Q2)

]ν

S.D.: ρν(σ)

AM AE

Aν(s) Aν(Q2)
D̂−→←−

R̂ = D̂−1
FAPT:

Here Nf is fixed and factorized out.
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Conceptual scheme of FAPT

PT:
[
αs(Q

2;Nf)
]ν

S.D.: ρν(σ;Nf)

AM AE

Aν(s;Nf) Aν(Q2;Nf)
D̂−→←−

R̂ = D̂−1
FAPT:

Here Nf is fixed, but not factorized out.
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Conceptual scheme of FAPT

PT:
[
α glob

s (Q2)
]ν

S.D.: ρ glob
ν (σ)

AM AE

A glob
ν (s) A glob

ν (Q2)
D̂−→←−

R̂ = D̂−1

FAPT:

Here we see how “analytization” takes into account
Nf -dependence.
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Global FAPT: Single threshold case

Consider for simplicity only one threshold at s = m2
c

with transition Nf = 3 → Nf = 4.

Denote: L4 = ln (m2
c/Λ2

3) and λ4 = ln (Λ2
3/Λ2

4).
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Consider for simplicity only one threshold at s = m2
c

with transition Nf = 3 → Nf = 4.

Denote: L4 = ln (m2
c/Λ2

3) and λ4 = ln (Λ2
3/Λ2

4).

Then:

Aglob
ν [L]= θ (L < L4)

[
Aν [L; 3] − Aν [L4; 3] + Aν [L4+λ4; 4]

]
+ θ (L ≥ L4)Aν [L+λ4; 4]
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Global FAPT: Single threshold case

Consider for simplicity only one threshold at s = m2
c

with transition Nf = 3 → Nf = 4.

Denote: L4 = ln (m2
c/Λ2

3) and λ4 = ln (Λ2
3/Λ2

4).

Then:

Aglob
ν [L]= θ (L < L4)

[
Aν [L; 3] − Aν [L4; 3] + Aν [L4+λ4; 4]

]
+ θ (L ≥ L4)Aν [L+λ4; 4]

and

Aglob
ν [L]=Aν [L+λ4; 4] +

L4∫∫∫
−∞

ρν [Lσ; 3] − ρν [Lσ+λ4; 4]

1 + eL−Lσ
dLσ
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Resummation
in

one-loop APT and FAPT
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Resummation in one-loop APT

Consider series D[L] = d0 +

∞∑∑∑
n=1

dn An[L]
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Resummation in one-loop APT

Consider series D[L] = d0 +

∞∑∑∑
n=1

dn An[L]

Let exist the generating function P (t) for coefficients:

dn = d1

∫∫∫ ∞

0
P (t) tn−1dt with

∫∫∫ ∞

0
P (t)dt = 1 .

We define a shorthand notation

〈〈f(t)〉〉P (t) ≡
∫∫∫ ∞

0
f(t)P (t)dt .

Then coefficients dn = d1 〈〈tn−1〉〉P (t).
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Resummation in one-loop APT

Consider series D[L] = d0 +

∞∑∑∑
n=1

dn An[L]

with coefficients dn = d1 〈〈tn−1〉〉P (t).
We have one-loop recurrence relation:

An+1[L] =
1

Γ(n + 1)

(
−

d

dL

)n

A1[L] .
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Resummation in one-loop APT

Consider series D[L] = d0 +

∞∑∑∑
n=1

dn An[L]

with coefficients dn = d1 〈〈tn−1〉〉P (t).
We have one-loop recurrence relation:

An+1[L] =
1

Γ(n + 1)

(
−

d

dL

)n

A1[L] .

Result:
D[L] = d0 + d1 〈〈A1[L − t]〉〉P (t)
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Resummation in one-loop APT

Consider series D[L] = d0 +

∞∑∑∑
n=1

dn An[L]

with coefficients dn = d1 〈〈tn−1〉〉P (t).
We have one-loop recurrence relation:

An+1[L] =
1

Γ(n + 1)

(
−

d

dL

)n

A1[L] .

Result:
D[L] = d0 + d1 〈〈A1[L − t]〉〉P (t)

and for Minkowski region:

R[L] = d0 + d1 〈〈A1[L − t]〉〉P (t)
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Resummation in Global Minkowskian APT

Consider series R[L] = d0 +

∞∑∑∑
n=1

dn Aglob
n [L]

with coefficients dn = d1 〈〈tn−1〉〉P (t).

Result:

R[L] = d0 + d1〈〈θ (L<L4)
[
Δ4A1[t]+A1

[
L−

t

β3
; 3

]]
〉〉P (t)

+ d1〈〈θ (L≥L4)A1

[
L+λ4−

t

β4
; 4

]
〉〉P (t) .

where

Δ4A1[t] = A1

[
L4 + λ4 −

t

β4
; 4

]
− A1

[
L3 −

t

β3
; 3

]
.
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Resummation in Global Euclidean APT

In Euclidean domain the result is more complicated:

D[L] = d0 + d1〈〈
L4∫∫∫

−∞

ρ1 [Lσ; 3] dLσ

1 + eL−Lσ−t/β3
〉〉P (t)

+ 〈〈Δ4[L, t]〉〉P (t) + d1〈〈
∞∫∫∫
L4

ρ1 [Lσ + λ4; 4] dLσ

1 + eL−Lσ−t/β4
〉〉P (t) .

where

Δ4[L, t] =

1∫∫∫
0

ρ1 [L4 + λ4 − tx/β4; 4] t

β4

[
1 + eL−L4−tx̄/β4

] dx

−
1∫∫∫
0

ρ1 [L3 − tx/β3; 3] t

β3

[
1 + eL−L4−tx̄/β3

] dx.
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Resummation in FAPT

Consider seria Rν [L] = d0 Aν [L] +

∞∑∑∑
n=1

dn An+ν [L]

and Dν [L] = d0 Aν [L] +

∞∑∑∑
n=1

dn An+ν [L]

with coefficients dn = d1 〈〈tn−1〉〉P (t).

Result:

Rν [L] = d0 Aν [L] + d1 〈〈A1+ν [L − t]〉〉Pν (t) ;

Dν [L] = d0 Aν [L] + d1 〈〈A1+ν [L − t]〉〉Pν (t) .

where Pν(t) =

1∫∫∫
0

P

(
t

1 − z

)
ν zν−1 dz

1 − z
.
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Resummation in Global Minkowskian FAPT

Consider series Rν [L] = d0 Aglob
ν +

∞∑∑∑
n=1

dn A
glob
n+ν [L]

with coefficients dn = d1 〈〈tn−1〉〉P (t).
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Resummation in Global Minkowskian FAPT

Consider series Rν [L] = d0 Aglob
ν +

∞∑∑∑
n=1

dn A
glob
n+ν [L]

with coefficients dn = d1 〈〈tn−1〉〉P (t).

Then result is complete analog of the Global APT(M) result
with natural substitutions:

A1[L] → A1+ν [L] and P (t) → Pν(t)

with Pν(t) =

1∫∫∫
0

P

(
t

1 − z

)
ν zν−1 dz

1 − z
.
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Resummation in Global Euclidean FAPT

Consider series Dν [L] = d0 Aglob
ν +

∞∑∑∑
n=1

dn Aglob
n+ν [L]

with coefficients dn = d1 〈〈tn−1〉〉P (t).

Then result is complete analog of the Global APT(E) result
with natural substitutions:

ρ1[L] → ρ1+ν [L] and P (t) → Pν(t)

with Pν(t) =

1∫∫∫
0

P

(
t

1 − z

)
ν zν−1 dz

1 − z
.
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Higgs boson

decay

H0 → bb̄

Resummation approach in (F)APT – p. 30



RG’08@JINR (Dubna)

Higgs boson decay into bb̄-pair

This decay can be expressed in QCD by means of the
correlator of quark scalar currents JS(x) = : b̄(x)b(x):

Π(Q2) = (4π)2i

∫∫∫
dxeiqx〈0| T [ JS(x)JS(0) ] |0〉

Resummation approach in (F)APT – p. 31



RG’08@JINR (Dubna)

Higgs boson decay into bb̄-pair

This decay can be expressed in QCD by means of the
correlator of quark scalar currents JS(x) = : b̄(x)b(x):

Π(Q2) = (4π)2i

∫∫∫
dxeiqx〈0| T [ JS(x)JS(0) ] |0〉

in terms of discontinuity of its imaginary part

RS(s) = Im Π(−s − iε)/(2π s) ,

so that

Γ(H → bb̄) =
GF

4
√

2π
MH m2

b(MH)RS(s = M2
H) .
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FAPT(M) analysis of RS

Running mass m(Q2) is described by the RG equation

m2(Q2) = m̂2

[
αs(Q

2)

π

]ν0
[
1 +

c1b0αs(Q
2)

4π2

]ν1

.

with RG-invariant mass m̂2 (for b-quark m̂b ≈ 14.6 GeV)
and ν0 = 1.04, ν1 = 1.86.
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FAPT(M) analysis of RS

Running mass m(Q2) is described by the RG equation

m2(Q2) = m̂2

[
αs(Q

2)

π

]ν0
[
1 +

c1b0αs(Q
2)

4π2

]ν1

.

with RG-invariant mass m̂2 (for b-quark m̂b ≈ 14.6 GeV)
and ν0 = 1.04, ν1 = 1.86. This gives us[
3 m̂2

b

]−1
D̃S(Q2) =

(
αs(Q

2)

π

)ν0

+
∑∑∑
m>0

dm

(
αs(Q

2)

π

)m+ν0

.
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FAPT(M) analysis of RS

Running mass m(Q2) is described by the RG equation

m2(Q2) = m̂2

[
αs(Q

2)

π

]ν0
[
1 +

c1b0αs(Q
2)

4π2

]ν1

.

with RG-invariant mass m̂2 (for b-quark m̂b ≈ 14.6 GeV)
and ν0 = 1.04, ν1 = 1.86. This gives us[
3 m̂2

b

]−1
D̃S(Q2) =

(
αs(Q

2)

π

)ν0

+
∑∑∑
m>0

dm

(
αs(Q

2)

π

)m+ν0

.

In FAPT(M) we obtain

R̃(l);N

S [L] =
3m̂2

πν0

[
A

(l);glob
ν0 [L] +

N∑∑∑
m>0

d
(l)
m

πm
A

(l);glob
m+ν0

[L]

]
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Model for perturbative coefficients

Let us have a look to coefficients of our series, d̃m = dm/d1,
with d1 = 17/3.

Model d̃1 d̃2 d̃3 d̃4 d̃5

pQCD 1 7.42 62.3 —
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Model for perturbative coefficients

Let us have a look to coefficients of our series, d̃m = dm/d1,
with d1 = 17/3.

Model d̃1 d̃2 d̃3 d̃4 d̃5

pQCD 1 7.42 62.3 —

c = 2.5, β = −0.48 1 7.42 62.3

We use model d̃mod
n =

cn−1(β Γ(n) + Γ(n + 1))

β + 1

with parameters β and c estimated by known d̃n and with
use of Lipatov asymptotics.
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Model for perturbative coefficients

Let us have a look to coefficients of our series, d̃m = dm/d1,
with d1 = 17/3.

Model d̃1 d̃2 d̃3 d̃4 d̃5

pQCD 1 7.42 62.3 620 —

c = 2.5, β = −0.48 1 7.42 62.3 662 —

We use model d̃mod
n =

cn−1(β Γ(n) + Γ(n + 1))

β + 1

with parameters β and c estimated by known d̃n and with
use of Lipatov asymptotics.
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Model for perturbative coefficients

Let us have a look to coefficients of our series, d̃m = dm/d1,
with d1 = 17/3.

Model d̃1 d̃2 d̃3 d̃4 d̃5

pQCD 1 7.42 62.3 620 —

c = 2.5, β = −0.48 1 7.42 62.3 662 —
c = 2.4, β = −0.52 1 7.50 61.1 625

We use model d̃mod
n =

cn−1(β Γ(n) + Γ(n + 1))

β + 1

with parameters β and c estimated by known d̃n and with
use of Lipatov asymptotics.
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Model for perturbative coefficients

Let us have a look to coefficients of our series, d̃m = dm/d1,
with d1 = 17/3.

Model d̃1 d̃2 d̃3 d̃4 d̃5

pQCD 1 7.42 62.3 620 —

c = 2.5, β = −0.48 1 7.42 62.3 662 —
c = 2.4, β = −0.52 1 7.50 61.1 625 7826

We use model d̃mod
n =

cn−1(β Γ(n) + Γ(n + 1))

β + 1

with parameters β and c estimated by known d̃n and with
use of Lipatov asymptotics.
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FAPT(M) for R̃S: Truncation errors

We define relative errors of series truncation at N th term:

ΔN [L] = 1 − R̃(1;N )

S [L]/R̃(1;∞)

S [L]

10 10.5 11 11.5 12

0.005

0.01

0.015

0.02

0.025

0.03

0.035

L

Δ2[L]

Δ3[L]
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FAPT(M) for R̃S: Truncation errors

We define relative errors of series truncation at N th term:

ΔN [L] = 1 − R̃(1;N )

S [L]/R̃(1;∞)

S [L]

10 10.5 11 11.5 12

0.005

0.01

0.015

0.02

0.025

0.03

0.035

L

Δ2[L]

Δ3[L]

Δ4[L]
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FAPT(M) for R̃S: Truncation errors

We define relative errors of series truncation at N th term:

ΔN [L] = 1 − R̃(1;N )

S [L]/R̃(1;∞)

S [L]

10 10.5 11 11.5 12

0.005

0.01

0.015

0.02

0.025

0.03

0.035

L

Δ2[L]

Δ3[L]

Δ4[L]

Δ5[L]
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FAPT(M) for R̃S: Truncation errors

Conclusion: If we need accuracy better than 0.5% —
only then we need to calculate the 5-th correction.
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FAPT(M) for R̃S: Truncation errors

Conclusion: If we need accuracy better than 0.5% —
only then we need to calculate the 5-th correction.

But profit will be tiny — instead of 0.5% one’ll obtain 0.3%!

10 10.5 11 11.5 12

0.125

0.13

0.135

0.14

0.145

0.15

0.155

L

R̃
(1)
S [L]

R̃
(1);4
S [L]

R̃
(1);3
S [L]

R̃
(1);2
S [L]

R̃
(1);1
S [L]
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Adler function D(Q2)

and
ratio R(s)
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Adler function D(Q2) in vector channel

Adler function D(Q2) can be expressed in QCD by means
of the correlator of quark vector currents

ΠV(Q2) =
(4π)2

3q2
i

∫∫∫
dxeiqx〈0| T [ Jμ(x)Jμ(0) ] |0〉

in terms of discontinuity of its imaginary part

RV(s) =
1

π
ImΠV(−s − iε) ,

so that

D(Q2) = Q2

∫∫∫ ∞

0

RV(σ)

(σ + Q2)2
dσ .

Resummation approach in (F)APT – p. 36



RG’08@JINR (Dubna)

APT analysis of D(Q2) and RV(s)

QCD PT gives us

D(Q2) = 1 +
∑∑∑
m>0

dm

πm

(
αs(Q

2)

π

)m

.
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APT analysis of D(Q2) and RV(s)

QCD PT gives us

D(Q2) = 1 +
∑∑∑
m>0

dm

πm

(
αs(Q

2)

π

)m

.

In APT(E) we obtain

DN (Q2) = 1 +

N∑∑∑
m>0

dm

πm
Aglob

m (Q2)
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APT analysis of D(Q2) and RV(s)

QCD PT gives us

D(Q2) = 1 +
∑∑∑
m>0

dm

πm

(
αs(Q

2)

π

)m

.

In APT(E) we obtain

DN (Q2) = 1 +

N∑∑∑
m>0

dm

πm
Aglob

m (Q2)

and in APT(M)

RV;N (s) = 1 +

N∑∑∑
m>0

dm

πm
Aglob

m (s)
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Model for perturbative coefficients

Let us have a look to coefficients dm of the PT series.

Model d1 d2 d3 d4 d5

pQCD results with Nf = 4 1 1.52 2.59 —
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Model for perturbative coefficients

Let us have a look to coefficients dm of the PT series.

Model d1 d2 d3 d4 d5

pQCD results with Nf = 4 1 1.52 2.59 —

c = 3.467, β = 1.325 1 1.50 2.62

We use model dmod
n =

cn−1(βn+1 − n)

β2 − 1
Γ(n)

with parameters β and c estimated by known d̃n and with
use of Lipatov asymptotics.
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Model for perturbative coefficients

Let us have a look to coefficients dm of the PT series.

Model d1 d2 d3 d4 d5

pQCD results with Nf = 4 1 1.52 2.59 27.4 —

c = 3.467, β = 1.325 1 1.50 2.62 27.8

We use model dmod
n =

cn−1(βn+1 − n)

β2 − 1
Γ(n)

with parameters β and c estimated by known d̃n and with
use of Lipatov asymptotics.
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Model for perturbative coefficients

Let us have a look to coefficients dm of the PT series.

Model d1 d2 d3 d4 d5

pQCD results with Nf = 4 1 1.52 2.59 27.4 —

c = 3.467, β = 1.325 1 1.50 2.62 27.8

c = 3.456, β = 1.325 1 1.49 2.60 27.5

We use model dmod
n =

cn−1(βn+1 − n)

β2 − 1
Γ(n)

with parameters β and c estimated by known d̃n and with
use of Lipatov asymptotics.
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Model for perturbative coefficients

Let us have a look to coefficients dm of the PT series.

Model d1 d2 d3 d4 d5

pQCD results with Nf = 4 1 1.52 2.59 27.4 —

c = 3.467, β = 1.325 1 1.50 2.62 27.8 1888

c = 3.456, β = 1.325 1 1.49 2.60 27.5 1865

We use model dmod
n =

cn−1(βn+1 − n)

β2 − 1
Γ(n)

with parameters β and c estimated by known d̃n and with
use of Lipatov asymptotics.
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APT(E) for D(Q2): Truncation errors

We define relative errors of series truncation at N th term:

ΔV
N [L] = 1 − DN [L]/D∞[L]

2.5 5 7.5 10 12.5 15 17.5 20

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Q2 [GeV2]

ΔV
1

ΔV
2
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APT(E) for D(Q2): Truncation errors

Conclusion: The best accuracy (better than 0.1%) is
achieved for N2LO approximation.
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APT(E) for D(Q2): Truncation errors

Conclusion: If we add more terms N3LO — truncation error
increases.
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APT(E) for D(Q2): Truncation errors

Conclusion: The best accuracy (better than 0.1%) is
achieved for N2LO approximation.
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D(Q2) ≈ D2(Q
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D1(Q
2)
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APT(M) for R(s): Truncation errors

We define relative errors of series truncation at N th term:

ΔV
N [L] = 1 − RN [L]/R∞[L]
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APT(M) for R(s): Truncation errors

Conclusion: The best accuracy (of the order of 0.1%) is
achieved for N2LO approximation for s ≥ 7 GeV2.
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APT(M) for R(s): Truncation errors

Conclusion: The best accuracy (of the order of 0.1%) is
achieved for N3LO approximation for s ∈ [2.5,7] GeV2.
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CONCLUSIONS

APT provides natural way to Minkowski region for
coupling and related quantities.
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CONCLUSIONS
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coupling and related quantities.

FAPT provides effective tool to apply APT approach for
renormgroup improved perturbative amplitudes.
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CONCLUSIONS

APT provides natural way to Minkowski region for
coupling and related quantities.

FAPT provides effective tool to apply APT approach for
renormgroup improved perturbative amplitudes.

Both APT and FAPT produce finite resummed answers
for perturbative quantities if we know generating
function P (t) for PT coefficients.
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CONCLUSIONS

APT provides natural way to Minkowski region for
coupling and related quantities.

FAPT provides effective tool to apply APT approach for
renormgroup improved perturbative amplitudes.

Both APT and FAPT produce finite resummed answers
for perturbative quantities if we know generating
function P (t) for PT coefficients.

Using quite simple model generating function P (t) for
Higgs boson decay H → bb we see that at N3LO we
have accuracy of the order 1%...
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CONCLUSIONS

APT provides natural way to Minkowski region for
coupling and related quantities.

FAPT provides effective tool to apply APT approach for
renormgroup improved perturbative amplitudes.

Both APT and FAPT produce finite resummed answers
for perturbative quantities if we know generating
function P (t) for PT coefficients.

Using quite simple model generating function P (t) for
Higgs boson decay H → bb we see that at N3LO we
have accuracy of the order 1%...

...and for Adler function D(Q2) — we have accuracy of
the order 0.1% already at N2LO.
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CONCLUSIONS

Both APT and FAPT produce finite resummed answers
for perturbative quantities if we know generating
function P (t) for PT coefficients.

Using quite simple model generating function P (t) for
Higgs boson decay H → bb we see that at N3LO we
have accuracy of the order 1%...

...and for Adler function D(Q2) — we have accuracy of
the order 0.1% already at N2LO.

Do not calculate higher-order corrections!
Use instead APT and FAPT!

Resummation approach in (F)APT – p. 41


	D.~V.~Shirkov in BLTPh and outside
	D.~V.~Shirkov in BLTPh and outside
	D.~V.~Shirkov in BLTPh and outside
	D.~V.~Shirkov in BLTPh and outside
	D.~V.~Shirkov in BLTPh and outside
	D.~V.~Shirkov in BLTPh and outside

	OUTLINE
	Collaborators & Publications
	Collaborators & Publications

	Intro: PT~in QCD
	Problem in QCD PT: Minkowski region?
	Problem in QCD PT: Minkowski region?
	Problem in QCD PT: Minkowski region?
	Problem in QCD PT: Minkowski region?
	Problem in QCD PT: Minkowski region?

	Basics of APT
	Spectral representation
	Spectral representation
	Spectral representation
	Spectral representation

	Spectral representation
	Spectral representation
	Spectral representation

	APT graphics: Distorting mirror
	APT graphics: Distorting mirror

	 Problems of APT
	 Problems of APT
	 Problems of APT

	Problems of APT
	Problems of APT
	Problems of APT

	Constructing one-loop FAPT
	Constructing one-loop FAPT
	Constructing one-loop FAPT

	FAPT(E): Properties of {myBl $�m {{mathcal A}_{
u }[L]}$}
	FAPT(E):
Properties of {myBl $�m {{mathcal A}_{
u }[L]}$}

	FAPT(M): Properties of {myBl $,�m {{mathfrak A}_{
u }[L]}$}
	FAPT(M):
Properties of {myBl $,�m {{mathfrak A}_{
u }[L]}$}

	FAPT(E):
Graphics of {myBl $�m {{mathcal A}_{
u }[L]}$} vs. {myBl $�m
{L}$}
	FAPT(M):
Graphics of {myBl $,�m {{mathfrak A}_{
u }[L]}$} vs. {myBl $�m
{L}$}
	Conceptual scheme of, FAPT 
	Conceptual scheme of, FAPT 
	Conceptual scheme of, FAPT 

	Global FAPT: Single threshold case
	Global FAPT: Single threshold case
	Global FAPT: Single threshold case

	Resummation in one-loop APT
	Resummation in one-loop APT
	Resummation in one-loop APT
	Resummation in one-loop APT
	Resummation in one-loop APT

	Resummation in Global Minkowskian APT
	Resummation in Global Euclidean APT
	Resummation in FAPT
	Resummation in Global Minkowskian FAPT
	Resummation in Global Minkowskian FAPT

	Resummation in Global Euclidean FAPT
	Higgs boson decay into ${myBl �m {b�ar {b}}}$-pair
	Higgs boson decay into ${myBl �m {b�ar {b}}}$-pair

	FAPT(M) analysis of ${myBl �m {R_	extbf {S}}}$
	FAPT(M)
analysis of ${myBl �m {R_	extbf {S}}}$
	FAPT(M)
analysis of ${myBl �m {R_	extbf {S}}}$

	Model for perturbative coefficients
	Model for perturbative coefficients
	Model for perturbative coefficients
	Model for perturbative coefficients
	Model for perturbative coefficients

	FAPT(M) for {myBl $�m {widetilde {R}_	ext {S}}$}: Truncation errors
	FAPT(M)
for {myBl $�m {widetilde {R}_	ext {S}}$}: Truncation errors
	FAPT(M)
for {myBl $�m {widetilde {R}_	ext {S}}$}: Truncation errors
	FAPT(M)
for {myBl $�m {widetilde {R}_	ext {S}}$}: Truncation errors
	FAPT(M)
for {myBl $�m {widetilde {R}_	ext {S}}$}: Truncation errors

	Adler function $�m {D(Q^2)}$
in vector channel
	APT analysis of ${myBl �m {D(Q^2)}}$ and ${myBl �m {R_	extbf
{V}(s)}}$
	APT analysis of ${myBl �m {D(Q^2)}}$
and ${myBl �m {R_	extbf {V}(s)}}$
	APT analysis of ${myBl �m {D(Q^2)}}$
and ${myBl �m {R_	extbf {V}(s)}}$

	Model for perturbative coefficients
	Model for perturbative coefficients
	Model for perturbative coefficients
	Model for perturbative coefficients
	Model for perturbative coefficients

	APT(E) for {myBl $�m {mathcal D(Q^2)}$}: Truncation errors
	APT(E)
for {myBl $�m {mathcal D(Q^2)}$}: Truncation errors
	APT(E)
for {myBl $�m {mathcal D(Q^2)}$}: Truncation errors
	APT(E)
for {myBl $�m {mathcal D(Q^2)}$}: Truncation errors

	APT(M) for {myBl $�m {mathcal R(s)}$}: Truncation errors
	APT(M)
for {myBl $�m {mathcal R(s)}$}: Truncation errors
	APT(M)
for {myBl $�m {mathcal R(s)}$}: Truncation errors

	CONCLUSIONS
	CONCLUSIONS
	CONCLUSIONS
	CONCLUSIONS
	CONCLUSIONS
	CONCLUSIONS


