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Introduction

In the Universe, matter has manly two geometric structures, homogeneous,
[Weinberg,1972] and hierarchical, [Okun, 1982].

The homogeneous structures are naturally described by real numbers with
an infinite number of digits in the fractional part and usual archimedean
metrics. The hierarchical structures are described with p-adic numbers with
an infinite number of digits in the integer part and non-archimedean
metrics, [Koblitz, 1977].

A discrete, finite, regularized, version of the homogenous structures are
homogeneous lattices with constant steps and distance rising as arithmetic
progression. The discrete version of the hierarchical structures is
hierarchical lattice-tree with scale rising in geometric progression.

There is an opinion that present day theoretical physics needs (almost) all
mathematics, and the progress of modern mathematics is stimulated by
fundamental problems of theoretical physics.
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Quantum field theory and Fractal calculus -
Universal language of fundamental physics

In QFT existence of a given theory means, that we can control its behavior
at some scales (short or large distances) by renormalization theory
[Collins, 1984].
If the theory exists, than we want to solve it, which means to determine
what happens on other (large or short) scales. This is the problem (and
content) of Renormdynamics.
The result of the Renormdynamics, the solution of its discrete or continual
motion equations, is the effective QFT on a given scale (different from the
initial one).
We can invent scale variable λ and consider QFT on D + 1+ 1 dimensional
space-time-scale. For the scale variable λ ∈ (0, 1] it is natural to consider
q-discretization, 0 < q < 1, λn = qn, n = 0, 1, 2, ... and p - adic,
nonarchimedian metric, with q−1 = p - prime integer number.
The field variable ϕ(x, t, λ) is complex function of the real, x, t, and p -
adic, λ, variables. The solution of the UV renormdynamic problem means,
to find evolution from finite to small scales with respect to the scale time
τ = lnλ/λ0 ∈ (0,−∞). Solution of the IR renormdynamic problem means
to find evolution from finite to the large scales, τ = lnλ/λ0 ∈ (0,∞).
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This evolution is determined by Renormdynamic motion equations with
respect to the scale-time.
As a concrete model, we take a relativistic scalar field model with
lagrangian (see e.g. [Makhaldiani, 1980])

L =
1

2
∂µϕ∂

µϕ− m2

2
ϕ2 − g

n
ϕn, µ = 0, 1, ...,D − 1 (1)

The mass dimension of the coupling constant is

[g] = dg = D − n
D − 2

2
= D + n− nD

2
. (2)

In the case

n =
2D

D − 2
= 2 +

4

D − 2
= 2 + ǫ(D)

D =
2n

n− 2
= 2 +

4

n− 2
= 2 + ǫ(n) (3)

the coupling constant g is dimensionless, and the model is renormalizable.
We take the euklidean form of the QFT which unifies quantum and
statistical physics problems. In the case of the QFT, we can return (in)to
minkowsky space by transformation: pD = ip0, xD = −ix0.
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The main objects of the theory are Green functions - correlation functions -
correlators,

Gm(x1, x2, ..., xm) =< ϕ(x1)ϕ(x2)...ϕ(xm) >

= Z−1
0

∫

dϕ(x)ϕ(x1)ϕ(x2)...ϕ(xm)e−S(ϕ) (4)

where dϕ is an invariant measure,

d(ϕ+ a) = dϕ. (5)

For gaussian actions,

S = S2 =
1

2

∫

dxdyφ(x)A(x, y)φ(y) = ϕ ·A · ϕ (6)

the QFT is solvable,

Gm(x1, ..., xm) =
δm

δJ(x1)...J(xm)
lnZJ |J=0,

ZJ =

∫

dϕe−S2+J ·ϕ = exp(
1

2

∫

dxdyJ(x)A−1(x, y)J(y))

= exp(
1

2
J ·A−1 · J) (7)

Nontrivial problem is to calculate correlators for non gaussian QFT.
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p-adic convergence of perturbative series

Perturbative series have the following qualitative form

f(g) = f0 + f1g + ...+ fng
n + ..., fn = n!P (n)

f(x) =
∑

n≥0

P (n)n!xn = P (δ)Γ(1 + δ)
1

1 − x
, δ = x

d

dx
(8)

In usual sense these series are divergent, but with proper nomalization of
the expansion parametre g, the coefficients of the series are rational
numbers and if experimental dates indicates for some rational value for g,
e.g. in QED

g =
e2

4π
=

1

137.0...
(9)

then we can take corresponding prime number and consider p-adic
convergence of the series. In the case of QED, we have

f(g) =
∑

fnp
−n, fn = n!P (n), p = 137,

|f |p ≤
∑

|fn|ppn (10)
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In the Youkava theory of strong interections (see e.g. [Bogoliubov,1959]),
we take g = 13,

f(g) =
∑

fnp
n, fn = n!P (n), p = 13,

|f |p ≤
∑

|fn|pp−n <
1

1− p−1
(11)

So, the series is convergent. If the limit is rational number, we consider it
as an observable value of the corresponding physical quantity. Note also,
that the inverse coupling expansions, e.g. in lattice(gauge) theories,

f(β) =
∑

rnβ
n, (12)

are also p-adically convergent for β = pk. We can take the following
scenery. We fix coupling constants and masses, e.g in QED or QCD, in low
order perturbative expansions. Than put the models on lattice and
calculate observable quantities as inverse coupling expansions, e.g.

f(α) =
∑

rnα
−n,

αQED(0) = 1/137; αQCD(mZ) = 0.11... = 1/32 (13)
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Renormdynamics of QCD

The RD equations play an important role in our understanding of Quantum
Chromodynamics and the strong interactions. The beta function and the
quarks mass anomalous dimension are among the most prominent objects
for QCD RD equations. The calculation of the one-loop β-function in QCD
has lead to the discovery of asymptotic freedom in this model and to the
establishment of QCD as the theory of strong interactions
[Gross,Wilczek,1973, Politzer,1973, ’t Hooft,1972].
The MS-scheme [’t Hooft,1972] belongs to the class of massless schemes
where the β-function does not depend on masses of the theory and the first
two coefficients of the β-function are scheme-independent.
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The Lagrangian of QCD with massive quarks in the covariant gauge

L = −1

4
F a
µνF

aµν + q̄n(iγD −mn)qn

− 1

2ξ
(∂A) + ∂µc̄a(∂µc

a + gfabcAb
µc

c)

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν

(Dµ)kl = δkl∂µ − igtaklA
a
µ, (14)

Aa
µ, a = 1, ..., N2

c − 1 are gluon; qn, n = 1, ..., nf are quark; ca are ghost
fields; ξ is gauge parameter; ta are generators of fundamental
representation and fabc are structure constants of the Lie algebra

[ta, tb] = ifabctc, (15)

we will consider an arbitrary compact semi-simple Lie group G. For QCD,
G = SU(Nc), Nc = 3.
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The RD equation for the coupling constant is

ȧ = β(a) = −β2a2 − β3a
3 − β4a

4 − β5a
5 +O(a6),

a = αs/π =
g2

4π2
, g(t), t = µ2,

∫ a

a0

da

β(a)
= t− t0 = ln

µ

µ0
, (16)

µ is the ’t Hooft unit of mass, the renormalization point in the MS-scheme.
To calculate the β-function we need to calculate the renormalization
constant Z of the coupling constant, ab = Za, where ab is the bare
(unrenormalized) charge.

N.V.Makhaldiani (Laboratory of Information Technologies Joint Institute for Nuclear Research Dubna, Moscow Region, Russia e-mail address: mnv@jinr.ru )Renormdynamics, multiparticle production, negative binomial distribution and Riemann zeta function23 September 2010 10 / 94



The expression of the β-function can be obtained in the following way

0 = d(abµ
2ε)/dt = µ2ε(εZa+

∂(Za)

∂a

da

dt
)

⇒ da

dt
= β(a, ε) =

−εZa
∂(Za)
∂a

= −εa+ β(a),

β(a) = a
d

da
(aZ(1)) (17)

where

β(a, ε) =
D − 4

2
a+ β(a) (18)

is D−dimensional β−function and Z1 is the residue of the first pole in Z
expansion

Z(a, ε) = 1 + Z1ε
−1 + ...+ Znε

−n + ... (19)

Since Z does not depend explicitly on µ, the β-function is the same in all
MS-like schemes, i.e. within the class of renormalization schemes which
differ by the shift of the parameter µ.
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For quark anomalous dimension, RD equation is

ḃ = γ(a) = −γ1a− γ2a
2 − γ3a

3 − γ4a
4 +O(a5),

b = lnmq,

b(t) = b0 +

∫ t

t0

dtγ(a(t)) = b0 +

∫ a

a0

daγ(a)/β(a). (20)

To calculate the quark mass anomalous dimension γ(g) we need to
calculate the renormalization constant Zm of the quark mass
mb = Zmm, mb is the bare (unrenormalized) quark mass. Than we find
the function γ(g) in the following way

0 = ṁb = Żmm+ Zmṁ = Zmm((lnZm)· + (lnm)·)

⇒ γ(a) = −d lnZm

dt

= −d lnZm

da

da

dt
= −d lnZm

da
(−εa+ β(a)) = a

dZ
(1)
m

da
, (21)

where RD equation in D−dimension is

ȧ = −εa+ β(a) = β1a+ β2a
2 + ... (22)
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and Z
(1)
m is the coefficient of the first pole in the ε−expantion of the Zm in

MS-scheme

Zm(ε, g) = 1 +
Z

(1)
m (g)

ε
+
Z

(2)
m (g)

ε2
+ ... (23)

Since Zm does not depend explicitly on µ and m, the γm-function is the
same in all MS-like schemes, i.e. within the class of renormalization
schemes which differ by the shift of the parameter µ.
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Reparametrization of the RD equation

RD equation,

ȧ = β1a+ β2a
2 + ... (24)

can be reparametrized,

a(t) = f(A(t)) = A+ f2A
2 + ...+ fnA

n + ...

Ȧ = b1A+ b2A
2 + ...,

(b1A+ b2A
2 + ...)(1 + 2f2A+ ...+ nfnA

n−1 + ...)
= β1(A+ f2A

2 + ...+ fnA
n + ...)

+β2(A
2 + 2f2A

3 + ...) + ...+ βn(A
n + nf2A

n+1 + ...) + ...
= β1A+ (β2 + β1f2)A

2 + (β3 + 2β2f2 + β1f3)A
3+

...+ (βn + (n− 1)βn−1f2 + ...+ β1fn)A
n + ... (25)

b1 = β1,
b2 = β2 + f2β1 − 2f2b1 = β2 − f2β1,
b3 = β3 + 2f2β2 + f3β1 − 2f2b2 − 3f3b1 = β3 + 2(f22 − f3)β1, ...
bn = βn + ...+ β1fn − 2f2bn−1 − ...− nfnb1
= βn + ...+ (1− n)β1fn − 2f2bn−1 − ...− (n− 1)fn−1b2 (26)

so, by reparametrization, beyond the critical dimension (β1 6= 0) we can
change any coefficient but β1.
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We can fix any higher coefficient with zero value, if we take

f2 =
β2
β1
, f3 =

β3
2β1

+ f22 , ... , fn =
βn + ...

(n− 1)β1
, ... (27)

In this case we have exact classical dynamics in the (external) space-time
and simple scale dynamics,

g = (µ/µ0)
−2εg0 = e−2ετg0;

ϕ(τ, t, x) = e−(D−2)/2τϕ0(t, x),

ψ(τ, t, x) = e−(D−1)/2τψ0(t, x) (28)

We will consider in applications the case when only one of higher coefficient
is nonzero.
In the critical dimension of space-time, β1 = 0, and we can change by
reparametrization any coefficient but β2 and β3. If we know somehow the
coefficients βn, e.g. for first several exact and for others asymptotic values
(see e.g. [Kazakov,Shirkov,1980]) than we can construct reparametrization
function (25) and find the dynamics of the running coupling constant. This
is similar to the action-angular canonical transformation of the analytic
mechanics (see e.g. [Faddeev, Takhtajan, 1987]).
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Nambu - Poisson formulation of Renormdynamics

In the case of several integrals of motion, Hn, 1 ≤ n ≤ N, we can
formulate Renormdynamics as Nambu - Poisson dynamics (see e.g.
[Makhaldiani,2007])

ϕ̇(x) = [ϕ(x),H1,H2, ...,HN ], (29)

where ϕ is an observable as a function of the coupling constants
xm, 1 ≤ m ≤M.
In the case of Standard model [Weinberg,1995], we have three coupling
constants, M = 3.
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Hamiltonian extension of the Renormdynamics

The renormdynamic motion equations

ġn = βn(g), 1 ≤ n ≤ N (30)

where gn, 1 ≤ n ≤ N, are coupling constants, can be presented as
nonlinear part of a hamiltonian system with linear part

Ψ̇n = −∂βm
∂gn

Ψm, (31)

hamiltonian and canonical Poisson bracket as

H =

N
∑

n=1

β(g)nΨn, {gn,Ψm} = δnm (32)

In this extended version, we can define optimal control theory approach
[Pontryagin, 1983] to the unified field theories. We can start from the
unified value of the coupling constant, e.g. α−1(M) = 29.0... at the scale
of unification M, put the aim to reach the SM scale with values of the
coupling constants measured in experiments, and find optimal threshold
corrections to the RD coefficients.
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Finite temperature and density QCD

The fundamental quark and gluon degrees of freedom are the relevant ones
at high temperatures and/or densities. Since these degrees of freedom are
confined in the low temperature and density regime there must be a quark
and/or gluon (de)confinement phase transition.
It is difficult to describe the phase transition because there is not known a
local parameter which can be linked to confinement. We consider the
fractal dimension of the hadronic/quark-gluon space as order parameter of
(de)confinement phase transition. It has value less than 3 in the abelian,
hadronic, phase, and more than 3, in nonabelian, quark-gluon, phase.
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Renormdynamics of observable quantities in high energy physics

Let us consider l−particle semi-inclusive distribution

Fl(n, q) =
dlσn

d̄q1...d̄ql
=

1

n!

∫ n
∏

i=1

d̄q′iδ(p1 + p2 − Σl
i=1qi −Σn

i=1q
′
i)

·|Mn+l+2(p1, p2, q1, ..., ql, q
′
1, ..., q

′
n; g(µ),m(µ)), µ)|2 ,

d̄p ≡ d3p

E(p)
, E(p) =

√

p2 +m2. (33)
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Renormdynamics of observable quantities in high energy physics

From the renormdynamic equation

DMn+l+2 =
γ

2
(n+ l + 2)Mn+l+2, (34)

we obtain

DFl(n, q) = γ(n+ l + 2)Fl(n, q),
DFl(q) = γ(< n > +l + 2)Fl(q),

D < nk(q) >= γ(< nk+1(q) > − < nk(q) >< n(q) >),
DCk = γ < n(q) > (Ck+1 − Ck(1 + k(C2 − 1)))

Fl(q) ≡
dlσ

d̄q1...d̄ql
=

∑

n

dlσn

d̄q1...d̄ql
, < nk(q) >=

∑

n n
kdlσn/d̄q

l

∑

n d
lσn/d̄ql

Ck =
< nk(q) >

< n(q) >k
(35)
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Scaling relations for multi particle cross sections

From dimensional considerations, the following combination of cross
sections [Koba et al, 1972] must be universal function

< n >
σn
σ

= Ψ(
n

< n >
). (36)

Corresponding relation for the inclusive cross sections is
[Matveev et al, 1976].

< n(p) >
dσn
d̄p

/
dσ

d̄p
= Ψ(

n

< n(p) >
). (37)

Indeed, let us define n−dimension of observables [Makhaldiani, 1980]

[n] = 1, [σn] = −1, σ = Σnσn, [σ] = 0, [< n >] = 1. (38)

The following expression does not depend on any dimensional quantities
and must have a corresponding universal form

Pn =< n >
σn
σ

= Ψ(
n

< n >
). (39)

Let us find an explicit form of the universal functions using renormdynamic
equations.
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From the definition of the moments we have

Ck =

∫ ∞

0
dxxkΨ(x), (40)

so they are universal parameters,

DCk = 0 ⇒ Ck+1 = (1 + k(C2 − 1))Ck ⇒
Ck = (1 + (k − 1)(C2 − 1))...(1 + 2(C2 − 1))C2. (41)

Now we can invert momentum transform and find (see [Makhaldiani, 1980]
and appendix ) universal functions [Ernst, Schmit, 1976],
[Darbaidze et al, 1978].

Ψ(z) =
1

2πi

∫ +i∞

−i∞
dnz−n−1Cn =

cc

Γ(c)
zc−1e−cz,

C2 = 1 +
1

c
(42)
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Figure: KNO distribution (42), Ψ(z), with c = 2.8

The value of the parameter c can be measured from the dispersion low,

D =
√

< n2 > − < n >2 =
√

C2 − 1 < n >= A < n >,

A =
1√
c
≃ 0.6, c = 2.8;

(c = 3, A = 5.8) (43)

which is in accordance with n−dimension counting.
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1/ < n > correction to the scaling function

We can calculate also 1/ < n > correction to the scaling function (see
appendix)

< n >
σn
σ

= Ψ = Ψ0(
n

< n >
) +

1

< n >
Ψ1(

n

< n >
),

Ck = C0
k +

1

< n >
C1
k ,

C0
k =

∫ ∞

0
dxxkΨ0(x), C

1
k =

∫ ∞

0
dxxkΨ1(x),

Ψ1(z) =
1

2πi

∫ +i∞

−i∞
dnz−n−1C1

n =
C1
2c

2

2
(z − 2 +

c− 1

cz
)Ψ0 (44)
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Characteristic function for KNO

The characteristic function we define as

Φ(t) =

∫ ∞

0
dxetxΨ(x) = (1− t/c)−c, Re(t) < c (45)

For the moments of the distribution, we have

Φ(k)(0) = Ck = (−c)(−c − 1)...(−c − k + 1)(−1/c)k =
Γ(c+ k)

Γ(c)ck
(46)

Note that it is an infinitely divisible characteristic function, i.e.

Φ(t) = (Φn(t))
n, Φn(t) = (1− t/c)−c/n (47)

If we calculate observable(mean) value of x, we find

< x >= Φ′(0) = nΦ(0)n
′ = n < x >n,

< x >n=
< x >

n
(48)

N.V.Makhaldiani (Laboratory of Information Technologies Joint Institute for Nuclear Research Dubna, Moscow Region, Russia e-mail address: mnv@jinr.ru )Renormdynamics, multiparticle production, negative binomial distribution and Riemann zeta function23 September 2010 25 / 94



For the second moment and dispersion, we have

< x2 >= Φ(2)(0) = n < x2 >n +n(n− 1) < x >2
n,

D2 =< x2 > − < x >2= n(< x2 >n − < x >2
n) = nD2

n

D2
n =

D2

n
=

D2

< x >
< x >n (49)
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Physical distributions

In a sense, any Hamiltonian quantum (and classical) system can be
described by infinitely divisible distributions, because in the functional
integral formulation, we use the following step

U(t) = e−itH = (e−i t
N
H)N (50)
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Physical distributions

In the case of our scalar field theory (1),

L(ϕ) =
1

2
∂µϕ∂

µϕ− m2

2
ϕ2 − g

n
ϕn = g

2
2−n (

1

2
∂µφ∂

µφ− m2

2
φ2 − 1

n
φn),(51)

so, to the constituent field φN corresponds higher value of the coupling
constant,

gN = gN
n−2
2 (52)

For weak nonlinearity, n = 2 + 2ε, d = 2/ε+ 2, gN = g(1 + ε lnN +O(ε2))
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Closed equation of renormdynamics for the generating function of the
observables

Let us consider a generating function of the topological crossections

F (h, g,m, µ) = Σn≥2h
nσn,

σn =
1

n!

dn

dhn
F |h=0,

σ = F |h=1, < n >=
d

dh
lnF |h=1, ... (53)

It is natural that for the generating function we have closed renormdynamic
equation [Makhaldiani, 1980]

(D− γ(
h∂

∂h
+ 2))F = 0,

F (h(µ), g(µ),m(µ), µ) = F (h(µ̄), g(µ̄),m(µ̄), µ̄) exp(2

∫ µ

µ̄

dρ

ρ
γ(g(ρ))),

h̄ = h̄(µ̄) = h(µ) exp(

∫ µ̄

µ

dρ

ρ
γ(g(ρ))),

m̄ = m̄(µ̄) = m(µ) exp(

∫ µ̄

µ

dρ

ρ
η(g(ρ))),

∫ ḡ

g

dg

β(g)
= ln

µ̄

µ
(54)
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Negative binomial distribution

Negative binomial distribution (NBD) is defined as

P (n) =
Γ(n+ r)

n!Γ(r)
pn(1− p)r,

∑

n≥0

P (n) = 1, (55)
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Figure: P (n), (55), r = 2.8, p = 0.3, < n >= 6
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NBD provides a very good parametrization for multiplicity distributions in
e+e− annihilation; in deep inelastic lepton scattering; in proton-proton
collisions; in proton-nucleus scattering.

Hadronic collisions at high energies (LHC) lead to charged multiplicity
distributions whose shapes are well fitted by a single NBD in fixed intervals
of central (pseudo)rapidity η [ALICE,2010].

It is interesting to understand how NBD fits such a different reactions?
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NBD and KNO scaling

Let us consider NBD for normed topological cross sections

σn
σ

= P (n) =
Γ(n+ k)

Γ(n+ 1)Γ(k)
(

k

< n >
)k(1 +

k

< n >
)−(n+k)

=
Γ(n+ k)

Γ(n+ 1)Γ(k)
(1 +

k

< n >
)−n(1 +

< n >

k
)−k

=
Γ(n+ k)

Γ(n+ 1)Γ(k)
(

< n >

< n > +k
)n(

k

k+ < n >
)k,

=
Γ(n+ k)

Γ(n+ 1)Γ(k)

( k
<n>)

k

(1 + k
<n>)

k+n
,

r = k > 0, p =
< n >

< n > +k
. (56)

The generating function for NBD is

F (h) = (1 +
< n >

k
(1− h))−k = (1 +

< n >

k
)−k(1− ah))−k,

a = p =
< n >

< n > +k
. (57)

Indeed,
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(1− ah))−k =
1

Γ(k)

∫ ∞

0
dttk−1e−t(1−ah)

=
1

Γ(k)

∫ ∞

0
dttk−1e−t

∞
∑

0

(tah)n

n!

=
∞
∑

0

Γ(n+ k)an

Γ(k)n!
hn,

P (n) = (1 +
< n >

k
)−kΓ(n+ k)

Γ(k)n!
(
< n >

< n > +k
)n

=
kkΓ(n+ k)

Γ(k)Γ(n+ 1)
(< n > +k)−(n+k) < n >n

=
Γ(n+ k)

Γ(n+ 1)Γ(k)
(

k

< n >
)k(1 +

k

< n >
)−(n+k)

=
Γ(n+ k)

Γ(n+ 1)Γ(k)
(

k

< n >
)k(1 +

k

< n >
)−(n+k) (58)
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Note that KNO characteristic function (45) coincides with the NBD
generating function (57) when t =< n > (h− 1), c = k.
The Bose-Einstein distribution is a special case of NBD with k = 1.

If k is negative, the NBD becomes a positive binomial distribution, narrower
than Poisson (corresponding to negative correlations).
For negative (integer) values of k = −N, we have Binomial GF

Fbd = (1 +
< n >

N
(h− 1))N = (a+ bh)N , a = 1− < n >

N
, b =

< n >

N
,

Pbd(n) = Cn
N (
< n >

N
)n(1− < n >

N
)N−n (59)

(In a sense) we have a (quantum) spectrum for the parameter k, which
contains any (positive) real values and (with finite number of states) the
negative integer values, (0 ≤ n ≤ N)
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Dispersion low for NBD

From the generating function we have

< n2 >= (
hd

dh
)2F (h)|h=1 =

k + 1

k
< n >2 + < n >, (60)

for dispersion we obtain

D =
√

< n2 > − < n >2 =
1√
k
< n > (1 +

k

< n >
)1/2

=
1√
k
< n > +

√
k

2
+O(1/ < n >), (61)

so the dispersion low for KNO and NBD distributions are the same, with
c = k, for high values of the mean multiplicity.
The factorial moments of NBD,

Fm = (
d

dh
)mF (h)|h=1 =

< n(n− 1)...(n −m+ 1) >

< n >m
=

Γ(m+ k)

Γ(m)km
, (62)

and usual normalized moments of KNO (46) coincides.

N.V.Makhaldiani (Laboratory of Information Technologies Joint Institute for Nuclear Research Dubna, Moscow Region, Russia e-mail address: mnv@jinr.ru )Renormdynamics, multiparticle production, negative binomial distribution and Riemann zeta function23 September 2010 35 / 94



The KNO as asymptotic NBD

Let us show that NBD is a discrete distribution corresponding to the KNO
scaling,

lim
<n>→∞

< n > Pn| n
<n>

=z = Ψ(z) (63)

Indeed, using the following asymptotic formula

Γ(x+ 1) = xxe−x
√
2πx(1 +

1

12x
+O(x−2)), (64)

we find

< n > Pn =< n >
(n + k − 1)n+k−1e−(n+k−1)

Γ(k)nne−n

kk

nk
< n > zke−k n+k

<n>

=
kk

Γ(k)
zk−1e−kz +O(1/ < n >) (65)

We can calculate also 1/ < n > correction term to the KNO from the
NBD. The answer is

Ψ =
kk

Γ(k)
zk−1e−kz(1 +

k2

2
(z − 2 +

k − 1

kz
)

1

< n >
) (66)

This form coincides with the corrected KNO (44) for c = k and C1
2 = 1.
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We have seen that KNO characteristic function (45) and NBD GF (57)
have almost same form. This relation become in coincidence if

c = k, t = (h− 1)
< n >

k
(67)

Now the definition of the characteristic function (45) can be read as
∫ ∞

0
e−<n>z(1−h)Ψ(z)dz = (1 +

< n >

k
(1− h))−k (68)

which means that Poisson GF weighted by KNO distribution gives NBD GF.
Because of this, the NBD is the gamma-Poisson (mixture) distribution.
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NBD, Poisson and Gauss distributions

Fore high values of x2 = k the NBD distribution reduces to the Poisson
distribution

F (x1, x2, h) = (1 +
x1
x2

(1− h))−x2 ⇒ e−x1(1−h) = e−<n>eh<n>

=
∑

P (n)hn,

P (n) = e−<n>< n >n

n!
(69)

For the Poisson distribution

d2F (h)

dh2
|h=1 =< n(n− 1) >=< n >2,

D2 =< n2 > − < n >2=< n > . (70)

In the case of NBD, we had the following dispersion low

D2 =
1

k
< n >2 + < n >, (71)

which coincides withe previous expression for high values of k.
Poisson GF belongs to the class of the infinitely divisible distributions,

F (h,< n >) = (F (h,< n > /k))k (72)
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For high values of < n >, the Poisson distribution reduces to the Gauss
distribution

P (n) = e−<n>< n >n

n!
=

1√
2π < n >

exp(−(n− < n >)2

2 < n >
) (73)

For high values of k in the integral relation (68), in the KNO function
dominates the value zc = 1 and both sides of the relation reduce to the
Poisson GF.
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Multiplicative properties of KNO and NBD and corresponding motion
equations

An useful property of the negative binomial distribution with parameters

< n >, k

is that it is (also) the distribution of a sum of k independent random
variables drawn from a Bose-Einstein distribution1 with mean < n > /k,

Pn =
1

< n > +1
(
< n >

< n > +1
)n

= (eβ~ω/2 − e−β~ω/2)e−β~ω(n+1/2), T =
~ω

ln <n>+1
<n>

∑

n≥0

Pn = 1,
∑

nPn =< n >=
1

eβ~ω−1
, T ≃ ~ω < n >, < n >≫ 1,

P (x) =
∑

n

xnPn = (1+ < n > (1− x))−1. (74)

1A Bose-Einstein, or geometrical, distribution is a thermal distribution for single state systems.
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This is easily seen from the generating function in (57), remembering that
the generating function of a sum of independent random variables is the
product of their generating functions.
Indeed, for

n = n1 + n2 + ...+ nk, (75)

with ni independent of each other, the probability distribution of n is

Pn =
∑

n1,...,nk

δ(n −
∑

ni)pn1 ...pnk
,

P (x) =
∑

n

xnPn = p(x)k (76)

This has a consequence that an incoherent superposition of N emitters that
have a negative binomial distribution with parameters k,< n > produces a
negative binomial distribution with parameters Nk,N < n >.
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So, for the GF of NBD we have (N=2)

F (k,< n >)F (k,< n >) = F (2k, 2 < n >) (77)

And more general formula (N=m) is

F (k,< n >)m = F (mk,m < n >) (78)

We can put this equation in the closed nonlocal form

QqF = F q, (79)

where

Qq = qD, D =
kd

dk
+
< n > d

d < n >
=
x1d

dx1
+
x2d

dx2
(80)

Note that temperature defined in (74) gives an estimation of the Glukvar
temperature when it radiates hadrons. If we take ~ω = 100MeV, to
T ≃ Tc ≃ 200MeV corresponds < n >≃ 1.5
We see that universality of NBD in hadron-production is similar to the
universality of black body radiation.
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p-adic string theory

p-adic string amplitudes can be obtained as tree amplitudes of the field
theory with the following lagrangian and motion equation (see e.g.
[Brekke, Freund, 1993])

L =
1

2
ΦQpΦ− 1

p+ 1
Φp+1,

QpΦ = Φp, Qp = pD (81)

D = −1

2
△, △ = −∂2x0

+ ∂2x1
+ ...+ ∂2xn−1

, (82)

Φ - is real scalar field on D-dimensional space-time with coordinates
x = (x0, x1, ..., xD−1). We have trivial, Φ = 0 and Φ = 1, and following
nontrivial solutions of the equation (81)

Φ(x0, x1, ..., xD−1) = p
D

2(p−1) e
1−p−1

2 lnp
(x2

0−x2
1−x2

2−...−x2
D−1) (83)
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The equation (81) permits factorization of its solutions
Φ(x) = Φ(x0)Φ(x1)...Φ(xD−1), every factor of which fulfils one
dimensional equation

pε∂
2
xΦ(x) = Φ(x)p, ε = ±1

2
(84)

The trivial solution of the equations are Φ = 0 and Φ = 1. For nontrivial
solution of (84), we have

pε∂
2
xΦ(x) = ea∂

2
Φ(x) =

1√
4πa

∫ ∞

−∞

dye−
1
4a

y2+y∂Φ(x)

=
1√
4πa

∫ ∞

−∞

dye−
1
4a

y2Φ(x+ y) = Φ(x)p, a = ε ln p (85)

If we (de quantize) put, p = q, and take (classical) limit, q → 1, the motion
equation reduce to

ε∂2xΦ = Φ lnΦ, (86)

with solution

Φ(x) = e
1
2 e

x2

4ε . (87)
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It is obvious that the anzac

Φ = Aebx
2
, (88)

can pass the equation (85). Indeed, the solution is

Φ(x) = p
1

2(p−1) e
1−p−1

4ε ln p
x2

,

Φ(x0, x1, ..., xD−1) = p
D

2(p−1) e
1−p−1

2 lnp
(x2

0−x2
1−x2

2−...−x2
D−1) (89)
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Corresponding class of the motion equations

Now, we can define the following class of motion equations

QqF = F q, (90)

where

Qq = qD, D = D1(x1) + ...+Dl(xl), (91)

Dk(x) is some (differential) operator depending on x. In the case of the
NBD GF,

Dk(x) =
xd

dx
. (92)

For this (Qlike) class of equations, we have factorization property

F = F (x1, ..., xl) = F1(x1)...Fl(xl),

qDk(x)Fk(x) = ckFk(x)
q, 1 ≤ k ≤ l, c1c2...cl = 1. (93)
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NBD motivated equations

For NBD distribution we have corresponding
multiplication(convolution)formulas

(P ⋆ P )n ≡
n
∑

m=0

Pm(k,< n >)Pn−m(k,< n >)

= Pn(2k, 2 < n >) = Q2Pn(k,< n >), ... (94)

So, we can say, that star-product on the distributions of NBD corresponds
ordinary product for GF.
It will be nice to have similar things for string field theory(SFT)
[Kaku,2000].
SFT motion equation is

QΦ = Φ ⋆ Φ (95)

For stringfield GF F we may have

QF = F 2. (96)
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By construction we know the solution of the nice equation (79) as GF of
NBD, F. We obtain corresponding differential equations, if we consider
q = 1 + ε, for small ε,

(D(D − 1)...(D −m+ 1)− (lnF )m)Ψ = 0,

(
Γ(D + 1)

Γ(D + 1−m)
− (lnF )m)Ψ = 0,

(Dm − Φm)Ψ = 0,m = 1, 2, 3, ...

Dm =
Γ(D + 1)

Γ(D + 1−m)
,Φ = lnF, (97)

with the solution Ψ = F = exp(Φ). In the case of the NBD and p-adic
string, we have correspondingly

D =
x1d

dx1
+
x2d

dx2
;

D = −1

2
△, △ = −∂2x0

+ ∂2x1
+ ...+ ∂2xn−1

. (98)

These equations have meaning not only for integer m.
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For high mean multiplicities we have corresponding equations for KNO

Q2Ψ(z) = Ψ ⋆Ψ ≡
∫ z

0
Ψ(t)Ψ(z − t)dt (99)

Due to the explicit form of the operator D, these equations and
corresponding solutions have the symmetry under the change of the
variables

k → ak, < n >→ b < n > . (100)

When

a =
< n >

k
, b =

k

< n >
, (101)

we obtain the symmetry with respect to the transformations
k ↔< n >, x1 ↔ x2.
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Zeros of the Riemann zeta function

The Riemann zeta function ζ(s) is defined for complex s = σ + it and
σ > 1 by the expansion

ζ(s) =
∑

n≥1

n−s, Res > 1. (102)

All complex zeros, s = α+ iβ, of ζ(σ + it) function lie in the critical stripe
0 < σ < 1, symmetrically with respect to the real axe and critical line
σ = 1/2. So it is enough to investigate zeros with α ≤ 1/2 and β > 0.
These zeros are of three type, with small, intermediate and big ordinates.
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Riemann hypothesis

The Riemann hypothesis [Titchmarsh,1986] states that the (non-trivial)
complex zeros of ζ(s) lie on the critical line σ = 1/2.
At the beginning of the XX century Polya and Hilbert made a conjecture
that the imaginary part of the Riemann zeros could be the oscillation
frequencies of a physical system (ζ - (mem)brane).
After the advent of Quantum Mechanics, the Polya-Hilbert conjecture was
formulated as the existence of a self-adjoint operator whose spectrum
contains the imaginary part of the Riemann zeros.
The Riemann hypothesis (RH) is a central problem in Pure Mathematics
due to its connection with Number theory and other branches of
Mathematics and Physics.
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The functional equation for zeta function

The functional equation is (see e.g. [Titchmarsh,1986])

ζ(1− s) =
2Γ(s)

(2π)s
cos(

πs

2
)ζ(s) (103)

From this equation we see the real (trivial) zeros of zeta function:

ζ(−2n) = 0, n = 1, 2, ... (104)

Also, at s=1, zeta has pole with reside 1.
From Field theory and statistical physics point of view, the functional
equation (103) is duality relation, with self dual (or critical) line in the
complex plane, at s = 1/2 + iβ,

ζ(
1

2
− iβ) =

2Γ(s)

(2π)s
cos(

πs

2
)ζ(

1

2
+ iβ), (105)

we see that complex zeros lie symmetrically with respect to the real axe.
On the critical line, (nontrivial) zeros of zeta corresponds to the infinite
value of the free energy,

F = −T ln ζ. (106)
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At the point with β = 14.134725... is located the first zero. In the interval
10 < β < 100, zeta has 29 zeros. The first few million zeros have been
computed and all lie on the critical line. It has been proved that
uncountably many zeros lie on critical line.
The first relation of zeta function with prime numbers is given by the
following formula,

ζ(s) =
∏

p

(1− p−s)−1, Res > 1. (107)

Another formula, which can be used on critical line, is

ζ(s) = (1− 21−s)−1
∑

n≥1

(−1)n+1n−s, Res > 0. (108)
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From Qlike to zeta equations

Let us consider the values q = n, n = 1, 2, 3, ... and take sum of the
corresponding equations (90), we find

ζ(−D)F =
F

1− F
(109)

In the case of the NBD we know the solutions of this equation.
Now we invent a Hamiltonian H with spectrum corresponding to the set of
nontrivial zeros of the zeta function, in correspondence with Riemann
hypothesis,

−Dn =
n

2
+ iHn, Hn = i(

n

2
+Dn),

Dn = x1∂1 + x2∂2 + ...+ xn∂n, H
+
n = Hn =

n
∑

m=1

H1(xm),

H1 = i(
1

2
+ x∂x) = −1

2
(xp̂+ p̂x), p̂ = −i∂x (110)

The Hamiltonian H = Hn is hermitian, its spectrum is real. The case
n = 1 corresponds to the Riemann hypothesis.
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The case n = 2, corresponds to NBD,

ζ(1 + iH2)F =
F

1− F
, ζ(1 + iH2)|F =

1

1− F
,

F (x1, x2;h) = (1 +
x1
x2

(1− h))−x2 (111)

Let us scale x2 → λx2 and take λ→ ∞ in (111), we obtain

ζ(
1

2
+ iH1(x))e

−(1−h)x =
1

e(1−h)x − 1
,

1

ζ(12 + iH(x))

1

eεx − 1
= e−εx,

H(x) = i(
1

2
+ x∂x) = −1

2
(xp̂+ p̂x), H+ = H, ε = 1− h. (112)
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Now we scale x→ xy, multiply the equation by ys−1 and integrate

1

ζ(12 + iH(x))

∫ ∞

0
dy

ys−1

eεxy − 1
=

∫ ∞

0
dye−εxyys−1 =

1

(εx)s
Γ(s),

1

ζ(12 + iH(x))

∫ ∞

0
dy

ys−1

eεxy − 1

=
1

ζ(12 + iH(x))
x−sε−sΓ(s)ζ(s), (113)

so

ζ(
1

2
+ iH(x))x−s = ζ(s)x−s ⇒ H(x)ψE = EψE ,

ψE = cx−s, s =
1

2
+ iE, (114)
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we have correct way and can return to the previous step (112) and take the
following transformation

1

eεxy − 1
=

1

2π

∫ ∞+ic

−∞+ic
dEx−iE−1/2ϕ(E, εy),

ϕ(E, εy) =

∫ ∞

0
dx

xiE− 1
2

eεxy − 1
=

Γ(12 + iE)

(εy)iE+1/2
ζ(

1

2
+ iE),

1

2π

∫ ∞+ic

−∞+ic
dEx−iE−1/2ϕ(E, εy)

1

ζ(1/2 + iE)
= e−εxy (115)
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If we take the following formula

ζ(s) =
1

Γ(s)

∫ ∞

0

ts−1dt

et − 1
, (116)

which says that ζ function is the Mellin transformation, we can find

Γ(1 + iH2)
F

1− F
=

∫ ∞

0

dt/t

et − 1
F 1/t, (117)

or

Γ(1 + iH2)Φ =

∫ ∞

0

dt/t

et − 1
(

Φ

1 + Φ
)1/t,

Φ =
F

1− F
=

1

(1 + x1
x2
(1− h))x2 − 1

(118)
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We can obtain also the following equation with argument of ζN on critical
axis

ζN (
1

2
+ iH1(x2))F (x1, x2, h) =

N
∑

n=1

1

(1 + x1
nx2

(1− h))nx2

=

N
∑

n=1

F (x1, nx2, h),

ζN (
1

2
+ iH1(x2))F (λx1, x2, h) =

N
∑

n=1

1

(1 + λx1
nx2

(1− h))nx2

=

N
∑

n=1

F (λx1, nx2, h) ≃ Ne−λ(1−h)x1 , N ≫ 1. (119)
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Let us calculate next therm in the 1/λ expansion in the (111)

F (x1, λx2, h) = (1 +
εx1
λx2

)−λx2 = e
−λx2 ln(1+ε

x1
λx2

)

= e−εx1e
(εx1)

2

2λx2
+O(λ−2)

= e−εx1(1 +
(εx1)

2

2λx2
+O(λ−2)),

(F−1 − 1)−1 = (e
λx2 ln(1+ε

x1
λx2

) − 1)−1

=
1

eεx1 − 1
(1 +

eεx1

eεx1 − 1

(εx1)
2

2λx2
+O(λ−2)) (120)

The zero order term, λ0 we already considered. The next, λ−1 order term
gives the following relations

ζ(−δ1 − δ2)
x21
x2
e−εx1 =

1

x2
ζ(1− δ1)x

2
1e

−εx1 =
x21e

εx1

x2(eεx1 − 1)2
,

ζ(1− δ)x2e−εx =
x2eεx

(eεx − 1)2
= x2e−εx +O(e−2εx)

ζ(1− δ)Ψ = EΨ +O(e−2εx),Ψ = x2e−εx, E = 1. (121)
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There have been a number of approaches to understanding the Riemann
hypothesis based on physics (for a comprehensive list see [Watkins])
According to the idea of Berry and Keating, [Berry,Keating,1997] the real
solutions En of

ζ(
1

2
+ iEn) = 0, (122)

are energy levels, eigenvalues of a quantum Hermitian operator (the
Riemann operator) associated with the one-dimensional classical hyperbolic
Hamiltonian

Hc = xp, (123)

where x and p are the conjugate coordinate and momentum.
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They suggest a quantization condition generating Riemann zeros. This
Hamiltonian breaks time-reversal invariance since
(x, p) → (x,−p) ⇒ H → −H. The classical Hamiltonian H = xp of linear
dilation, i.e. multiplication in x and contraction in p, gives the Hamiltonian
equations:

ẋ = x,
ṗ = −p, (124)

with the solution

x(t) = x0e
t,

p(t) = p0e
−t (125)

for any nonzero E = x0p0 = x(t)p(t) is hyperbola in phase space.
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The system is quantized by considering the dilation operator in the x space

H =
1

2
(xp+ px) = −i~(1

2
+ x∂x), (126)

which is the simplest formally Hermitian operator corresponding to the
classical Hamiltonian. The eigenvalue equation

HψE = EψE , (127)

is satisfied by the eigenfunctions

ψE(x) = cx−
1
2
+ i

~
E , (128)

where the complex constant c is arbitrary, since the solutions are not
square-integrable. To the normalization

∫ ∞

0
dxψE(x)

∗ψE′(x) = δ(E − E′), (129)

corresponds c = 1/
√
2π.
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We have seen that

ζ(
1

2
+ iH)e−εx =

1

eεx − 1
,

H = −i(1
2
+ x∂x) = x1/2px1/2, p = −i∂x, (130)

than

e−εx =

∫

dEx−1/2+iEϕ(E, ε), ϕ(E, ε) =
1

2π

∫ ∞

0
dxx−1/2−iEe−εx

=
ε−1/2+iE

2π
Γ(1/2 + iE);

ζ(
1

2
+ iE)ϕ(E, ε) =

1

2π

∫ ∞

0
dx
x−1/2−iE

eεx − 1

=
ε−1/2+iE

2π
Γ(1/2 + iE)ζ(

1

2
+ iE). (131)
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Some calculations with zeta function values

From the equation (112) we have

ζ(
1

2
+ iH1(x))e

−εx =
1

eεx − 1
, H1 = i(

1

2
+ x∂x),

ζ(−x∂x)(1− εx+
(εx)2

2
+ ...) =

1

εx
(1− (

εx

2
+

(εx)2

6
+ ...)+

+(
εx

2
+ ...)2 + ...), (132)

so

ζ(0) = −1

2
, ζ(−1) = − 1

12
, ... (133)

Note that, a little calculation shows that, the (εx)2 terms cancels on the
r.h.s, in accordance with ζ(−2) = 0.
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More curious question concerns with the term 1/εx on the r.h.s. To it
corresponds the term with actual infinitesimal coefficient on the l.h.s.

1

ζ(1)

1

εx
, (134)

in the spirit of the nonstandard analysis (see, e.g. [Davis,1977]), we can
imagine that such a terms always present but on the r.h.s we may not note
them.
For other values of zeta function we will use the following expansion

1

ex − 1
=

1

x+ x2

2 + x3

3! + ...
=

1

x
− 1

2
+

∑

k≥1

B2kx
2k−1

(2k)!
,

B2 =
1

6
, B4 = − 1

30
, B6 =

1

42
, ... (135)

and obtain

ζ(1− 2n) = −B2n

2n
, n ≥ 1. (136)

N.V.Makhaldiani (Laboratory of Information Technologies Joint Institute for Nuclear Research Dubna, Moscow Region, Russia e-mail address: mnv@jinr.ru )Renormdynamics, multiparticle production, negative binomial distribution and Riemann zeta function23 September 2010 66 / 94



Multiparticle production stochastic dynamics

Let us imagine space-time development of the the multiparticle process and
try to describe it by some (phenomenological) dynamical equation. We
start to find the equation for the Poisson distribution and than naturally
extend them for the NBD case.
Let us define an integer valued variable n(t) as a number of events
(produced particles) at the time t, n(0) = 0. The probability of event
n(t), P (t, n), is defined from the following motion equation

Pt ≡
∂P (t, n)

∂t
= r(P (t, n− 1)− P (t, n)), n ≥ 1

Pt(t, 0)) = −rP (t, 0),
P (t, n) = 0, n < 0, (137)

so

P (t, 0) ≡ P0(t) = e−rt,
P (t, n) = Q(t, n)P0(t),
Qt(t, n) = rQ(t, n− 1), Q(t, 0) = 1. (138)
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To solve the equation for Q, we invent its generating function

F (t, h) =
∑

n≥0

hnQ(t, n), (139)

and solve corresponding equation

Ft = rhF, F (t, h) = erth =
∑

hn
(rt)n

n!
, Q(t, n) =

(rt)n

n!
, (140)

so

P (t, n) = e−rt (rt)
n

n!
(141)

is the Poisson distribution.
If we compare this distribution with (73), we identify < n >= rt, as if we
have a free particle motion with velocity r and the distance is the mean
multiplicity. This way we have a connection between n-dimension of the
multiplicity and the usual dimension of trajectory.
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As the equation gives right solution, its generalization may give more
general distribution, so we will generalize the equation (137). For this, we
put the equation in the closed form

Pt(t, n) = r(e−∂n − 1)P (t, n)

=
∑

k≥1

Dk∂
kP (t, n), Dk = (−1)k

r

k!
, (142)

where the Dk, k ≥ 1, are generalized diffusion coefficients.
For other values of the coefficients, we will have other distributions.
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Fractal dimension of the multiparticle production trajectories

For mean square deviation of the trajectory we have

< (x− x̄)2 >=< x2 > − < x >2≡ D(x)2 ∼ t2/df , (143)

where df is fractal dimension. For smooth classical trajectory of particles
we have df = 1; for free stochastic, Brownian, trajectory, all diffusion
coefficients are zero but D2, we have df = 2. In the case of Poisson process
we have,

D(n)2 =< n2 > − < n >2∼ t, df = 2. (144)

In the case of the NBD and KNO distributions

D(n)2 ∼ t2, df = 1. (145)

As we have seen, rasing k, KNO reduce to the Poisson, so we have a
dimensional (phase) transition from the phase with dimension 1 to the
phase with dimension 2. It is interesting, if somehow this phase transition is
connected to the other phase transitions in strong interaction processes.
For the Poisson distribution GF is solution of the following equation,

Ḟ = −r(1− h)F, (146)
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For the NBD corresponding equation is

Ḟ =
−r(1− h)

1 + rt
k (1− h)

F = −R(t)F, R(t) = r(1− h)

1 + rt
k (1− h)

. (147)

If we change the time variable as t = T df , we reduce the dispersion low
from general fractal to the NBD like case. Corresponding transformation for
the evolution equation is

FT = −dfT df−1R(T dF )F, (148)

we ask that this equation coincides with NBD motion equation, and define
rate function R(T )

dfT
df−1R(T dF ) =

r(1− h)

1 + rT
k (1− h)

, (149)

now the following equation defines a production processes with fractal
dimension dF

Ft = −R(t)F, R(t) = r(1− h)

dF t
dF−1

dF (1 + rt1/dF
k (1− h))

(150)
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Spherical model of the multiparticle production

Now we would like to consider a model of multiparticle production based on
the d-dimensional sphere, and (try to) motivate the values of the NBD
parameter k. The volum of the d-dimensional sphere with radius r, in units
of hadron size rh is

v(d, r) =
πd/2

Γ(d/2 + 1)
(
r

rh
)d (151)

Note that,

v(0, r) = 1, v(1, r) = 2
r

rh
,

v(−1, r) =
1

π

rh
r

(152)

If we identify this dimensionless quantity with corresponding coulomb
energy formula,

1

π
=
e2

4π
, (153)

we find e = ±2.
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For less then -1 even integer values of d, and r 6= 0, v = 0. For negative
odd integer d = −2n+ 1

v(−2n + 1, r) =
π−n+1/2

Γ(−n+ 3/2)
(
rh
r
)2n−1, n ≥ 1, (154)

v(−3, r) = − 1

2π2
(
rh
r
)3, v(−5, r) =

3

4π3
(
rh
r
)5 (155)

Note that,

v(2, r)v(3, r)v(−5, r) =
1

π
, v(1, r)v(2, r)v(−3, r) = − 1

π
(156)

We postulate that after collision,it appear intermediate state with almost
spherical form and constant energy density. Than the radius of the sphere
rise dimension decrease, volume remains constant. At the last moment of
the expansion, when the crossection of the one dimensional sphere - string
become of order of hadron size, hadronic string divide in k independent
sectors which start to radiate hadrons with geometric (Boze-Einstein)
distribution, so all of the string final state radiate according to the NBD
distribution.
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So, from the volume of the hadronic string,

v = π(
r

rh
)2
l

rh
= πk, (157)

we find the NBD parameter k,

k =
πd/2−1

Γ(d/2 + 1)
(
r

rh
)d (158)

Knowing, from experimental date, the parameter k, we can restrict the
region of the values of the parameters d and r of the primordial sphere (PS),

r(d) = (
Γ(d/2 + 1)

πd/2−1
k)1/drh,

r(3) = (
3

4
k)1/3rh, r(2) = k1/2rh, r(1) =

π

2
krh (159)

If the value of r(d) will be a few rh, the matter in the PS will be in the
hadronic phase. If the value of r will be of order 10rh, we can speak about
deconfined, quark-gluon, Glukvar, phase. From the formula (160), we see,
that to have for the r, the value of order 10rh, in d = 3 dimension, we need
the value for k of order 1000, which is not realistic.
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So in our model, we need to consider the lower than one, fractal,
dimensions. It is consistent with the following intuitive picture. Confined
matter have point-like geometry, withe dimension zero. Primordial sphere
of Glukvar have nonzero fractal dimension, which is less than one,

k = 3, r(0.7395)/rh = 10.00,
k = 4, r(0.8384)/rh = 10.00 (160)

From the experimental data we find the parameter k of the NBD as a
function of energy, k = k(s). Then, by our spherical model, we construct
fractal dimension of the Glukvar as a function of k(s).
If we suppose that radius of the primordial sphere r is of order (or less) of
rh. Than we will have higher dimensional PS, e.g.

d r/rh k
3 1.3104 3.0002
4 1.1756 3.0003
6 1.1053 2.9994
8 1.1517 3.9990

N.V.Makhaldiani (Laboratory of Information Technologies Joint Institute for Nuclear Research Dubna, Moscow Region, Russia e-mail address: mnv@jinr.ru )Renormdynamics, multiparticle production, negative binomial distribution and Riemann zeta function23 September 2010 75 / 94



Extra dimension effects at high energy and large scale Universe

With extra dimensions gravitation interactions may become strong at the
LHC energies,

V (r) =
m1m2

m2+d

1

r1+d
(161)

If the extra dimensions are compactified with(in) size R, at r >> R,

V (r) ≃ m1m2

m2(mR)d
1

r
=
m1m2

M2
P l

1

r
, (162)

where (4-dimensional) Planck mass is given by

M2
P l = m2+dRd, (163)

so the scale of extra dimensions is given as

R =
1

m
(
MP l

m
)
2
d (164)

N.V.Makhaldiani (Laboratory of Information Technologies Joint Institute for Nuclear Research Dubna, Moscow Region, Russia e-mail address: mnv@jinr.ru )Renormdynamics, multiparticle production, negative binomial distribution and Riemann zeta function23 September 2010 76 / 94



If we take m = 1TeV, (GeV −1 = 0.2fm)

R(d) = 2 · 10−17 · ( MP l

1TeV
)
2
d · cm,

R(1) = 2 · 1015cm,
R(2) = 0.2 cm !
R(3) = 10−7cm !
R(4) = 2 · 10−9cm,
R(6) ∼ 10−11cm (165)

Note that lab measurements of GN (= 1/M2
P l,MP l = 1.2 · 1019GeV ) have

been made only on scales of about 1 cm to 1 m; 1 astronomical unit(AU)
(mean distance between Sun and Earth) is 1.5 · 1013cm; the scale of the
periodic structure of the Universe, L = 128Mps ≃ 4 · 1026cm. It is curious
which (small) value of the extra dimension corresponds to L?

d = 2
ln MPl

m

ln(mL)
= 0.74, m = 1TeV,

= 0.81, m = 100GeV,
= 0.07, m = 1017GeV. (166)
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Dynamical formulation of z - Scaling

Motion equations of physics (applied mathematics in general) connect
different observable quantities and reduce the number of independently
measurable quantities. More fundamental equation contains less number of
independent quantities. When (before) we solve the equations, we invent
dimensionless invariant variables, than one solution can describe all of the
class of phenomena.
In the z - Scaling (zS) approach to the inclusive multiparticle distributions
(MPD) (see, e.g. [Tokarev, Zborovsry, 2007a]), different inclusive
distributions depending on the variables x1, ...xn, are described by universal
function Ψ(z) of fractal variable z,

z = x−α1
1 ...x−αn

n . (167)

It is interesting to find a dynamical system which generates this
distributions and describes corresponding MPD.
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We can find a good function if we know its derivative. Let us consider the
following RD like equation

z
d

dz
Ψ = V (Ψ),

∫ Ψ(z)

Ψ(z0)

dx

V (x)
= ln

z

z0
(168)

In x−representation,

ln z = −
n
∑

k=1

αk lnxk, δz = z
d

dz
= −

∑

k

δk
nhαk

,

n
∑

k=1

xk
nhαk

∂

∂xk
Ψ(x1, ..., xn) + V (Ψ) = 0, (169)

e.g.

z = δzz = −
n
∑

k=1

xk
nhαk

∂

∂xk
x−α1
1 ...x−αn

n = z, nh = n. (170)
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In the case of NBD GF (79), we have

n = 2, x1 = k, x2 =< n >, α1 = α2 = 1, nh = 1,
Ψ = F, V (Ψ) = −Ψ lnΨ. (171)

In the case of the z−scaling, [Tokarev, Zborovsry, 2007a],

n = 4, x3 = ya, x4 = yb,
α1 = δ1, α2 = δ2, α3 = εa, α4 = εb, nh = 4, (172)

for infinite resolution, αn = 1, n = 1, 2, 3, 4. In z variable the equation for
Ψ has universal form. In the case of n = 2, α1 = α2 = 1, nh = 1, we find
that V (Ψ) = −Ψ lnΨ, so if this form is applicable also in the case of n=4,

z
d

dz
Ψ(z) = −Ψ lnΨ,

Ψ(z) = ec/z = (Ψ(z0)
z0)

1
z = Ψ(z0)

z0
z ,

c = z0 lnΨ(z0) < 0, z ∈ (0,∞), Ψ(z) ∈ (0, 1). (173)

Note that the fundamental equation is invariant with respect to the scale
transformation z → λz, but the solution is not, the scale transformation
transforms one solution into another solution. This is an example of the
spontaneous breaking of the (scale) symmetry by the states of the system.
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Formal motivation (foundation) of the RD motion equation for Ψ

As a dimensionless physical quantity Ψ(z) may depend only on the running
coupling constant g(τ), τ = ln z/z0

z
d

dz
Ψ = Ψ̇ =

dΨ

dg
β(g) = U(g) = U(f−1(Ψ)) = V (Ψ),

Ψ(τ) = f(g(τ)), g = f−1(Ψ(τ)) (174)
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Realistic solution for Ψ

According to the paper [Tokarev, Zborovsry, 2007a], for high values of
z, Ψ(z) ∼ z−β ; for small z, Ψ(z) ∼ const.
So, for high z,

z
d

dz
Ψ = V (Ψ(z)) = −βΨ(z); (175)

for smaller values of z, Ψ(z) rise and we expect nonlinear terms in V (Ψ),

V (Ψ) = −βΨ+ γΨ2. (176)

With this function, we can solve the equation for Ψ(see appendix) and find

Ψ(z) =
1

γ
β + czβ

. (177)
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Reparametrization of the RD equation

RD equation of the z-Scaling,

z
d

dz
Ψ(z) = V (Ψ), V (Ψ) = V1Ψ+ V2Ψ

2 + ...+ VnΨ
n + ... (178)

can be reparametrized,

Ψ(z) = f(ψ(z)) = ψ(z) + f2ψ
2 + ...+ fnψ

n + ...

z
d

dz
ψ(z) = v(z) = v1ψ(z) + v2ψ

2 + ...+ vnψ
n + ...

(v1ψ(z) + v2ψ
2 + ...+ vnψ

n + ...)(1 + 2f2ψ + ...+ nfnψ
n−1 + ...)

= V1(ψ + f2ψ
2 + ...+ fnψ

n + ...)
+V2(ψ

2 + 2f2ψ
3 + ...) + ...+ Vn(ψ

n + nf2ψ
n+1 + ...) + ...

= V1ψ + (V2 + V1f2)ψ
2 + (V3 + 2V2f2 + V1f3)ψ

3+
...+ (Vn + (n− 1)Vn−1f2 + ...+ V1fn)ψ

n + ...
v1 = V1,
v2 = V2 − f2V1,
v3 = V3 + 2V2f2 + V1f3 − 2f2v2 − 3f3v1 = V3 + 2(f22 − f3)V1, ...
vn = Vn + (n− 1)Vn−1f2 + ...+ V1fn − 2f2vn−1 − ...− nfnv1, ...(179)

so, by reparametrization, we can change any coefficient of potential V but
V1.

N.V.Makhaldiani (Laboratory of Information Technologies Joint Institute for Nuclear Research Dubna, Moscow Region, Russia e-mail address: mnv@jinr.ru )Renormdynamics, multiparticle production, negative binomial distribution and Riemann zeta function23 September 2010 83 / 94



We can fix any higher coefficient with zero value, if we take

f2 =
V2
V1
, f3 =

V3
2V1

+ f22 =
V3
2V1

+ (
V2
V1

2

), ...

fn =
Vn + (n− 1)Vn−1f2 + ...+ 2V2fn−1

(n− 1)V1
, ... (180)

We will consider the case when only one of higher coefficient is nonzero and
give explicit form of the solution Ψ.
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More general solution for Ψ

Let us consider more general potential V

z
d

dz
Ψ = V (Ψ) = −βΨ(z) + γΨ(z)1+n (181)

Corresponding solution for Ψ is

Ψ(z) =
1

(γβ + cznβ)
1
n

(182)
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More general solution contains three parameters and may better describe
the data of inclusive distributions.

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

Figure: z-scaling distribution (182), Ψ(z, 9, 9, 1, 1)

In the case of n = 1 we reproduce the previous solution.
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Another ”natural” case is n = 1/β,

Ψ(z) =
1

(γβ + cz)β
(183)

In this case, we can absorb (interpret) the combined parameter by shift and
scaling

z → 1

c
(z − γ

β
) (184)

Another interesting point of view is to predict the value of β

β =
1

n
= 0.5; 0.33; 0.25; 0.2; ..., n = 2, 3, 4, 5, ... (185)

For experimentally suggested value β ≃ 9, n = 0.11
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In the case of n = −ε, β = γ = 1/ε, c = εk, we will have

V (Ψ) = −Ψ lnΨ, Ψ(z) = e
k
z (186)

This form of Ψ−function interpolates between asymptotic values of Ψ and
predicts its behavior in the intermediate region. These three parameter
function is restricted by the normalization condition

∫ ∞

0
Ψ(z)dz = 1,

B(
β − 1

βn
,
1

βn
) = (

β

γ
)
β−1
βn

βn

cβn
, (187)

so remains only two free parameter. When βn = 1, we have

c = (β − 1)(
β

γ
)β−1 (188)

If βn = 1 and β = γ, than c = β − 1.
In general

cβn = (
β

γ
)
β−1
βn

βn

B(β−1
βn ,

1
βn)

(189)
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Scaling properties of scaling functions and they equations

RD equation of the z-scaling (181), after substitution,

Ψ(z) = (ϕ(z))
1
n , (190)

reduce to the n = 1 case with scaled parameters,

ϕ̇ = −βnϕ+ γnϕ2, (191)

this substitution could be motivated also by the structure of the solution
(182),

Ψ(z, β, γ, n, c) = Ψ(z, βn, γn, 1, c)
1
n = Ψ(z, β, γ, βn, c)β . (192)

General RD equation takes form

ϕ̇ = nv1ϕ+ nv2ϕ
1+ 1

n + nv3ϕ
1+ 2

n + ...+ nvnϕ
2 + nvn+1ϕ

2+ 1
n + ... (193)
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Space-time dimension inside hadrons and nuclei

The dimension of the space(-time) is the model dependent concept. E.g.
for the fundamental bosonic string model (in flat space-time) the dimension
is 26; for superstring model the dimension is 10 [Kaku,2000].
Let us imagine that we have some action-functional formulation with the
fundamental motion equation

z
d

dz
Ψ = V (Ψ(z)) = V (Ψ) = −βΨ+ γΨ1+n. (194)

Than, the corresponding Lagrangian contains the following mass and
interaction parts

−β
2
Ψ2 +

γ

2 + n
Ψ2+n (195)

The action gives renormalizable (effective quantum field theory) model
when

d+ 2 =
2N

N − 2
=

2(2 + n)

n
= 2 +

4

n
= 2 + 4β, (196)

so, measuring the parameter β inside hadronic and nuclear matters, we find
corresponding (fractal) dimension.
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Another action formulation of the Fundamental equation

From fundamental equation we obtain

(z
d

dz
)2Ψ ≡ Ψ̈ = V ′(Ψ)V (Ψ) =

1

2
(V 2)′

= β2Ψ− βγ(n+ 2)Ψn+1 + γ2(n + 1)Ψ2n+1 (197)

Corresponding action Lagrangian is

L =
1

2
Ψ̇2 + U(Ψ), U =

1

2
V 2 =

1

2
Ψ2(β − γΨn)2

=
β2

2
Ψ2 − βγΨ2+n +

γ2

2
Ψ2+2n (198)

This potential, −U, has two maximums, when V = 0, and minimum, when
V ′ = 0, at Ψ = 0 and Ψ = (β/γ)1/n, and Ψ = (β/(n + 1)γ)1/n,
correspondingly.
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We define time-space-scale field Ψ(t, x, η), where η = ln z− is scale
coordinate variable, with corresponding action functional

A =

∫

dtddxdη(
1

2
gab∂aΨ∂bΨ+ U(Ψ)) (199)

The renormalization constraint for this action is

N = 2 + 2n =
2(2 + d)

2 + d− 2
= 2 +

4

d
, dn = 2, d = 2/n = 2β. (200)

So we have two models for spase-time dimension, (196) and (200),

d1 = 4β; d2 = 2β (201)

The coordinate η characterise (multiparticle production) physical process at
the (external) space-time point (x,t). The dimension of the space-time
inside hadrons and nuclei, where multiparticle production takes place is

d+ 1 = 1 + 2β (202)

Note that this formula reminds the dimension of the spin s state,
ds = 2s+ 1. If we take β(= s) = 0; 1/2; 1; 3/2; 2; ... We will have
d+ 1 = 1; 2; 3; 4; 5; ...
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Note that as we invent Ψ as a real field, we ought to take another
normalization

∫

ddx|Ψ|2 = 1 (203)

for the solutions of the motion equation. This case extra values of the
parameter β is possible, β > d/2.
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Measurement of the space-time dimension inside hadrons

We can take a renormdynamic scheme were Ψ(g) is running coupling
constant. The variable z is a formation length and has dimension -1, RD
equation for Ψ in ϕ3

D model is

z
d

dz
Ψ =

6−D

2
Ψ + γΨ2 (204)

β =
D − 6

2
(205)

For high values of z, β = 9, so D = 24. This value of D corresponds to the
physical (transverse) degrees of freedom of the relativistic string, to the
dimension of the external space in which this relativistic string lives. This is
also the number of the quark - lepton matter degrees of freedom, 3 · 6 + 6.
So, in these high energy reactions we measured the dimension of the
space-time and matter and find the values predicted by relativistic string
and SM. For lower energies, in this model, D monotonically decrees until
D = 6, than the model (may) change form on the ϕ4

D, β = D − 4. So we
have two scenarios of behavior. In one of them the dimension of the
space-time inside hadrons has value 6 and higher. In another the dimension
is 4 and higher.
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Perturbative QCD indicates that we have a fixed point of RD in dimension
slightly higher than 4, and ordinary to hadron phase transition corresponds
to the dimensional phase transition from slightly lower than 4, in QED, to
slightly higher than 4 dimension in QCD. In general scalar field model ϕn

D,

β = −dg =
nD

2
− n−D. (206)

For ϕ3 model, β = 9 corresponds to D = 24. In tha case of the
O(N)−sigma model

β = D − 2, (207)

For the experimental value of β = 9, we have the dimension of the
M−theory, D = 11!
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