Effects of turbulent mixing on the nonequilibrium critical behaviour

N V Antonov, V I Iglovikov and A S Kapustin

Department of Theoretical Physics Saint Petersburg State University

Renormalization Group and Related Topics Dubna 2008

1 The problem

Spreading processes in physical, chemical, biological, ecological and sociological systems: autocatalytic reactions, percolation in porous media, forest fires, epidemic diseases, and so on.

Typical model: Random walk of two species on a lattice plus reaction:
Infection: $A+B \rightarrow B$
Healing: $B \rightarrow A$

Absorbing state: No infected individuals, $\rho_{B} \equiv 0$.
Fluctuating state: $\rho_{B}=\rho(t, \mathbf{x})$ is a random quantity; $\langle\rho(t, \mathbf{x})\rangle \neq 0$.

Continuous (second-order) phase transition between these nonequilibrium steady states.

Universal scaling behaviour; critical exponents; new universality classes.
Reference: Hinrichsen H 2000 Adv. Phys. 49815

2 The model

Directed bond percolation process $=$ simple epidemic process with recovery $=$ Gribov's process $=$ stochastic first Schlögl reaction

Continuous model: stochastic PDE

$$
\begin{equation*}
\partial_{t} \psi(t, \mathbf{x})=\lambda_{0}\left\{\left(-\tau_{0}+\partial^{2}\right) \psi(t, \mathbf{x})-g_{0} \psi^{2}(t, \mathbf{x}) / 2\right\}+\zeta(t, \mathbf{x}), \tag{1}
\end{equation*}
$$

$\psi(t, \mathbf{x})>0$ - the agent's density
∂^{2} - Laplace operator
λ_{0} and g_{0} - positive parameters
$\tau_{0} \propto\left(T-T_{c}\right)$ deviation of the "temperature" from its critical value d - the dimension of the \mathbf{x} space
$\zeta(t, \mathbf{x})$ - Gaussian noise with correlation function

$$
\begin{equation*}
\left\langle\zeta(t, \mathbf{x}) \zeta\left(t^{\prime}, \mathbf{x}^{\prime}\right)\right\rangle=g_{0} \lambda_{0} \psi(t, \mathbf{x}) \delta\left(t-t^{\prime}\right) \delta^{(d)}\left(\mathbf{x}-\mathbf{x}^{\prime}\right) . \tag{2}
\end{equation*}
$$

3 Field theoretic formulation

Stochastic problem (1), (2) is equivalent to the "Reggeon field theory" with the action functional

$$
\begin{equation*}
\mathcal{S}\left(\psi, \psi^{\dagger}\right)=\psi^{\dagger}\left(-\partial_{t}+\lambda_{0} \partial^{2}-\lambda_{0} \tau_{0}\right) \psi+\frac{g_{0} \lambda_{0}}{2}\left(\left(\psi^{\dagger}\right)^{2} \psi-\psi^{\dagger} \psi^{2}\right), \tag{3}
\end{equation*}
$$

the integrations are implied:

$$
\psi^{\dagger} \partial_{t} \psi=\int d t \int d \mathbf{x} \psi^{\dagger}(t, \mathbf{x}) \partial_{t} \psi(t, \mathbf{x})
$$

$\psi^{\dagger}(x)=\psi^{\dagger}(t, \mathbf{x})$ is the auxiliary "response field."

Correlation functions of the stochastic problem $=$ functional averages with weight $\exp \mathcal{S}$.

The linear response function of the problem (1), (2) is given by the Green function

$$
G=\left\langle\psi^{\dagger}(x) \psi\left(x^{\prime}\right)\right\rangle=\int \mathcal{D} \psi^{\dagger} \int \mathcal{D} \psi \psi^{\dagger}(x) \psi\left(x^{\prime}\right) \exp \mathcal{S}\left(\psi, \psi^{\dagger}\right)
$$

Feynman rules: the bare propagator $G_{0}=\left\langle\psi \psi^{\dagger}\right\rangle_{0}$:

$$
\begin{equation*}
G_{0}(t, k)=\theta(t) \exp \left\{-\lambda_{0}\left(k^{2}+\tau_{0}\right)\right\} \leftrightarrow G_{0}(\omega, k)=\frac{1}{-\mathrm{i} \omega+\lambda_{0}\left(k^{2}+\tau_{0}\right)} \tag{4}
\end{equation*}
$$

and the two triple vertices $\sim\left(\psi^{\dagger}\right)^{2} \psi, \psi^{\dagger} \psi^{2}$.

Absorbing phase:

$$
\langle\psi \ldots \psi\rangle=0, \quad\left\langle\psi^{\dagger} \ldots \psi^{\dagger}\right\rangle=0
$$

Anomalous phase:

$$
\langle\psi \ldots \psi\rangle \neq 0
$$

Phase transition $=$ breakdown of the symmetry:

$$
\begin{equation*}
\psi(t, \mathbf{x}) \rightarrow \psi^{\dagger}(-t,-\mathbf{x}), \quad \psi^{\dagger}(t, \mathbf{x}) \rightarrow \psi(-t,-\mathbf{x}), \quad g_{0} \rightarrow-g_{0} \tag{5}
\end{equation*}
$$

Critical exponents η, ν, z are known to ε^{2}, where $\varepsilon=d-4$.
Reference: Janssen H-K and Täuber U C 2004 Ann. Phys. (NY) 315147.

4 Turbulent mixing

Inclusion of the velocity field $\mathbf{v}=\left\{v_{i}(t, \mathbf{x})\right\}$:

$$
\begin{equation*}
\partial_{t} \rightarrow \nabla_{t}=\partial_{t}+v_{i} \partial_{i}, \quad \partial_{i}=\partial / \partial x_{i} . \tag{6}
\end{equation*}
$$

Incompressibility: $\partial_{i} v_{i}=0$.
Obukhov-Kraichnan's rapid-change model: Gaussian distribution with the correlation function:

$$
\begin{align*}
\left\langle v_{i}(t, \mathbf{x}) v_{j}\left(t^{\prime}, \mathbf{x}^{\prime}\right)\right\rangle=\delta\left(t-t^{\prime}\right) D_{i j}(\mathbf{r}), \quad \mathbf{r}=\mathbf{x}-\mathbf{x}^{\prime} \\
D_{i j}(\mathbf{r})=D_{0} \int_{k>m} \frac{d \mathbf{k}}{(2 \pi)^{d}} P_{i j}(\mathbf{k}) \frac{1}{k^{d+\xi}} \exp (\mathrm{i} \mathbf{k r}), \quad k \equiv|\mathbf{k}| \tag{7}
\end{align*}
$$

$P_{i j}(\mathbf{k})=\delta_{i j}-k_{i} k_{j} / k^{2}-$ transverse projector
$D_{0}>0$
$0<\xi<2$ - free parameter (Hölder exponent)
the realistic ("Kolmogorov") value $\xi=4 / 3$
the IR cutoff at $k=m \equiv 1 / \mathcal{L}$
\mathcal{L} - the integral turbulence scale.

Field theoretic model of the three fields $\Phi=\left\{\psi, \psi^{\dagger}, \mathbf{v}\right\}$ with the action

$$
\begin{gather*}
\mathcal{S}(\Phi)=\psi^{\dagger}\left(-\nabla_{t}+\lambda_{0} \partial^{2}-\lambda_{0} \tau_{0}\right) \psi+\frac{\lambda_{0} g_{0}}{2}\left(\left(\psi^{\dagger}\right)^{2} \psi-\psi^{\dagger} \psi^{2}\right)+\mathcal{S}(\mathbf{v}) \tag{8}\\
\mathcal{S}(\mathbf{v})=-\frac{1}{2} \int d t \int d \mathbf{x} \int d \mathbf{x}^{\prime} v_{i}(t, \mathbf{x}) D_{i j}^{-1}(\mathbf{r}) v_{j}\left(t, \mathbf{x}^{\prime}\right) \tag{9}
\end{gather*}
$$

where

$$
D^{-1}(\mathbf{r}) \propto D_{0}^{-1} r^{-2 d-\xi}
$$

- the kernel of the inverse linear operation for the function $D_{i j}(\mathbf{r})$ in (7).

Feynman rules involve the new propagator $\langle v v\rangle_{0}$ and the new vertex $-\psi^{\dagger}(v \partial) \psi$.

The coupling constants:

$$
\begin{equation*}
u_{0}=g_{0}^{2} \sim \Lambda^{4-d}, \quad w_{0}=D_{0} / \lambda_{0} \sim \Lambda^{\xi} \tag{10}
\end{equation*}
$$

Λ - UV momentum scale.

5 UV divergences and the renormalization

The coupling constants:

$$
\begin{equation*}
u_{0}=g_{0}^{2} \sim \Lambda^{4-d}, \quad w_{0}=D_{0} / \lambda_{0} \sim \Lambda^{\xi} \tag{11}
\end{equation*}
$$

Λ - UV momentum scale.
The model is logarithmic (the both coupling constants g_{0} and w_{0} are simultaneously dimensionless) at $d=4$ and $\xi=0$.

The UV divergences $=$ singularities at $\varepsilon=(4-d) \rightarrow 0, \xi \rightarrow 0$.

Dimensional analysis ("power counting"): superficial UV divergences can be present in the 1-irreducible functions

$$
\begin{aligned}
&\left\langle\psi^{\dagger} \psi\right\rangle \text { with the counterterms } \quad \psi^{\dagger} \partial_{t} \psi, \\
& \psi^{\dagger} \partial^{2} \psi, \psi^{\dagger} \psi \\
&\left\langle\psi^{\dagger} \psi \psi\right\rangle \quad \text { with the counterterm } \psi^{\dagger} \psi^{2} \\
&\left\langle\psi^{\dagger} \psi^{\dagger} \psi\right\rangle \quad \text { with the counterterm }\left(\psi^{\dagger}\right)^{2} \psi \\
&\left\langle\psi^{\dagger} \psi v\right\rangle \quad \text { with the counterterm } \psi^{\dagger}(v \partial) \psi
\end{aligned}
$$

Galilean symmetry: divergence in the function

$$
\left\langle\psi^{\dagger} \psi v v\right\rangle \quad \text { with the counterterm } \quad \psi^{\dagger} \psi v^{2}
$$

is forbidden;
the counterterms $\psi^{\dagger} \partial_{t} \psi$ and $\psi^{\dagger}(v \partial) \psi$ appear in the combination $\psi^{\dagger} \nabla_{t} \psi$.

Symmetry (5): trilinear counterterms enter the renormalized action as the combination $\left(\psi^{\dagger}\right)^{2} \psi-\psi^{\dagger} \psi^{2}$.

All these terms are present in the action (8), so the model is multiplicatively renormalizable.

The renormalized action:

$$
\begin{align*}
\mathcal{S}_{R}(\Phi) & =\psi^{\dagger}\left(-Z_{1} \nabla_{t}+Z_{2} \lambda \partial^{2}-Z_{3} \lambda \tau\right) \psi+ \\
& +Z_{4} \frac{\lambda g}{2}\left(\left(\psi^{\dagger}\right)^{2} \psi-\psi^{\dagger} \psi^{2}\right)+\mathcal{S}(\mathbf{v}) \tag{12}
\end{align*}
$$

λ, τ, g - are renormalized analogs of the bare parameters, μ is the reference mass in the MS scheme,
$\mathcal{S}(\mathbf{v})$ is not renormalized:

$$
\begin{equation*}
D_{0}=w_{0} \lambda_{0}=w \lambda \mu^{\xi} \tag{13}
\end{equation*}
$$

Multiplicative renormalization of the fields

$$
\psi \rightarrow \psi Z_{\psi}, \quad \psi^{\dagger} \rightarrow \psi^{\dagger} Z_{\psi}^{\dagger}, \quad v \rightarrow v Z_{v}
$$

and the parameters:

$$
\begin{equation*}
\lambda_{0}=\lambda Z_{\lambda}, \quad \tau_{0}=\tau Z_{\tau}, \quad g_{0}=g \mu^{\varepsilon / 2} Z_{g}, \quad w_{0}=w \mu^{\xi} Z_{w} . \tag{14}
\end{equation*}
$$

The constants in Eqs. (12) and (14) are related as follows:

$$
\begin{align*}
Z_{1}=Z_{\psi} Z_{\psi^{\dagger}} & =Z_{v} Z_{\psi} Z_{\psi^{\dagger}} \quad Z_{2}=Z_{\psi} Z_{\psi^{\dagger}} Z_{\lambda}, & & Z_{3}=Z_{\psi} Z_{\psi^{\dagger}} Z_{\lambda} Z_{\tau} \\
Z_{4} & =Z_{\psi} Z_{\psi^{\dagger}}^{2} Z_{g} Z_{\lambda}=Z_{\psi}^{2} Z_{\psi \dagger} Z_{g} Z_{\lambda}, & & 1=Z_{w} Z_{\lambda} . \tag{15}
\end{align*}
$$

There are exact relations between them due to the symmetries:

$$
\begin{equation*}
Z_{\psi}=Z_{\psi \dagger}, \quad Z_{v}=1, \quad Z_{w}=Z_{\lambda}^{-1} . \tag{16}
\end{equation*}
$$

The constants $Z_{1}-Z_{4}$ are calculated directly from the diagrams, then the constants in (14) are found from (15).

The one-loop results read:

$$
\begin{equation*}
Z_{1}=1+\frac{u}{4 \varepsilon}, \quad Z_{2}=1+\frac{u}{8 \varepsilon}-\frac{3 w}{4 \xi}, \quad Z_{3}=1+\frac{u}{2 \varepsilon}, \quad Z_{4}=1+\frac{u}{\varepsilon}, \tag{17}
\end{equation*}
$$

where we passed to the new couplings,

$$
\begin{equation*}
u \rightarrow u / 16 \pi^{2}, \quad w \rightarrow w / 16 \pi^{2} . \tag{18}
\end{equation*}
$$

$$
\left\langle\psi^{\dagger} \psi\right\rangle=-\left\{-\mathrm{i} \omega Z_{1}+\lambda p^{2} Z_{2}+\lambda \tau Z_{3}\right\}+\frac{1}{2} \rightarrow \longrightarrow+\rightarrow \xrightarrow{\text { ? }}
$$

Figure 1: The one-loop approximation of the relevant 1-irreducible Green functions

6 RG functions and RG equations

The action functionals are related as

$$
\mathcal{S}_{R}(\Phi, e, \mu)=\mathcal{S}\left(\Phi, e_{0}\right)
$$

so that the Green functions are related as

$$
\begin{equation*}
G\left(e_{0}, \ldots\right)=Z_{\psi}^{N_{\psi}} Z_{\psi \psi}^{N_{\psi \dagger} \dagger} G_{R}(e, \mu, \ldots) . \tag{19}
\end{equation*}
$$

Here: N_{ψ} and $N_{\psi \dagger}$ - the numbers of corresponding fields $e_{0}=\left\{\lambda_{0}, \tau_{0}, u_{0}, w_{0}\right\}$ - the full set of bare parameters $e=\{\lambda, \tau, u, w\}$ - their renormalized counterparts.

Let $\widetilde{\mathcal{D}}_{\mu}$ be the differential operation $\mu \partial_{\mu}$ for fixed e_{0}; operate on both sides of the equation (19) with it. This gives the basic RG equation:

$$
\begin{equation*}
\left\{\mathcal{D}_{R G}+N_{\psi} \gamma_{\psi}+N_{\psi} \dagger \gamma_{\psi} \dagger\right\} G_{R}(e, \mu, \ldots)=0 \tag{20}
\end{equation*}
$$

where $\mathcal{D}_{R G}$ is the operation $\widetilde{\mathcal{D}}_{\mu}$ expressed in the renormalized variables:

$$
\begin{equation*}
\mathcal{D}_{R G} \equiv \mathcal{D}_{\mu}+\beta_{u} \partial_{u}+\beta_{w} \partial_{w}-\gamma_{\lambda} \mathcal{D}_{\lambda}-\gamma_{\tau} \mathcal{D}_{\tau} \tag{21}
\end{equation*}
$$

Here $\mathcal{D}_{x} \equiv x \partial_{x}$ for any variable x, the anomalous dimensions γ are defined as

$$
\begin{equation*}
\gamma_{F} \equiv \widetilde{\mathcal{D}}_{\mu} \ln Z_{F} \quad \text { for any quantity } F, \tag{22}
\end{equation*}
$$

and the β functions for the couplings u and w are

$$
\begin{equation*}
\beta_{u} \equiv \widetilde{\mathcal{D}}_{\mu} u=u\left[-\varepsilon-\gamma_{u}\right], \quad \beta_{w} \equiv \widetilde{\mathcal{D}}_{\mu} w=w\left[-\xi-\gamma_{w}\right] \tag{23}
\end{equation*}
$$

One-loop results:

$$
\begin{array}{r}
\gamma_{\psi}=\gamma_{\psi \dagger}=-\frac{u}{8}, \quad \gamma_{\lambda}=-\gamma_{w}=\frac{u}{8}+\frac{3 w}{4}, \\
\gamma_{\tau}=-\frac{3 u}{8}-\frac{3 w}{4}, \quad \gamma_{u}=-\frac{3 u}{2}-\frac{3 w}{2}, \tag{24}
\end{array}
$$

with corrections of order $u^{2}, w^{2}, u w$ and higher.

7 Fixed points and IR scaling regimes

Long-time large-distance asymptotic behaviour is determined by the IR attractive fixed points of the RG equations:

$$
\begin{equation*}
\beta_{u}\left(u_{*}, w_{*}\right)=0, \quad \beta_{w}\left(u_{*}, w_{*}\right)=0 . \tag{25}
\end{equation*}
$$

The fixed point is IR attractive if the matrix

$$
\begin{equation*}
\Omega=\left\{\Omega_{i j}=\partial \beta_{i} / \partial g_{j}\right\} \tag{26}
\end{equation*}
$$

is positive (eigenvalues have positive real parts).
The one-loop expressions:

$$
\begin{equation*}
\beta_{u}=u(-\varepsilon+3 u / 2+3 w / 2), \quad \beta_{w}=w(-\xi+u / 8+3 w / 4) . \tag{27}
\end{equation*}
$$

There are four different fixed points.

1. Gaussian (free) fixed point:
$u_{*}=w_{*}=0 ; \quad \Omega_{u}=-\varepsilon, \quad \Omega_{w}=-\xi$
(all these expressions are exact).
2. $w_{*}=0$ (exact result to all orders), $u_{*}=2 \varepsilon / 3 ; \Omega_{u}=\varepsilon, \Omega_{w}=-\xi+\varepsilon / 12$.

Effects of turbulent mixing are irrelevant; the basic critical exponents are independent on ξ and coincide to all orders with their counterparts for the "pure" DP class.
3. $u_{*}=0, w_{*}=4 \xi / 3$ (exact); $\Omega_{u}=-\varepsilon+2 \xi, \Omega_{w}=\xi$ (exact).

The nonlinearity $\left(\psi^{\dagger}\right)^{2} \psi-\psi^{\dagger} \psi^{2}$ of the DP model is irrelevant, and we arrive at the rapid-change model of a passively advected scalar field ψ. For that model, the β function is given exactly by the one-loop approximation, hence the exact results for w_{*} and Ω_{w}.
4. $u_{*}=4(\varepsilon-2 \xi) / 5, w_{*}=2(12 \xi-\varepsilon) / 15$. The eigenvalues:

$$
\begin{equation*}
\lambda^{ \pm}=\frac{1}{20}\left(11 \varepsilon-12 \xi \pm \sqrt{161 \varepsilon^{2}-824 \varepsilon \xi+1104 \xi^{2}}\right) \tag{28}
\end{equation*}
$$

are both real for all ε and ξ and positive for $\varepsilon / 12<\xi<\varepsilon / 2$.

This fixed point corresponds to a new nontrivial IR scaling regime (universality class), in which the nonlinearity of the DP model (3) and the turbulent mixing are simultaneously important; the corresponding critical exponents depend on the both RG expansion parameters ε and ξ and are calculated as double series in these parameters.

Figure 2: Regions of stability of the fixed points in the model (8).

8 Critical dimensions

Four fixed points of the model (3) correspond to four possible IR scaling (self-similar) regimes; for given ε and ξ only one of them is IR attractive and governs the IR behaviour. The Green functions have scaling form.

The linear response function has the form

$$
\begin{equation*}
G(t, \mathbf{x})=x^{-2 \Delta_{\psi}} F\left(\frac{x}{t^{1 / \Delta_{w}}}, \frac{\tau}{t^{\Delta_{\tau} / \Delta_{w}}}\right), \quad x=|\mathbf{x}| \tag{29}
\end{equation*}
$$

with some scaling function F.
For a given point, the critical dimensions Δ_{f} of the IR relevant quantities f are given by the relations

$$
\begin{align*}
\Delta_{\psi} & =\Delta_{\psi} \dagger=d / 2+\gamma_{\psi}^{*}, \\
\Delta_{\tau} & =2+\gamma_{\tau}^{*}, \quad \Delta_{\omega}=2-\gamma_{\lambda}^{*} \\
2 \Delta_{v} & =\Delta_{\omega}-\xi \tag{30}
\end{align*}
$$

with $\gamma_{f}^{*}=\gamma_{f}\left(u_{*}, w_{*}\right)$.

From the explicit one-loop expressions (24) we find:

1. Gaussian (free) fixed point; all the expressions are exact:

$$
\begin{equation*}
\Delta_{\psi}=d / 2, \quad \Delta_{\tau}=\Delta_{\omega}=2 \tag{31}
\end{equation*}
$$

2. Directed percolation (DP) regime; mixing irrelevant:

$$
\begin{equation*}
\Delta_{\psi}=2-7 \varepsilon / 12, \quad \Delta_{\tau}=2-\varepsilon / 4, \quad \Delta_{\omega}=2-\varepsilon / 12 \tag{32}
\end{equation*}
$$

The conventional critical exponents are related to (32) as

$$
z=\Delta_{\omega}, \quad 1 / \nu=\Delta_{\tau}, \quad d+\eta=2 \Delta_{\psi}
$$

The $O\left(\varepsilon^{3}\right)$ calculation is in progress.
3. Obukhov-Kraichnan exactly soluble regime; all results exact:

$$
\begin{equation*}
\Delta_{\omega}=\Delta_{\tau}=2-\xi, \quad \Delta_{\psi}=d / 2 . \tag{33}
\end{equation*}
$$

4. New universality class (both mixing and DP interaction are relevant):

$$
\begin{equation*}
\Delta_{\psi}=2+(\xi-3 \varepsilon) / 5, \Delta_{\tau}=2-(\varepsilon+3 \xi) / 5, \Delta_{\omega}=2-\xi(\text { exact }) . \tag{34}
\end{equation*}
$$

The first two dimensions have nontrivial corrections in ε and ξ.

9 Spreading of a cloud

The mean-square radius $R(t)$ at time $t>0$ of a cloud of "infected" particles, which started from the origin $\mathbf{x}^{\prime}=0$ at time $t^{\prime}=0$:

$$
\begin{equation*}
R^{2}(t)=\int d \mathbf{x} x^{2} G(t, \mathbf{x}), \quad G(t, \mathbf{x})=\left\langle\psi(t, \mathbf{x}) \psi^{\dagger}(0, \mathbf{0})\right\rangle, \quad x=|\mathbf{x}| . \tag{35}
\end{equation*}
$$

Substituting the scaling form of the response function

$$
G(t, \mathbf{x})=x^{-2 \Delta_{\psi}} F\left(\frac{x}{t^{1 / \Delta_{\omega}}}, \frac{\tau}{t^{\Delta_{\tau} / \Delta_{\omega}}}\right)
$$

gives

$$
\begin{equation*}
R^{2}(t)=t^{\left(d+2-2 \Delta_{\psi}\right) / \Delta_{\omega}} f\left(\frac{\tau}{t^{\Delta_{\tau} / \Delta_{\omega}}}\right), \tag{36}
\end{equation*}
$$

where the scaling functions f and F are related as follows:

$$
f(z)=\int d \mathbf{x} x^{2-2 \Delta_{\psi}} F(x, z) .
$$

At the critical point $(\tau=0)$ the power law holds:

$$
\begin{equation*}
R^{2}(t) \propto t^{\left(d+2-2 \Delta_{\psi}\right) / \Delta_{\omega}}=t^{\left(2-2 \gamma_{\psi}^{*}\right) /\left(2-\gamma_{\lambda}^{*}\right)} \tag{37}
\end{equation*}
$$

The Gaussian fixed point: the usual " $1 / 2$ law" $R(t) \propto t^{1 / 2}$ for the ordinary random walk is recovered.

The passive-scalar fixed point: the exact result $R(t) \propto t^{1 /(2-\xi)}$.
For the most Kolmogorov value $\xi=4 / 3$ this gives $R(t) \propto t^{3 / 2}$ in agreement with Richardson's " $4 / 3$ law" $d R^{2} / d t \propto R^{4 / 3}$.

For the other two fixed points the exponents in (36), (37) are given by infinite series in ε (point 2) or ε and ξ (point 4).

10 Conclusion

- four critical regimes, associated with four fixed points of the RG equations:
- Gaussian fixed point (ordinary diffusion or random walk);
- DP process, advection irrelevant;
- passively advected scalar field (infection processes irrelevant); the real cases $d=2$ or 3 and $\xi=4 / 3$ belongs to this regime;
- new nonequilibrium universality class, in which both the reaction and the turbulent mixing are relevant; the critical exponents are double series in ξ and $\varepsilon=4-d$.
—its region of IR stability $\varepsilon / 12<\xi<\varepsilon / 2$ differs from naive expectation $\xi>0$ and $\varepsilon>0$.

Further investigation (in progress):

- anisotropy of the experimental set-up,
- compressibility, non-Gaussian character and finite correlation time of the advecting velocity field,
- effects of immunization (memory);
- interaction of the order parameter with other relevant degrees of freedom (mode-mode coupling),
- feedback of the reactants on the dynamics of the velocity (forest fires, chemical reactions).

REFERENCES:

Antonov N V, Hnatich M and Honkonen J 2006 J. Phys. A: Math. Gen. 39 7867; E-print LANL cond-mat/06044434

Antonov N V and Ignatieva A A 2006 J. Phys. A: Math. Gen. 39 13593; E-print LANL cond-mat/0607019

N V Antonov, V I Iglovikov and A S Kapustin 2008 E-print LANL condmat/0808.0076

Thank you for your attention!

