Resummation approach in (F)APT How many loops do we need to calculate?

A. P. Bakulev

Bogoliubov Lab. Theor. Phys., JINR (Dubna, Russia)

D. V. Shirkov in BLTPh and outside

OUTLINE

- Intro: Analytic Perturbation Theory (APT) in QCD
- Problems of APT and their resolution in FAPT:
- Technical development of FAPT: thresholds
- Resummation in APTand FAPT
- Applications: Higgs decay $H^{0} \rightarrow b \bar{b}$
- Applications: Adler function $D\left(Q^{2}\right)$ and ratio $R(s)$ in $N_{f}=4$ region
- Conclusions

Collaborators \& Publications

Collaborators:

S. Mikhailov (Dubna), N. Stefanis (Bochum), and
A. Karanikas (Athens)

Collaborators \& Publications

Collaborators:

S. Mikhailov (Dubna), N. Stefanis (Bochum), and
A. Karanikas (Athens)

Publications:

- A. B., Mikhailov, Stefanis — PRD 72 (2005) 074014
- A. B., Karanikas, Stefanis — PRD 72 (2005) 074015
- A. B., Mikhailov, Stefanis - PRD 75 (2007) 056005
- A. B.\&Mikhailov - "Resummation in (F)APT", arXiv:0803.3013 [hep-ph]
- A. B. - "Global FAPT in QCD with Selected Applications", arXiv:0805.0829 [hep-ph]

Analytic Perturbation Theory

in QCD

Intro: PT in $Q C D$

- coupling $\alpha_{s}\left(\mu^{2}\right)=\left(4 \pi / b_{0}\right) a_{s}[L]$ with $L=\ln \left(\mu^{2} / \Lambda^{2}\right)$
- RG equation $\frac{d a_{s}[L]}{d L}=-a_{s}^{2}-c_{1} a_{s}^{3}-\ldots$
- 1-loop solution generates Landau pole singularity: $a_{s}[L]=1 / L$
- 2-loop solution generates square-root singularity: $a_{s}[L] \sim 1 / \sqrt{L+c_{1} \ln c_{1}}$
- PT series: $D[L]=1+d_{1} a_{s}[L]+d_{2} a_{s}^{2}[L]+\ldots$
- RG evolution: $B\left(Q^{2}\right)=\left[Z\left(Q^{2}\right) / Z\left(\mu^{2}\right)\right] B\left(\mu^{2}\right)$ reduces in 1-loop approximation to

$$
\left.Z \sim a^{\nu}[\boldsymbol{L}]\right|_{\nu=\nu_{0} \equiv \gamma_{0} /\left(2 b_{0}\right)}
$$

Problem in QCD PT: Minkowski region?

Quantities in Minkowski region $=\oint f(z) D(z) d z$.

Problem in QCD PT: Minkowski region?

In $\oint f(z) D(z) d z$ one uses $D(z)=\sum_{m} d_{m} \alpha_{s}^{m}(z)$.

Problem in QCD PT: Minkowski region?

This change of integration contour is legitimate if $D(z) f(z)$ is analytic inside

Problem in QCD PT: Minkowski region?

But $\alpha_{s}(z)$ and hence $D(z) f(z)$ have Landau pole singularity just inside!

Problem in QCD PT: Minkowski region?

In APT effective couplings $\mathcal{A}_{n}(z)$ are analytic functions \Rightarrow Problem does not appear! Equivalence to CIPT for $R(s)$.

Basics of APT

- Different couplings in Minkowskian (Radyushkin, Krasnikov\&Pivovarov; 1982) and Euclidean (Shirkov\&Solovtsov; 1996) regions
- Based on $\begin{gathered}\text { RG } \\ \Downarrow\end{gathered}$

UV asymptotics

Spectrality

- Euclidean: $-q^{2}=Q^{2}, L=\ln Q^{2} / \Lambda^{2},\left\{\mathcal{A}_{n}[L]\right\}_{n \in \mathbb{N}}$ Minkowskian: $q^{2}=s, L_{s}=\ln s / \Lambda^{2},\left\{\mathfrak{A}_{n}\left[L_{s}\right]\right\}_{n \in \mathbb{N}}$
- PT

$$
\begin{aligned}
\sum_{m} d_{m} a_{s}^{m}\left(Q^{2}\right) & \Rightarrow \sum_{m} d_{m} \mathcal{A}_{m}\left(Q^{2}\right) \quad \mathrm{APT} \\
m \text {-power } & \Rightarrow m \text {-index }
\end{aligned}
$$

Spectral representation

By analytization we mean "Källen-Lehman" representation

$$
\left[f\left(Q^{2}\right)\right]_{\mathrm{an}}=\int_{0}^{\infty} \frac{\rho_{f}(\sigma)}{\sigma+Q^{2}-i \epsilon} d \sigma
$$

with spectral density $\rho_{f}(\sigma)=\operatorname{Im}[f(-\sigma)] / \pi$.

Spectral representation

By analytization we mean "Källen-Lehman" representation

$$
\left[f\left(Q^{2}\right)\right]_{\mathrm{an}}=\int_{0}^{\infty} \frac{\rho_{f}(\sigma)}{\sigma+Q^{2}-i \epsilon} d \sigma
$$

Then

$$
\begin{aligned}
\rho(\sigma) & =\frac{1}{L_{\sigma}^{2}+\pi^{2}} \\
\mathcal{A}_{1}[L] & =\int_{0}^{\infty} \frac{\rho(\sigma)}{\sigma+Q^{2}} d \sigma=\frac{1}{L}-\frac{1}{e^{L}-1}
\end{aligned}
$$

Spectral representation

By analytization we mean "Källen-Lehman" representation

$$
\left[f\left(Q^{2}\right)\right]_{\mathrm{an}}=\int_{0}^{\infty} \frac{\rho_{f}(\sigma)}{\sigma+Q^{2}-i \epsilon} d \sigma
$$

Then (note here pole remover):

$$
\begin{aligned}
\rho(\sigma) & =\frac{1}{L_{\sigma}^{2}+\pi^{2}} \\
\mathcal{A}_{1}[L] & =\int_{0}^{\infty} \frac{\rho(\sigma)}{\sigma+Q^{2}} d \sigma=\frac{1}{L}-\frac{1}{e^{L}-1}
\end{aligned}
$$

Spectral representation

By analytization we mean "Källen-Lehman" representation

$$
\left[f\left(Q^{2}\right)\right]_{\mathrm{an}}=\int_{0}^{\infty} \frac{\rho_{f}(\sigma)}{\sigma+Q^{2}-i \epsilon} d \sigma
$$

Then (note here pole remover):

$$
\begin{aligned}
\rho(\sigma) & =\frac{1}{L_{\sigma}^{2}+\pi^{2}} \\
\mathcal{A}_{1}[L] & =\int_{0}^{\infty} \frac{\rho(\sigma)}{\sigma+Q^{2}} d \sigma=\frac{1}{L}-\frac{1}{e^{L}-1} \\
\mathfrak{A}_{1}\left[L_{s}\right] & =\int_{s}^{\infty} \frac{\rho(\sigma)}{\sigma} d \sigma=\frac{1}{\pi} \arccos \frac{L_{s}}{\sqrt{\pi^{2}+L_{s}^{2}}}
\end{aligned}
$$

Spectral representation

By analytization we mean "Källen-Lehman" representation

$$
\left[f\left(Q^{2}\right)\right]_{\mathrm{an}}=\int_{0}^{\infty} \frac{\rho_{f}(\sigma)}{\sigma+Q^{2}-i \epsilon} d \sigma
$$

with spectral density $\rho_{f}(\sigma)=\operatorname{Im}[f(-\sigma)] / \pi$. Then:

$$
\mathcal{A}_{n}[L]=\int_{0}^{\infty} \frac{\rho_{n}(\sigma)}{\sigma+Q^{2}} d \sigma=\frac{1}{(n-1)!}\left(-\frac{d}{d L}\right)^{n-1} \mathcal{A}_{1}[L]
$$

Spectral representation

By analytization we mean "Källen-Lehman" representation

$$
\left[f\left(Q^{2}\right)\right]_{\mathrm{an}}=\int_{0}^{\infty} \frac{\rho_{f}(\sigma)}{\sigma+Q^{2}-i \epsilon} d \sigma
$$

with spectral density $\rho_{f}(\sigma)=\operatorname{Im}[f(-\sigma)] / \pi$. Then:

$$
\begin{aligned}
& \mathcal{A}_{n}[L]=\int_{0}^{\infty} \frac{\rho_{n}(\sigma)}{\sigma+Q^{2}} d \sigma=\frac{1}{(n-1)!}\left(-\frac{d}{d L}\right)^{n-1} \mathcal{A}_{1}[L] \\
& \mathfrak{A}_{n}\left[L_{s}\right]=\int_{s}^{\infty} \frac{\rho_{n}(\sigma)}{\sigma} d \sigma=\frac{1}{(n-1)!}\left(-\frac{d}{d L_{s}}\right)^{n-1} \mathfrak{A}_{1}\left[L_{s}\right]
\end{aligned}
$$

Spectral representation

By analytization we mean "Källen-Lehman" representation

$$
\left[f\left(Q^{2}\right)\right]_{\mathrm{an}}=\int_{0}^{\infty} \frac{\rho_{f}(\sigma)}{\sigma+Q^{2}-i \epsilon} d \sigma
$$

with spectral density $\rho_{f}(\sigma)=\operatorname{Im}[f(-\sigma)] / \pi$. Then:

$$
\begin{aligned}
\mathcal{A}_{n}[L]=\int_{0}^{\infty} \frac{\rho_{n}(\sigma)}{\sigma+Q^{2}} d \sigma & =\frac{1}{(n-1)!}\left(-\frac{d}{d L}\right)^{n-1} \mathcal{A}_{1}[L] \\
\mathfrak{A}_{n}\left[L_{s}\right]=\int_{s}^{\infty} \frac{\rho_{n}(\sigma)}{\sigma} d \sigma & =\frac{1}{(n-1)!}\left(-\frac{d}{d L_{s}}\right)^{n-1} \mathfrak{A}_{1}\left[L_{s}\right] \\
a_{s}^{n}[L] & =\frac{1}{(n-1)!}\left(-\frac{d}{d L}\right)^{n-1} a_{s}[L]
\end{aligned}
$$

APT graphics: Distorting mirror

First, couplings: $\quad \mathfrak{A}_{1}(s)$ and $\mathcal{A}_{1}\left(Q^{2}\right)$

APT graphics: Distorting mirror

Second, square-images: $\mathfrak{A}_{2}(s)$ and $\mathcal{A}_{2}\left(Q^{2}\right)$

Problems of APT. Resolution: Fractional APT

Problems of APT

Open Questions

- "Analytization" of multi-scale amplitudes beyond LO of pQCD: additional logs depending on scale that serves as factorization or renormalization scale [Karanikas\&Stefanis - PLB 504 (2001) 225]

Problems of APT

Open Questions

- "Analytization" of multi-scale amplitudes beyond LO of pQCD: additional logs depending on scale that serves as factorization or renormalization scale [Karanikas\&Stefanis - PLB 504 (2001) 225]
- Evolution induces some non-integer, fractional, powers of coupling constant

Problems of APT

Open Questions

- "Analytization" of multi-scale amplitudes beyond LO of pQCD: additional logs depending on scale that serves as factorization or renormalization scale [Karanikas\&Stefanis - PLB 504 (2001) 225]
- Evolution induces some non-integer, fractional, powers of coupling constant
- Resummation of gluonic corrections, giving rise to Sudakov factors, under "Analytization" difficult task [Stefanis, Schroers, Kim - PLB 449 (1999) 299; EPJC 18 (2000) 137]

Problems of APT

In standard QCD PT we have not only power series
$\boldsymbol{F}[\boldsymbol{L}]=\sum_{m} f_{m} a_{s}^{m}[\boldsymbol{L}]$, but also:

Problems of APT

In standard QCD PT we have not only power series
$F[L]=\sum_{m} f_{m} a_{s}^{m}[L]$, but also:

- RG-improvment to account for higher-orders \rightarrow

$$
Z[L]=\exp \left\{\int^{a_{s}[L]} \frac{\gamma(a)}{\beta(a)} d a\right\} \xrightarrow{\text { 1-loop }}\left[a_{s}[L]\right]^{\gamma_{0} /\left(2 \beta_{0}\right)}
$$

Problems of APT

In standard QCD PT we have not only power series $F[\boldsymbol{L}]=\sum_{m} f_{m} a_{s}^{m}[L]$, but also:

- RG-improvment to account for higher-orders \rightarrow

$$
Z[L]=\exp \left\{\int^{a_{s}[L]} \frac{\gamma(a)}{\beta(a)} d a\right\} \xrightarrow{1-\text { loop }}\left[a_{s}[L]\right]^{\gamma_{0} /\left(2 \beta_{0}\right)}
$$

- Factorization $\rightarrow\left[a_{s}[L]\right]^{n} L^{m}$

Constructing one-loop FAPT

In one-loop APT we have a very nice recursive relation

$$
\mathcal{A}_{n}[L]=\frac{1}{(n-1)!}\left(-\frac{d}{d L}\right)^{n-1} \mathcal{A}_{1}[L]
$$

Constructing one-loop FAPT

In one-loop APT we have a very nice recursive relation

$$
\mathcal{A}_{n}[L]=\frac{1}{(n-1)!}\left(-\frac{d}{d L}\right)^{n-1} \mathcal{A}_{1}[L]
$$

and the same in Minkowski domain

$$
\mathfrak{A}_{n}[L]=\frac{1}{(n-1)!}\left(-\frac{d}{d L}\right)^{n-1} \mathfrak{A}_{1}[L] .
$$

Constructing one-loop FAPT

In one-loop APT we have a very nice recursive relation

$$
\mathcal{A}_{n}[L]=\frac{1}{(n-1)!}\left(-\frac{d}{d L}\right)^{n-1} \mathcal{A}_{1}[L]
$$

and the same in Minkowski domain

$$
\mathfrak{A}_{n}[L]=\frac{1}{(n-1)!}\left(-\frac{d}{d L}\right)^{n-1} \mathfrak{A}_{1}[L] .
$$

We can use it to construct FAPT.

FAPT(E): Properties of $\mathcal{A}_{\nu}[\boldsymbol{L}]$

First, Euclidean coupling $\left(L=L\left(Q^{2}\right)\right)$:

$$
\mathcal{A}_{\nu}[L]=\frac{1}{L^{\nu}}-\frac{\boldsymbol{F}\left(e^{-L}, 1-\nu\right)}{\Gamma(\nu)}
$$

Here $\boldsymbol{F}(z, \nu)$ is reduced Lerch transcendent. function. It is analytic function in ν.

FAPT(E): Properties of $\mathcal{A}_{\nu}[\boldsymbol{L}]$

First, Euclidean coupling $\left(L=L\left(Q^{2}\right)\right)$:

$$
\mathcal{A}_{\nu}[L]=\frac{1}{L^{\nu}}-\frac{\boldsymbol{F}\left(e^{-L}, 1-\nu\right)}{\Gamma(\nu)}
$$

Here $F(z, \nu)$ is reduced Lerch transcendent. function. It is analytic function in ν. Properties:

- $\mathcal{A}_{0}[L]=1$;
- $\mathcal{A}_{-m}[L]=L^{m}$ for $m \in \mathbb{N}$;
- $\mathcal{A}_{m}[L]=(-1)^{m} \mathcal{A}_{m}[-L]$ for $m \geq 2, m \in \mathbb{N}$;
- $\mathcal{A}_{m}[\pm \infty]=0$ for $m \geq 2, m \in \mathbb{N}$;

FAPT(M): Properties of $\boldsymbol{\mathfrak { A }}_{\nu}[\boldsymbol{L}]$

Now, Minkowskian coupling ($L=L(s)$):

$$
\mathfrak{A}_{\nu}[L]=\frac{\sin \left[(\nu-1) \arccos \left(L / \sqrt{\pi^{2}+L^{2}}\right)\right]}{\pi(\nu-1)\left(\pi^{2}+L^{2}\right)^{(\nu-1) / 2}}
$$

Here we need only elementary functions.

FAPT(M): Properties of $\mathfrak{A}_{\nu}[\boldsymbol{L}]$

Now, Minkowskian coupling ($L=L(s)$):

$$
\mathfrak{A}_{\nu}[L]=\frac{\sin \left[(\nu-1) \arccos \left(L / \sqrt{\pi^{2}+L^{2}}\right)\right]}{\pi(\nu-1)\left(\pi^{2}+L^{2}\right)^{(\nu-1) / 2}}
$$

Here we need only elementary functions. Properties:

- $\mathfrak{A}_{0}[L]=1$;
- $\mathfrak{A}_{-1}[L]=L$;
- $\mathfrak{A}_{-2}[L]=L^{2}-\frac{\pi^{2}}{3}, \quad \mathfrak{A}_{-3}[L]=L\left(L^{2}-\pi^{2}\right), \ldots$;
- $\mathfrak{A}_{m}[L]=(-1)^{m} \mathfrak{A}_{m}[-L]$ for $m \geq 2, m \in \mathbb{N}$;
- $\mathfrak{A}_{m}[\pm \infty]=0$ for $m \geq 2, m \in \mathbb{N}$

FAPT(E): Graphics of $\mathcal{A}_{\nu}[\boldsymbol{L}]$ vs. L

$$
\mathcal{A}_{\nu}[\boldsymbol{L}]=\frac{1}{L^{\nu}}-\frac{\boldsymbol{F}\left(e^{-L}, 1-\nu\right)}{\Gamma(\nu)}
$$

Graphics for fractional $\nu \in[2,3]$:

FAPT(M): Graphics of $\boldsymbol{A}_{\nu}[\boldsymbol{L}]$ vs. \boldsymbol{L}

$$
\mathfrak{A}_{\nu}[L]=\frac{\sin \left[(\nu-1) \arccos \left(L / \sqrt{\pi^{2}+L^{2}}\right)\right]}{\pi(\nu-1)\left(\pi^{2}+L^{2}\right)^{(\nu-1) / 2}}
$$

Compare with graphics in Minkowskian region:

Development of FAPT:

Heavy-Quark Thresholds

Conceptual scheme of FAPT

Here N_{f} is fixed and factorized out.

Conceptual scheme of FAPT

Here N_{f} is fixed, but not factorized out.

Conceptual scheme of FAPT

Here we see how "analytization" takes into account N_{f}-dependence.

Global FAPT: Single threshold case

- Consider for simplicity only one threshold at $s=m_{c}^{2}$ with transition $N_{f}=3 \rightarrow N_{f}=4$.
- Denote: $L_{4}=\ln \left(m_{c}^{2} / \Lambda_{3}^{2}\right)$ and $\lambda_{4}=\ln \left(\Lambda_{3}^{2} / \Lambda_{4}^{2}\right)$.

Global FAPT: Single threshold case

- Consider for simplicity only one threshold at $s=m_{c}^{2}$ with transition $N_{f}=3 \rightarrow N_{f}=4$.
- Denote: $L_{4}=\ln \left(m_{c}^{2} / \Lambda_{3}^{2}\right)$ and $\lambda_{4}=\ln \left(\Lambda_{3}^{2} / \Lambda_{4}^{2}\right)$.

Then:

$$
\begin{aligned}
\mathfrak{A}_{\nu}^{\text {glob }}[L] & =\theta\left(L<L_{4}\right)\left[\overline{\mathfrak{A}}_{\nu}[L ; 3]-\overline{\mathfrak{A}}_{\nu}\left[L_{4} ; 3\right]+\overline{\mathfrak{A}}_{\nu}\left[L_{4}+\lambda_{4} ; 4\right]\right] \\
& +\theta\left(L \geq L_{4}\right) \overline{\mathfrak{A}}_{\nu}\left[L+\lambda_{4} ; 4\right]
\end{aligned}
$$

Global FAPT: Single threshold case

- Consider for simplicity only one threshold at $s=m_{c}^{2}$ with transition $N_{f}=3 \rightarrow N_{f}=4$.
- Denote: $L_{4}=\ln \left(m_{c}^{2} / \Lambda_{3}^{2}\right)$ and $\lambda_{4}=\ln \left(\Lambda_{3}^{2} / \Lambda_{4}^{2}\right)$.

Then:

$$
\begin{aligned}
\mathfrak{A}_{\nu}^{\mathrm{glob}}[L] & =\theta\left(L<L_{4}\right)\left[\overline{\mathfrak{A}}_{\nu}[L ; 3]-\overline{\mathfrak{A}}_{\nu}\left[L_{4} ; 3\right]+\overline{\mathfrak{A}}_{\nu}\left[L_{4}+\lambda_{4} ; 4\right]\right] \\
& +\theta\left(L \geq L_{4}\right) \overline{\mathfrak{A}}_{\nu}\left[L+\lambda_{4} ; 4\right]
\end{aligned}
$$

and
$\mathcal{A}_{\nu}^{\text {glob }}[L]=\overline{\mathcal{A}}_{\nu}\left[L+\lambda_{4} ; 4\right]+\int_{-\infty}^{L_{4}} \frac{\bar{\rho}_{\nu}\left[L_{\sigma} ; 3\right]-\bar{\rho}_{\nu}\left[L_{\sigma}+\lambda_{4} ; 4\right]}{1+e^{L-L_{\sigma}}} d L_{\sigma}$

Resummation

 in
one-loop APT and FAPT

Resummation in one-loop APT

Consider series $\mathcal{D}[L]=d_{0}+\sum_{n=1}^{\infty} d_{n} \mathcal{A}_{n}[L]$

Resummation in one-loop APT

Consider series $\quad \mathcal{D}[L]=d_{0}+\sum_{n=1}^{\infty} d_{n} \mathcal{A}_{n}[L]$
Let exist the generating function $P(t)$ for coefficients:

$$
d_{n}=d_{1} \int_{0}^{\infty} P(t) t^{n-1} d t \text { with } \int_{0}^{\infty} P(t) d t=1
$$

We define a shorthand notation

$$
\langle\langle f(t)\rangle\rangle_{P(t)} \equiv \int_{0}^{\infty} f(t) P(t) d t
$$

Then coefficients $d_{n}=d_{1}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)}$.

Resummation in one-loop APT

Consider series $\quad \mathcal{D}[L]=d_{0}+\sum_{n=1}^{\infty} d_{n} \mathcal{A}_{n}[L]$
with coefficients $d_{n}=d_{1}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)}$.
We have one-loop recurrence relation:

$$
\mathcal{A}_{n+1}[L]=\frac{1}{\Gamma(n+1)}\left(-\frac{d}{d L}\right)^{n} \mathcal{A}_{1}[L] .
$$

Resummation in one-loop APT

Consider series $\quad \mathcal{D}[L]=d_{0}+\sum_{n=1}^{\infty} d_{n} \mathcal{A}_{n}[L]$
with coefficients $d_{n}=d_{1}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)}$.
We have one-loop recurrence relation:

$$
\mathcal{A}_{n+1}[L]=\frac{1}{\Gamma(n+1)}\left(-\frac{d}{d L}\right)^{n} \mathcal{A}_{1}[L] .
$$

Result:

$$
\mathcal{D}[L]=d_{0}+d_{1}\left\langle\left\langle\mathcal{A}_{1}[L-t]\right\rangle\right\rangle_{P(t)}
$$

Resummation in one-loop APT

Consider series $\quad \mathcal{D}[L]=d_{0}+\sum_{n=1}^{\infty} d_{n} \mathcal{A}_{n}[L]$
with coefficients $d_{n}=d_{1}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)}$.
We have one-loop recurrence relation:

$$
\mathcal{A}_{n+1}[L]=\frac{1}{\Gamma(n+1)}\left(-\frac{d}{d L}\right)^{n} \mathcal{A}_{1}[L] .
$$

Result:

$$
\mathcal{D}[L]=d_{0}+d_{1}\left\langle\left\langle\mathcal{A}_{1}[L-t]\right\rangle\right\rangle_{P(t)}
$$

and for Minkowski region:

$$
\mathcal{R}[L]=d_{0}+d_{1}\left\langle\left\langle\mathfrak{A}_{1}[L-t]\right\rangle\right\rangle_{P(t)}
$$

Resummation in Global Minkowskian APT

Consider series $\quad \mathcal{R}[\boldsymbol{L}]=d_{0}+\sum_{n=1}^{\infty} d_{n} \mathfrak{A}_{n}^{\text {glob }}[\boldsymbol{L}]$
with coefficients $d_{n}=d_{1}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)}$.
Result:
$\mathcal{R}[L]=d_{0}+d_{1}\left\langle\left\langle\theta\left(L<L_{4}\right)\left[\Delta_{4} \overline{\mathfrak{A}}_{1}[t]+\overline{\mathfrak{A}}_{1}\left[L-\frac{t}{\beta_{3}} ; 3\right]\right]\right\rangle\right\rangle_{P(t)}$

$$
+d_{1}\left\langle\left\langle\theta\left(L \geq L_{4}\right) \overline{\mathfrak{A}}_{1}\left[L+\lambda_{4}-\frac{t}{\beta_{4}} ; 4\right]\right\rangle\right\rangle_{P(t)} .
$$

where

$$
\Delta_{4} \overline{\mathfrak{A}}_{1}[t]=\overline{\mathfrak{A}}_{1}\left[L_{4}+\lambda_{4}-\frac{t}{\beta_{4}} ; 4\right]-\overline{\mathfrak{A}}_{1}\left[L_{3}-\frac{t}{\beta_{3}} ; 3\right] .
$$

Resummation in Global Euclidean APT

In Euclidean domain the result is more complicated:

$$
\begin{aligned}
\mathcal{D}[L] & =d_{0}+d_{1}\left\langle\left\langle\int_{-\infty}^{L_{4}} \frac{\bar{\rho}_{1}\left[L_{\sigma} ; 3\right] d L_{\sigma}}{\left.\left.1+e^{L-L_{\sigma}-t / \beta_{3}}\right\rangle\right\rangle_{P(t)}}\right.\right. \\
& +\left\langle\left\langle\Delta_{4}[L, t]\right\rangle\right\rangle_{P(t)}+d_{1}\left\langle\left\langle\int_{L_{4}}^{\infty} \frac{\bar{\rho}_{1}\left[L_{\sigma}+\lambda_{4} ; 4\right] d L_{\sigma}}{1+e^{L-L_{\sigma}-t / \beta_{4}}}\right\rangle\right\rangle_{P(t)} .
\end{aligned}
$$

where

$$
\begin{aligned}
\Delta_{4}[L, t] & =\int_{0}^{1} \frac{\bar{\rho}_{1}\left[L_{4}+\lambda_{4}-t x / \beta_{4} ; 4\right] t}{\beta_{4}\left[1+e^{\left.L-L_{4}-t \bar{x} / \beta_{4}\right]}\right.} d x \\
& -\int_{0}^{1} \frac{\bar{\rho}_{1}\left[L_{3}-t x / \beta_{3} ; 3\right] t}{\beta_{3}\left[1+e^{\left.L-L_{4}-t \bar{x} / \beta_{3}\right]}\right.} d x .
\end{aligned}
$$

Resummation in FAPT

Consider seria $\quad \mathcal{R}_{\nu}[L]=d_{0} \mathfrak{A}_{\nu}[L]+\sum_{n=1} d_{n} \mathfrak{A}_{n+\nu}[L]$
and

$$
\mathcal{D}_{\nu}[L]=d_{0} \mathcal{A}_{\nu}[L]+\sum_{n=1}^{\infty} d_{n} \mathcal{A}_{n+\nu}[L]
$$

with coefficients $d_{n}=d_{1}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)}$.
Result:

$$
\begin{aligned}
\mathcal{R}_{\nu}[\boldsymbol{L}] & =d_{0} \mathfrak{A}_{\nu}[\boldsymbol{L}]+d_{1}\left\langle\left\langle\mathfrak{A}_{1+\nu}[\boldsymbol{L}-\boldsymbol{t}]\right\rangle\right\rangle_{P_{\nu}(t)} \\
\mathcal{D}_{\nu}[\boldsymbol{L}] & =d_{0} \mathcal{A}_{\nu}[\boldsymbol{L}]+d_{1}\left\langle\left\langle\mathcal{A}_{1+\nu}[\boldsymbol{L}-\boldsymbol{t}]\right\rangle\right\rangle_{P_{\nu}(t)}
\end{aligned}
$$

where $P_{\nu}(t)=\int_{0}^{1} P\left(\frac{t}{1-z}\right) \nu z^{\nu-1} \frac{d z}{1-z}$.

Resummation in Global Minkowskian FAPT

Consider series $\quad \mathcal{R}_{\nu}[\boldsymbol{L}]=d_{0} \mathfrak{A}_{\nu}^{\text {glob }}+\sum_{n=1}^{\infty} d_{n} \mathfrak{A}_{n+\nu}^{\text {glob }}[L]$ with coefficients $d_{n}=d_{1}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)}$.

Resummation in Global Minkowskian FAPT

Consider series $\quad \mathcal{R}_{\nu}[L]=d_{0} \mathfrak{A}_{\nu}^{\text {glob }}+\sum_{n=1}^{\infty} d_{n} \mathfrak{A}_{n+\nu}^{\text {glob }}[L]$ with coefficients $d_{n}=d_{1}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)}$.

Then result is complete analog of the Global APT(M) result with natural substitutions:

$$
\overline{\mathfrak{A}}_{1}[L] \rightarrow \overline{\mathfrak{A}}_{1+\nu}[L] \quad \text { and } \quad P(t) \rightarrow P_{\nu}(t)
$$

with $P_{\nu}(t)=\int_{0}^{1} P\left(\frac{t}{1-z}\right) \nu z^{\nu-1} \frac{d z}{1-z}$.

Resummation in Global Euclidean FAPT

Consider series $\quad \mathcal{D}_{\nu}[\boldsymbol{L}]=d_{0} \mathcal{A}_{\nu}^{\text {glob }}+\sum_{n=1}^{\infty} d_{n} \mathcal{A}_{n+\nu}^{\text {glob }}[L]$ with coefficients $d_{n}=d_{1}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)}$.

Then result is complete analog of the Global APT(E) result with natural substitutions:

$$
\bar{\rho}_{1}[L] \rightarrow \bar{\rho}_{1+\nu}[L] \quad \text { and } \quad P(t) \rightarrow P_{\nu}(t)
$$

with $P_{\nu}(t)=\int_{0}^{1} P\left(\frac{t}{1-z}\right) \nu z^{\nu-1} \frac{d z}{1-z}$.

Higgs boson

decay

$$
H^{0} \rightarrow b \bar{b}
$$

Higgs boson decay into $b \bar{b}$-pair

This decay can be expressed in QCD by means of the correlator of quark scalar currents $J_{\mathbf{S}}(x)=: \bar{b}(x) b(x)$:

$$
\Pi\left(Q^{2}\right)=(4 \pi)^{2} i \int d x e^{i q x}\langle 0| T\left[J_{\mathrm{S}}(x) J_{\mathbf{S}}(0)\right]|0\rangle
$$

Higgs boson decay into $b \bar{b}$-pair

This decay can be expressed in QCD by means of the correlator of quark scalar currents $J_{\mathbf{S}}(x)=: \bar{b}(x) b(x)$:

$$
\Pi\left(Q^{2}\right)=(4 \pi)^{2} i \int d x e^{i q x}\langle 0| T\left[J_{\mathrm{S}}(x) J_{\mathrm{S}}(0)\right]|0\rangle
$$

in terms of discontinuity of its imaginary part

$$
\boldsymbol{R}_{\mathbf{S}}(s)=\operatorname{Im} \Pi(-s-i \epsilon) /(2 \pi s),
$$

so that

$$
\Gamma(\mathrm{H} \rightarrow b \bar{b})=\frac{G_{F}}{4 \sqrt{2} \pi} M_{\mathrm{H}} m_{b}^{2}\left(M_{\mathrm{H}}\right) R_{\mathrm{S}}\left(s=M_{\mathrm{H}}^{2}\right) .
$$

FAPT(M) analysis of $\boldsymbol{R}_{\boldsymbol{S}}$

Running mass $m\left(Q^{2}\right)$ is described by the RG equation

$$
m^{2}\left(Q^{2}\right)=\hat{m}^{2}\left[\frac{\alpha_{s}\left(Q^{2}\right)}{\pi}\right]^{\nu_{0}}\left[1+\frac{c_{1} b_{0} \alpha_{s}\left(Q^{2}\right)}{4 \pi^{2}}\right]^{\nu_{1}}
$$

with RG-invariant mass \hat{m}^{2} (for b-quark $\hat{m}_{b} \approx 14.6 \mathrm{GeV}$) and $\nu_{0}=1.04, \nu_{1}=1.86$.

FAPT(M) analysis of $\boldsymbol{R}_{\boldsymbol{S}}$

Running mass $m\left(Q^{2}\right)$ is described by the RG equation

$$
m^{2}\left(Q^{2}\right)=\hat{m}^{2}\left[\frac{\alpha_{s}\left(Q^{2}\right)}{\pi}\right]^{\nu_{0}}\left[1+\frac{c_{1} b_{0} \alpha_{s}\left(Q^{2}\right)}{4 \pi^{2}}\right]^{\nu_{1}}
$$

with RG-invariant mass \hat{m}^{2} (for b-quark $\hat{m}_{b} \approx 14.6 \mathrm{GeV}$) and $\nu_{0}=1.04, \nu_{1}=1.86$. This gives us
$\left[3 \hat{m}_{b}^{2}\right]^{-1} \widetilde{D}_{\mathbf{S}}\left(Q^{2}\right)=\left(\frac{\alpha_{s}\left(Q^{2}\right)}{\pi}\right)^{\nu_{0}}+\sum_{m>0} d_{m}\left(\frac{\alpha_{s}\left(Q^{2}\right)}{\pi}\right)^{m+\nu_{0}}$

FAPT(M) analysis of $\boldsymbol{R}_{\boldsymbol{S}}$

Running mass $m\left(Q^{2}\right)$ is described by the RG equation

$$
m^{2}\left(Q^{2}\right)=\hat{m}^{2}\left[\frac{\alpha_{s}\left(Q^{2}\right)}{\pi}\right]^{\nu_{0}}\left[1+\frac{c_{1} b_{0} \alpha_{s}\left(Q^{2}\right)}{4 \pi^{2}}\right]^{\nu_{1}}
$$

with RG-invariant mass \hat{m}^{2} (for b-quark $\hat{m}_{b} \approx 14.6 \mathrm{GeV}$) and $\nu_{0}=1.04, \nu_{1}=1.86$. This gives us
$\left[3 \hat{m}_{b}^{2}\right]^{-1} \widetilde{D}_{\mathbf{S}}\left(Q^{2}\right)=\left(\frac{\alpha_{s}\left(Q^{2}\right)}{\pi}\right)^{\nu_{0}}+\sum_{m>0} d_{m}\left(\frac{\alpha_{s}\left(Q^{2}\right)}{\pi}\right)^{m+\nu_{0}}$
In FAPT(M) we obtain

$$
\widetilde{\mathcal{R}}_{\mathrm{S}}^{(l) ; N}[\boldsymbol{L}]=\frac{3 \hat{m}^{2}}{\pi^{\nu_{0}}}\left[\mathfrak{A}_{\nu_{0}}^{(l) ; g \mathrm{glob}}[\boldsymbol{L}]+\sum_{m>0}^{N} \frac{d_{m}^{(l)}}{\pi^{m}} \mathfrak{A}_{m+\nu_{0}}^{(l) ; \text { glob }}[\boldsymbol{L}]\right]
$$

Model for perturbative coefficients

Let us have a look to coefficients of our series, $\tilde{d}_{m}=d_{m} / d_{1}$, with $d_{1}=17 / 3$.
$\begin{array}{lllllll}\text { Model } & \tilde{d}_{1} & \tilde{d}_{2} & \tilde{d}_{3} & \tilde{d}_{4} & \tilde{d}_{5}\end{array}$
$\begin{array}{llll}\text { pQCD } & 1 & 7.42 \quad 62.3\end{array}$

Model for perturbative coefficients

Let us have a look to coefficients of our series, $\tilde{d}_{m}=d_{m} / d_{1}$, with $d_{1}=17 / 3$.

Model
$\begin{array}{lll}\tilde{d}_{1} & \tilde{d}_{2} & \tilde{d}_{3}\end{array}$
$\tilde{d}_{4} \quad \tilde{d}_{5}$
$\begin{array}{llll}\text { pQCD } & 1 & 7.42 \quad 62.3\end{array}$
$c=2.5, \beta=-0.48 \quad 1 \quad 7.42 \quad 62.3$

We use model $\tilde{d}_{n}^{\text {mod }}=\frac{c^{n-1}(\beta \Gamma(n)+\Gamma(n+1))}{\beta+1}$
with parameters β and c estimated by known \tilde{d}_{n} and with use of Lipatov asymptotics.

Model for perturbative coefficients

Let us have a look to coefficients of our series, $\tilde{d}_{m}=d_{m} / d_{1}$, with $d_{1}=17 / 3$.
$\begin{array}{llllll}\text { Model } & \tilde{d}_{1} & \tilde{d}_{2} & \tilde{d}_{3} & \tilde{d}_{4} & \tilde{d}_{5}\end{array}$
$\begin{array}{llllll}\text { pQCD } & 1 & 7.42 \quad 62.3 \quad 620 & -\end{array}$
$c=2.5, \beta=-0.48 \quad 1 \quad 7.42 \quad 62.3 \quad 662 \quad-$

We use model $\tilde{d}_{n}^{\text {mod }}=\frac{c^{n-1}(\beta \Gamma(n)+\Gamma(n+1))}{\beta+1}$
with parameters β and c estimated by known \tilde{d}_{n} and with use of Lipatov asymptotics.

Model for perturbative coefficients

Let us have a look to coefficients of our series, $\tilde{d}_{m}=d_{m} / d_{1}$, with $d_{1}=17 / 3$.

Model
$\begin{array}{lll}\tilde{d}_{1} & \tilde{d}_{2} & \tilde{d}_{3}\end{array}$
$\tilde{d}_{4} \quad \tilde{d}_{5}$
pQCD
$1 \quad 7.42 \quad 62.3 \quad 620$
-

$c=2.5, \beta=-0.48$	1	7.42	62.3	662	-
$c=2.4, \beta=-0.52$	1	7.50	61.1	625	

We use model $\tilde{d}_{n}^{\text {mod }}=\frac{c^{n-1}(\beta \Gamma(n)+\Gamma(n+1))}{\beta+1}$
with parameters β and c estimated by known \tilde{d}_{n} and with use of Lipatov asymptotics.

Model for perturbative coefficients

Let us have a look to coefficients of our series, $\tilde{d}_{m}=d_{m} / d_{1}$, with $d_{1}=17 / 3$.

Model
$\begin{array}{lll}\tilde{d}_{1} & \tilde{d}_{2} & \tilde{d}_{3}\end{array}$
\tilde{d}_{4}
\tilde{d}_{5}
$\begin{array}{lllll}\text { pQCD } & 1 & 7.42 \quad 62.3 \quad 620\end{array}$
$c=2.5, \beta=-0.48 \quad 1 \quad 7.42 \quad 62.3 \quad 662$
$\begin{array}{llllll}c=2.4, \beta=-0.52 & 1 & 7.50 & 61.1 & 625 & 7826\end{array}$
We use model $\tilde{d}_{n}^{\text {mod }}=\frac{c^{n-1}(\beta \Gamma(n)+\Gamma(n+1))}{\beta+1}$
with parameters β and c estimated by known \tilde{d}_{n} and with use of Lipatov asymptotics.

FAPT(M) for $\widetilde{\boldsymbol{R}}_{S}:$ Truncation errors

We define relative errors of series truncation at N th term:

$$
\Delta_{N}[L]=1-\widetilde{\mathcal{R}}_{\mathrm{S}}^{(1 ; N)}[L] / \widetilde{\mathcal{R}}_{\mathrm{S}}^{(1 ; \infty)}[\boldsymbol{L}]
$$

FAPT(M) for $\widetilde{\boldsymbol{R}}_{S}:$ Truncation errors

We define relative errors of series truncation at N th term:

$$
\Delta_{N}[\boldsymbol{L}]=1-\widetilde{\mathcal{R}}_{\mathrm{S}}^{(1 ; N)}[\boldsymbol{L}] / \widetilde{\mathcal{R}}_{\mathrm{S}}^{(1 ; \infty)}[\boldsymbol{L}]
$$

FAPT(M) for $\widetilde{\boldsymbol{R}}_{S}:$ Truncation errors

We define relative errors of series truncation at N th term:

$$
\Delta_{N}[L]=1-\widetilde{\mathcal{R}}_{\mathrm{S}}^{(1 ; N)}[\boldsymbol{L}] / \widetilde{\mathcal{R}}_{\mathrm{S}}^{(1 ; \infty)}[\boldsymbol{L}]
$$

FAPT(M) for $\widetilde{\boldsymbol{R}}_{S}$: Truncation errors

Conclusion: If we need accuracy better than 0.5% only then we need to calculate the 5 -th correction.

FAPT(M) for $\widetilde{\boldsymbol{R}}_{S}:$ Truncation errors

Conclusion: If we need accuracy better than 0.5% only then we need to calculate the 5 -th correction.

But profit will be tiny - instead of 0.5% one'll obtain 0.3% !

Adler function $D\left(Q^{2}\right)$

 and$$
\text { ratio } R(s)
$$

Adler function $D\left(Q^{2}\right)$ in vector channel

Adler function $D\left(Q^{2}\right)$ can be expressed in QCD by means of the correlator of quark vector currents

$$
\Pi_{\mathrm{V}}\left(Q^{2}\right)=\frac{(4 \pi)^{2}}{3 q^{2}} i \int d x e^{i q x}\langle 0| T\left[J_{\mu}(x) J^{\mu}(0)\right]|0\rangle
$$

in terms of discontinuity of its imaginary part

$$
R_{\mathrm{V}}(s)=\frac{1}{\pi} \operatorname{Im} \Pi_{\mathrm{V}}(-s-i \epsilon)
$$

so that

$$
D\left(Q^{2}\right)=Q^{2} \int_{0}^{\infty} \frac{R_{\mathrm{V}}(\sigma)}{\left(\sigma+Q^{2}\right)^{2}} d \sigma
$$

APT analysis of $\boldsymbol{D}\left(\boldsymbol{Q}^{2}\right)$ and $\boldsymbol{R}_{V}(s)$

QCD PT gives us

$$
D\left(Q^{2}\right)=1+\sum_{m>0} \frac{d_{m}}{\pi^{m}}\left(\frac{\alpha_{s}\left(Q^{2}\right)}{\pi}\right)^{m} .
$$

APT analysis of $\boldsymbol{D}\left(Q^{2}\right)$ and $\boldsymbol{R}_{V}(s)$

QCD PT gives us

$$
D\left(Q^{2}\right)=1+\sum_{m>0} \frac{d_{m}}{\pi^{m}}\left(\frac{\alpha_{s}\left(Q^{2}\right)}{\pi}\right)^{m}
$$

In APT(E) we obtain

$$
\mathcal{D}_{N}\left(Q^{2}\right)=1+\sum_{m>0}^{N} \frac{d_{m}}{\pi^{m}} \mathcal{A}_{m}^{\mathrm{glob}}\left(Q^{2}\right)
$$

APT analysis of $\boldsymbol{D}\left(\boldsymbol{Q}^{2}\right)$ and $\boldsymbol{R}_{\boldsymbol{V}}(s)$

QCD PT gives us

$$
D\left(Q^{2}\right)=1+\sum_{m>0} \frac{d_{m}}{\pi^{m}}\left(\frac{\alpha_{s}\left(Q^{2}\right)}{\pi}\right)^{m} .
$$

In APT(E) we obtain

$$
\mathcal{D}_{N}\left(Q^{2}\right)=1+\sum_{m>0}^{N} \frac{d_{m}}{\pi^{m}} \mathcal{A}_{m}^{\mathrm{glob}}\left(Q^{2}\right)
$$

and in $\operatorname{APT}(\mathrm{M})$

$$
\mathcal{R}_{\mathrm{V} ; N}(s)=1+\sum_{m>0}^{N} \frac{d_{m}}{\pi^{m}} \mathfrak{A}_{m}^{\mathrm{glob}}(s)
$$

Model for perturbative coefficients

Let us have a look to coefficients d_{m} of the PT series.
Model
$d_{4} \quad d_{5}$

$$
\begin{array}{ccc}
d_{1} & d_{2} & d_{3} \\
\hline \hline 1 & 1.52 & 2.59
\end{array}
$$

pQCD results with $N_{f}=4 \quad 1 \quad 1.52 \quad 2.59$

Model for perturbative coefficients

Let us have a look to coefficients d_{m} of the PT series.

> Model

$$
\begin{array}{ccc}
d_{1} & d_{2} & d_{3} \\
\hline \hline 1 & 1.52 & 2.59 \\
\hline
\end{array}
$$

$$
\begin{array}{llll}
\hline c=3.467, \beta=1.325 & 1 & 1.50 & 2.62 \\
\hline
\end{array}
$$

We use model $d_{n}^{\text {mod }}=\frac{c^{n-1}\left(\beta^{n+1}-n\right)}{\beta^{2}-1} \Gamma(n)$
with parameters β and c estimated by known \tilde{d}_{n} and with use of Lipatov asymptotics.

Model for perturbative coefficients

Let us have a look to coefficients d_{m} of the PT series.

$$
\begin{array}{llllll}
\text { Model } & d_{1} & d_{2} & d_{3} & d_{4} & d_{5}
\end{array}
$$

pQCD results with $N_{f}=4 \quad 1 \quad 1.52 \quad 2.59 \quad 27.4$

$$
c=3.467, \beta=1.325 \quad 1 \quad 1.50 \quad 2.62 \quad 27.8
$$

We use model $d_{n}^{\text {mod }}=\frac{c^{n-1}\left(\beta^{n+1}-n\right)}{\beta^{2}-1} \Gamma(n)$
with parameters β and c estimated by known \tilde{d}_{n} and with use of Lipatov asymptotics.

Model for perturbative coefficients

Let us have a look to coefficients d_{m} of the PT series.
$\begin{array}{llllll}\text { Model } & d_{1} & d_{2} & d_{3} & d_{4} & d_{5}\end{array}$
pQCD results with $N_{f}=4 \quad 1 \quad 1.52 \quad 2.59 \quad 27.4$

$$
\begin{array}{lllll}
\hline c=3.467, \beta=1.325 & 1 & 1.50 & 2.62 & 27.8 \\
\hline c=3.456, \beta=1.325 & 1 & 1.49 & 2.60 & 27.5
\end{array}
$$

We use model $d_{n}^{\text {mod }}=\frac{c^{n-1}\left(\beta^{n+1}-n\right)}{\beta^{2}-1} \Gamma(n)$
with parameters β and c estimated by known \tilde{d}_{n} and with use of Lipatov asymptotics.

Model for perturbative coefficients

Let us have a look to coefficients d_{m} of the PT series.
$\begin{array}{llllll}\text { Model } & d_{1} & d_{2} & d_{3} & d_{4} & d_{5}\end{array}$
pQCD results with $N_{f}=4 \quad 1 \quad 1.52 \quad 2.59 \quad 27.4$

$c=3.467, \beta=1.325$	1	1.50	2.62	27.8	1888
$c=3.456, \beta=1.325$	1	1.49	2.60	27.5	1865

We use model $d_{n}^{\text {mod }}=\frac{c^{n-1}\left(\beta^{n+1}-n\right)}{\beta^{2}-1} \Gamma(n)$
with parameters β and c estimated by known \tilde{d}_{n} and with use of Lipatov asymptotics.

$A P T(E)$ for $\mathcal{D}\left(Q^{2}\right)$: Truncation errors

We define relative errors of series truncation at N th term:

$$
\Delta_{N}^{\mathrm{v}}[\boldsymbol{L}]=1-\mathcal{D}_{N}[\boldsymbol{L}] / \mathcal{D}_{\infty}[\boldsymbol{L}]
$$

$A P T(E)$ for $\mathcal{D}\left(Q^{2}\right)$: Truncation errors

Conclusion: The best accuracy (better than 0.1%) is achieved for $\mathbf{N}^{2} \mathrm{LO}$ approximation.

$A P T(E)$ for $\mathcal{D}\left(Q^{2}\right):$ Truncation errors

Conclusion: If we add more terms \mathbf{N}^{3} LO - truncation error increases.

$A P T(E)$ for $\mathcal{D}\left(Q^{2}\right)$: Truncation errors

Conclusion: The best accuracy (better than 0.1%) is achieved for $\mathbf{N}^{2} \mathrm{LO}$ approximation.

$A P T(M)$ for $\mathcal{R}(s)$: Truncation errors

We define relative errors of series truncation at N th term:

$$
\Delta_{N}^{\mathrm{v}}[\boldsymbol{L}]=1-\mathcal{R}_{N}[\boldsymbol{L}] / \mathcal{R}_{\infty}[\boldsymbol{L}]
$$

$A P T(M)$ for $\mathcal{R}(s)$: Truncation errors

Conclusion: The best accuracy (of the order of 0.1%) is achieved for $\mathbf{N}^{2} \mathrm{LO}$ approximation for $s \geq 7 \mathrm{GeV}^{2}$.

$A P T(M)$ for $\mathcal{R}(s)$: Truncation errors

Conclusion: The best accuracy (of the order of 0.1%) is achieved for $\mathbf{N}^{3} \mathrm{LO}$ approximation for $s \in[2.5,7] \mathrm{GeV}^{2}$.

CONCLUSIONS

- APT provides natural way to Minkowski region for coupling and related quantities.

CONCLUSIONS

- APT provides natural way to Minkowski region for coupling and related quantities.
- FAPT provides effective tool to apply APT approach for renormgroup improved perturbative amplitudes.

CONCLUSIONS

- APT provides natural way to Minkowski region for coupling and related quantities.
- FAPT provides effective tool to apply APT approach for renormgroup improved perturbative amplitudes.
- Both APT and FAPT produce finite resummed answers for perturbative quantities if we know generating function $P(t)$ for PT coefficients.

CONCLUSIONS

- APT provides natural way to Minkowski region for coupling and related quantities.
- FAPT provides effective tool to apply APT approach for renormgroup improved perturbative amplitudes.
- Both APT and FAPT produce finite resummed answers for perturbative quantities if we know generating function $P(t)$ for PT coefficients.
- Using quite simple model generating function $P(t)$ for Higgs boson decay $H \rightarrow \bar{b} b$ we see that at \mathbf{N}^{3} LO we have accuracy of the order 1\%...

CONCLUSIONS

- APT provides natural way to Minkowski region for coupling and related quantities.
- FAPT provides effective tool to apply APT approach for renormgroup improved perturbative amplitudes.
- Both APT and FAPT produce finite resummed answers for perturbative quantities if we know generating function $P(t)$ for PT coefficients.
- Using quite simple model generating function $P(t)$ for Higgs boson decay $H \rightarrow \bar{b} b$ we see that at \mathbf{N}^{3} LO we have accuracy of the order 1\%...
- ...and for Adler function $\mathcal{D}\left(Q^{2}\right)$ — we have accuracy of the order 0.1% already at \mathbf{N}^{2} LO.

CONCLUSIONS

- Both APT and FAPT produce finite resummed answers for perturbative quantities if we know generating function $P(t)$ for PT coefficients.
- Using quite simple model generating function $P(t)$ for Higgs boson decay $H \rightarrow \bar{b} b$ we see that at \mathbf{N}^{3} LO we have accuracy of the order $1 \% \ldots$
- ...and for Adler function $\mathcal{D}\left(Q^{2}\right)$ - we have accuracy of the order 0.1% already at \mathbf{N}^{2} LO.

Do not calculate higher-order corrections! Use instead APT and FAPT!

