Inhomogeneous chiral symmetry breaking phases

Michael Buballa

NICA/JINR-FAIR Bilateral Workshop

"Matter at highest baryon densities in the laboratory and in space"
FIAS, Frankfurt, April 2-4, 2012

Motivation

- QCD phase diagram

Motivation

Motivation

Motivation

Broniowski et al., Acta Phys. Pol. B (1991)

- QCD phase diagram
- frequent assumption:
$\langle\bar{q} q\rangle,\langle q q\rangle$ constant in space
- inhomogeneous phases:
- pion condensates
- chiral density wave
- Skyrme crystals
- crystalline (color) superconductors
- 1+1 D Gross-Neveu model

Motivation

Nakano, Tatsumi, PRD (2005)

- QCD phase diagram
- frequent assumption:
$\langle\bar{q} q\rangle,\langle q q\rangle$ constant in space
- inhomogeneous phases:
- pion condensates
- chiral density wave
- Skyrme crystals
- crystalline (color) superconductors
- 1+1 D Gross-Neveu model

Motivation

Nakano, Tatsumi, PRD (2005)

- QCD phase diagram
- frequent assumption:
$\langle\bar{q} q\rangle,\langle q q\rangle$ constant in space
- inhomogeneous phases:
- pion condensates
- chiral density wave
- Skyrme crystals
- crystalline (color) superconductors
- 1+1 D Gross-Neveu model
- This talk:
inhomogeneous χ SB in the NJL model

Model

- NJL model:

$$
\mathcal{L}=\bar{\psi}(i \not \partial-m) \psi+G_{S}\left((\bar{\psi} \psi)^{2}+\left(\bar{\psi} i_{\gamma_{5}} \vec{\tau} \psi\right)^{2}\right)
$$

Model

- NJL model:

$$
\mathcal{L}=\bar{\psi}(i \not \partial-m) \psi+G_{S}\left((\bar{\psi} \psi)^{2}+\left(\bar{\psi} i \gamma_{5} \vec{\tau} \psi\right)^{2}\right)
$$

- bosonize: $\quad \sigma(x)=\bar{\psi}(x) \psi(x), \quad \vec{\pi}(x)=\bar{\psi}(x) i \gamma_{5} \vec{\tau} \psi(x)$

$$
\Rightarrow \quad \mathcal{L}=\bar{\psi}\left(i \not \partial-m+2 G_{S}\left(\sigma+i \gamma_{5} \vec{\tau} \cdot \vec{\pi}\right)\right) \psi-G_{S}\left(\sigma^{2}+\vec{\pi}^{2}\right)
$$

Model

- NJL model:

$$
\mathcal{L}=\bar{\psi}(i \not \partial-m) \psi+G_{S}\left((\bar{\psi} \psi)^{2}+\left(\bar{\psi} i \gamma_{5} \vec{\tau} \psi\right)^{2}\right)
$$

- bosonize: $\quad \sigma(x)=\bar{\psi}(x) \psi(x), \quad \vec{\pi}(x)=\bar{\psi}(x) i \gamma_{5} \vec{\tau} \psi(x)$

$$
\Rightarrow \quad \mathcal{L}=\bar{\psi}\left(i \not \partial-m+2 G_{S}\left(\sigma+i \gamma_{5} \vec{\tau} \cdot \vec{\pi}\right)\right) \psi-G_{S}\left(\sigma^{2}+\vec{\pi}^{2}\right)
$$

- mean-field approximation:

$$
\sigma(x) \rightarrow\langle\sigma(x)\rangle \equiv S(\vec{x}), \quad \pi_{a}(x) \rightarrow\left\langle\pi_{a}(x)\right\rangle \equiv P(\vec{x}) \delta_{a 3}
$$

- $S(\vec{x}), P(\vec{x})$ time independent classical fields
- retain space dependence!

Mean-field model

- mean-field Lagrangian: $\quad \mathcal{L}_{M F}=\bar{\psi}(x) \mathcal{S}^{-1}(x) \psi(x)-G_{S}\left(S^{2}(\vec{x})+P^{2}(\vec{x})\right)$
- inverse dressed propagator:

$$
\mathcal{S}^{-1}(x)=i \not \partial-m+2 G_{S}\left(S(\vec{x})+i \gamma_{5} \tau_{3} P(\vec{x})\right)
$$

Mean-field model

- mean-field Lagrangian: $\quad \mathcal{L}_{M F}=\bar{\psi}(x) \mathcal{S}^{-1}(x) \psi(x)-G_{S}\left(S^{2}(\vec{x})+P^{2}(\vec{x})\right)$
- inverse dressed propagator:

$$
\mathcal{S}^{-1}(x)=i \not \partial-m+2 G_{S}\left(S(\vec{x})+i \gamma_{5} \tau_{3} P(\vec{x})\right) \equiv \gamma^{0}\left(i \partial_{0}-\mathcal{H}_{M F}\right)
$$

- $\mathcal{H}_{\text {MF }}=\mathcal{H}_{M F}[S, P]$ hermitean, time independent

Mean-field model

- mean-field Lagrangian: $\quad \mathcal{L}_{M F}=\bar{\psi}(x) \mathcal{S}^{-1}(x) \psi(x)-G_{S}\left(S^{2}(\vec{x})+P^{2}(\vec{x})\right)$
- inverse dressed propagator:

$$
\mathcal{S}^{-1}(x)=i \not \partial-m+2 G_{S}\left(S(\vec{x})+i \gamma_{5} \tau_{3} P(\vec{x})\right) \equiv \gamma^{0}\left(i \partial_{0}-\mathcal{H}_{M F}\right)
$$

- $\mathcal{H}_{M F}=\mathcal{H}_{M F}[S, P]:$ hermitean, time independent
- thermodynamic potential:

$$
\Omega_{M F}(T, \mu ; S, P)=-\frac{T}{V} \operatorname{Tr} \ln \left(\frac{1}{T}\left(i \partial_{0}-\mathcal{H}_{M F}+\mu\right)\right)+\frac{G_{S}}{V} \int_{V} d^{3} x\left(S^{2}(\vec{x})+P^{2}(\vec{x})\right)
$$

Mean-field model

- mean-field Lagrangian: $\quad \mathcal{L}_{M F}=\bar{\psi}(x) \mathcal{S}^{-1}(x) \psi(x)-G_{S}\left(S^{2}(\vec{x})+P^{2}(\vec{x})\right)$
- inverse dressed propagator:

$$
\mathcal{S}^{-1}(x)=i \not \partial-m+2 G_{S}\left(S(\vec{x})+i \gamma_{5} \tau_{3} P(\vec{x})\right) \equiv \gamma^{0}\left(i \partial_{0}-\mathcal{H}_{M F}\right)
$$

- $\mathcal{H}_{M F}=\mathcal{H}_{M F}[S, P]:$ hermitean, time independent
- thermodynamic potential:

$$
\begin{aligned}
\Omega_{M F}(T, \mu ; S, P) & =-\frac{T}{V} \operatorname{Tr} \ln \left(\frac{1}{T}\left(i \partial_{0}-\mathcal{H}_{M F}+\mu\right)\right)+\frac{G_{S}}{V} \int_{V} d^{3} x\left(S^{2}(\vec{x})+P^{2}(\vec{x})\right) \\
& =-\frac{1}{V} \sum_{\lambda}\left[\frac{E_{\lambda}-\mu}{2}+T \ln \left(1+e^{\frac{E_{\lambda}-\mu}{T}}\right)\right]+\frac{1}{V} \int_{V} d^{3} x \frac{|M(\vec{x})-m|^{2}}{4 G_{s}}
\end{aligned}
$$

- mass function: $M(\vec{x})=m-2 G_{S}(S(\vec{x})+i P(\vec{x}))$
- $E_{\lambda}=E_{\lambda}[M(\vec{x})]=$ eigenvalues of $\mathcal{H}_{M F}$

One dimensional modulations

- remaining tasks:
- calculate eigenvalue spectrum of $\mathcal{H}_{M F}$ for given mass function $M(\vec{x})$
- minimize w.r.t. $M(\vec{x})$
extremely difficult!

One dimensional modulations

- remaining tasks:
- calculate eigenvalue spectrum of $\mathcal{H}_{M F}$ for given mass function $M(\vec{x})$
- minimize w.r.t. $M(\vec{x})$
extremely difficult!
- simplification:
- consider only one-dimensional modulations $M(z)$

One dimensional modulations

- remaining tasks:
- calculate eigenvalue spectrum of $\mathcal{H}_{M F}$ for given mass function $M(\vec{x})$
- minimize w.r.t. $M(\vec{x})$
extremely difficult!
- simplification:
- consider only one-dimensional modulations $M(z)$
- important observation: [D. Nickel, PRD (2009)]
problem can be mapped to the $1+1$ dimensional case

One dimensional modulations

- remaining tasks:
- calculate eigenvalue spectrum of $\mathcal{H}_{M F}$ for given mass function $M(\vec{x})$
- minimize w.r.t. $M(\vec{x})$
extremely difficult!
- simplification:
- consider only one-dimensional modulations $M(z)$
- important observation: [D. Nickel, PRD (2009)]
problem can be mapped to the $1+1$ dimensional case
- solutions known analytically: [M. Thies, J. Phys. A (2006)] $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \quad$ (chiral limit), $\operatorname{sn}(\xi \mid \nu)$: Jacobi elliptic functions

One dimensional modulations

- remaining tasks:
- calculate eigenvalue spectrum of $\mathcal{H}_{M F}$ for given mass function $M(\vec{x})$
- minimize w.r.t. $M(\vec{x})$
extremely difficult!
- simplification:
- consider only one-dimensional modulations $M(z)$
- important observation: [D. Nickel, PRD (2009)]
problem can be mapped to the $1+1$ dimensional case
- solutions known analytically: [M. Thies, J. Phys. A (2006)]
$M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \quad$ (chiral limit),
$\operatorname{sn}(\xi \mid \nu)$: Jacobi elliptic functions
- remaining task:
minimize w.r.t. 2 parameters ($m \neq 0: 3$ parameters)

One dimensional modulations

- remaining tasks:
- calculate eigenvalue spectrum of $\mathcal{H}_{M F}$ for given mass function $M(\vec{x})$
- minimize w.r.t. $M(\vec{x})$
extremely difficult!
- simplification:
- consider only one-dimensional modulations $M(z)$
- important observation: [D. Nickel, PRD (2009)]
problem can be mapped to the $1+1$ dimensional case
- solutions known analytically: [M. Thies, J. Phys. A (2006)]
$M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \quad$ (chiral limit),
$\operatorname{sn}(\xi \mid \nu)$: Jacobi elliptic functions
- remaining task:
minimize w.r.t. 2 parameters $(m \neq 0: 3$ parameters) much easier!

Phase diagram (chiral limit)

[D. Nickel, PRD (2009)]

Phase diagram (chiral limit)

[D. Nickel, PRD (2009)]

Phase diagram (chiral limit)

[D. Nickel, PRD (2009)]

- 1st-order line completely covered by the inhomogeneous phase!
- all phase boundaries 2nd order
- critical point coincides with Lifshitz point

Mass functions and density profiles ($T=0$)

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$

Mass functions and density profiles ($T=0$)

TECHNISCHE UNIVERSITÄT DARMSTADT

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=307.5 \mathrm{MeV})$

Mass functions and density profiles ($T=0$)

TECHNISCHE
UNIVERSITÄT DARMSTADT

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=308 \mathrm{MeV})$

Mass functions and density profiles ($T=0$)

TECHNISCHE UNIVERSITÄT DARMSTADT

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=309 \mathrm{MeV})$

Mass functions and density profiles ($T=0$)

TECHNISCHE UNIVERSITÄT DARMSTADT

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=310 \mathrm{MeV})$

Mass functions and density profiles ($T=0$)

TECHNISCHE
UNIVERSITÄT
DARMSTADT

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=320 \mathrm{MeV})$

Mass functions and density profiles ($T=0$)

TECHNISCHE UNIVERSITÄT DARMSTADT

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{cll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=330 \mathrm{MeV})$

Mass functions and density profiles ($T=0$)

TECHNISCHE UNIVERSITATT DARMSTADT

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{cll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=340 \mathrm{MeV})$

Mass functions and density profiles ($T=0$)

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=345 \mathrm{MeV})$

Mass functions and density profiles ($T=0$)

TECHNISCHE
UNIVERSITATT
DARMSTADT

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=307.5 \mathrm{MeV})$

Mass functions and density profiles ($T=0$)

TECHNISCHE

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=307.5 \mathrm{MeV})$

- Quarks reside in the chirally restored regions.

Mass functions and density profiles ($T=0$)

TECHNISCHE
UNIVERSITATT
DARMSTADT

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=308 \mathrm{MeV})$

normalized density ($\mu=308 \mathrm{MeV}$)

- Quarks reside in the chirally restored regions.

Mass functions and density profiles ($T=0$)

TECHNISCHE
UNIVERSITATT
DARMSTADT

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$

- Quarks reside in the chirally restored regions.

Mass functions and density profiles ($T=0$)

TECHNISCHE
UNIVERSITATT
DARMSTADT

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$

- Quarks reside in the chirally restored regions.

Mass functions and density profiles ($T=0$)

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=320 \mathrm{MeV})$

normalized density ($\mu=320 \mathrm{MeV}$)

- Quarks reside in the chirally restored regions.
- Density gets smoothened with increasing μ and T.

Mass functions and density profiles ($T=0$)

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=330 \mathrm{MeV})$

normalized density ($\mu=330 \mathrm{MeV}$)

- Quarks reside in the chirally restored regions.
- Density gets smoothened with increasing μ and T.

Mass functions and density profiles ($T=0$)

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=340 \mathrm{MeV})$

normalized density ($\mu=340 \mathrm{MeV}$)

- Quarks reside in the chirally restored regions.
- Density gets smoothened with increasing μ and T.

Mass functions and density profiles ($T=0$)

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=345 \mathrm{MeV})$

normalized density ($\mu=345 \mathrm{MeV}$)

- Quarks reside in the chirally restored regions.
- Density gets smoothened with increasing μ and T.

Including vector interactions

[S. Carignano, D. Nickel, M.B., PRD (2010)]

- additional interaction term:

$$
\mathcal{L}_{V}=-G_{V}\left(\bar{\psi} \gamma^{\mu} \psi\right)^{2}
$$

- homogeneous phases: strong G_{V}-dependence of the critical point

Including vector interactions

[S. Carignano, D. Nickel, M.B., PRD (2010)]

- additional interaction term:

$$
\mathcal{L}_{V}=-G_{V}\left(\bar{\psi} \gamma^{\mu} \psi\right)^{2}
$$

- homogeneous phases: strong G_{V}-dependence of the critical point
- inhomogeneous regime: stretched in μ direction, Lifshitz point at constant T

Including vector interactions

[S. Carignano, D. Nickel, M.B., PRD (2010)]

- additional interaction term:

$$
\mathcal{L}_{V}=-G_{V}\left(\bar{\psi} \gamma^{\mu} \psi\right)^{2}
$$

$T-\langle\eta\rangle$ phase diagram:

- independent of G_{v} !
- homogeneous phases: strong G_{V}-dependence of the critical point
- inhomogeneous regime: stretched in μ direction, Lifshitz point at constant T

April 4, $2012 \mid$ Michael Buballa | 8

Susceptibilities

- signature of the critical point: divergent susceptibilities
- e.g., quark number susceptibility:

$$
\chi_{n n}=-\frac{\partial^{2} \Omega}{\partial \mu^{2}}=\frac{\partial n}{\partial \mu}
$$

homogeneous phases only:

[K. Fukushima, PRD (2008)]

Susceptibilities

- signature of the critical point: divergent susceptibilities
- e.g., quark number susceptibility:

$$
\chi_{n n}=-\frac{\partial^{2} \Omega}{\partial \mu^{2}}=\frac{\partial n}{\partial \mu}
$$

- including inhomogeneous phases?
homogeneous phases only:

[K. Fukushima, PRD (2008)]

Susceptibilities

- signature of the critical point: divergent susceptibilities
- e.g., quark number susceptibility:

$$
\chi_{n n}=-\frac{\partial^{2} \Omega}{\partial \mu^{2}}=\frac{\partial n}{\partial \mu}
$$

- including inhomogeneous phases?
- expectations:

Susceptibilities

- signature of the critical point: divergent susceptibilities
- e.g., quark number susceptibility:

$$
\chi_{n n}=-\frac{\partial^{2} \Omega}{\partial \mu^{2}}=\frac{\partial n}{\partial \mu}
$$

- including inhomogeneous phases?
- expectations:

homogeneous phases only:

[K. Fukushima, PRD (2008)]
- $G_{v}=0$: CP = Lifshitz point
$\rightarrow \quad$ no qualitative change
- $G_{V}>0$:
no CP \rightarrow no divergence

Susceptibilities

- signature of the critical point: divergent susceptibilities
- e.g., quark number susceptibility:

$$
\chi_{n n}=-\frac{\partial^{2} \Omega}{\partial \mu^{2}}=\frac{\partial n}{\partial \mu}
$$

- including inhomogeneous phases?
- results:

homogeneous phases only:

[K. Fukushima, PRD (2008)]
- $G_{V}=0$:
$\chi_{n n}$ diverges
at phase boundary (hom. broken - inhom.)

Susceptibilities

- signature of the critical point: divergent susceptibilities
- e.g., quark number susceptibility:

$$
\chi_{n n}=-\frac{\partial^{2} \Omega}{\partial \mu^{2}}=\frac{\partial n}{\partial \mu}
$$

- including inhomogeneous phases?
- results:

homogeneous phases only:

[K. Fukushima, PRD (2008)]
- $G_{v}=0$:
$\chi_{n n}$ diverges at phase boundary (hom. broken - inhom.)
- $G_{V}>0$:
no divergence

Including Polyakov-loop effects

- PNJL model: $\quad \mathcal{L}=\bar{\psi}(i \not \square-m) \psi+G_{S}\left((\bar{\psi} \psi)^{2}+\left(\bar{\psi} i \gamma_{5} \vec{\tau} \psi\right)^{2}\right)+U(\ell, \bar{\ell})$
- simplifying assumption:
$\ell, \bar{\ell}$ space-time independent, even in inhomogeneous phases
phase diagram:

- Polyakov loop: suppression of thermal effects
\rightarrow phase diagram stretched in T direction

Two-dimensional modulations

- consider two shapes:
- square lattice ("egg carton")

$$
M(x, y)=M \cos (Q x) \cos (Q y)
$$

- hexagonal lattice

$$
M(x, y)=\frac{M}{3}\left[2 \cos (Q x) \cos \left(\frac{1}{\sqrt{3}} Q y\right)+\cos \left(\frac{2}{\sqrt{3}} Q y\right)\right]
$$

- minimize both cases numerically w.r.t. M and Q

Two-dimensional modulations: results

[S. Carignano, M.B., arXiv:1203.5343]

- amplitudes and wave numbers:
- egg carton:

- hexagon:

Two-dimensional modulations: results

[S. Carignano, M.B., arXiv:1203.5343]

- amplitudes and wave numbers:
- egg carton:

- hexagon:

free-energy gain at $T=0$:

Two-dimensional modulations: results

[S. Carignano, M.B., arXiv:1203.5343]

- amplitudes and wave numbers:
- egg carton:

- hexagon:

free-energy gain at $T=0$:

Two-dimensional modulations: results

[S. Carignano, M.B., arXiv:1203.5343]

- amplitudes and wave numbers:
- egg carton:

- hexagon:

free-energy gain at $T=0$:

Two-dimensional modulations: results

[S. Carignano, M.B., arXiv:1203.5343]

- amplitudes and wave numbers:
- egg carton:

- hexagon:

free-energy gain at $T=0$:

Two-dimensional modulations: results

[S. Carignano, M.B., arXiv:1203.5343]

- amplitudes and wave numbers:
- egg carton:

- hexagon:

free-energy gain at $T=0$:

Two-dimensional modulations: results

[S. Carignano, M.B., arXiv:1203.5343]

- amplitudes and wave numbers:
- egg carton:

- hexagon:

free-energy gain at $T=0$:

Two-dimensional modulations: results

[S. Carignano, M.B., arXiv:1203.5343]

- amplitudes and wave numbers:
- egg carton:

- hexagon:

free-energy gain at $T=0$:

- 2d not favored over 1d in this regime

Two-dimensional modulations: further results

[S. Carignano, M.B., arXiv:1203.5343]

- rectangular lattice:

$$
M(x, y)=M \cos \left(Q_{x} x\right) \cos \left(Q_{y} y\right)
$$

Two-dimensional modulations: further results

[S. Carignano, M.B., arXiv:1203.5343]

- rectangular lattice:
$M(x, y)=M \cos \left(Q_{x} x\right) \cos \left(Q_{y} y\right)$
- free energy:

Two-dimensional modulations: further results

[S. Carignano, M.B., arXiv:1203.5343]

- rectangular lattice:
$M(x, y)=M \cos \left(Q_{x} x\right) \cos \left(Q_{y} y\right)$
- free energy:

\Rightarrow "egg carton" local minimum

Two-dimensional modulations: further results

[S. Carignano, M.B., arXiv:1203.5343]

- rectangular lattice:

$$
M(x, y)=M \cos \left(Q_{x} x\right) \cos \left(Q_{y} y\right)
$$

- free energy:

\Rightarrow "egg carton" local minimum
- higher chemical potentials

- $450 \mathrm{MeV}<\mu<900 \mathrm{MeV}$: egg carton favored
- $\mu>900 \mathrm{MeV}$: hexagon favored

Competition with color superconductivity

[D. Nowakowski et al., MSc thesis]

- additional quark-quark interaction: $\quad \mathcal{L}_{q q}=H\left(q^{T} C i \gamma_{5} \tau_{A} \lambda_{A^{\prime}} q\right)\left(\bar{q} i \gamma_{5} \tau_{A} \lambda_{A^{\prime}} C \bar{q}^{T}\right)$
- allow for homogeneous u-d pairing ($\left.\mu_{u}=\mu_{d}\right)$

Competition with color superconductivity

[D. Nowakowski et al., MSc thesis]

- additional quark-quark interaction: $\quad \mathcal{L}_{q q}=H\left(q^{T} C i \gamma_{5} \tau_{A} \lambda_{A^{\prime}} q\right)\left(\bar{q} i \gamma_{5} \tau_{A} \lambda_{A^{\prime}} C \bar{q}^{T}\right)$
- allow for homogeneous u-d pairing ($\left.\mu_{u}=\mu_{d}\right)$

Competition with color superconductivity

[D. Nowakowski et al., MSc thesis]

- additional quark-quark interaction: $\mathcal{L}_{q q}=H\left(q^{T} C i \gamma_{5} \tau_{A} \lambda_{A^{\prime}} q\right)\left(\bar{q} i \gamma_{5} \tau_{A} \lambda_{A^{\prime}} C \bar{q}^{T}\right)$
- allow for homogeneous u-d pairing $\left(\mu_{u}=\mu_{d}\right)$
- phase diagram: $H=0.4 G_{S}$

- typical result: 2SC phase favored at low T, inhomogeneous at larger T

Competition with color superconductivity

[D. Nowakowski et al., MSc thesis]

- additional quark-quark interaction: $\quad \mathcal{L}_{q q}=H\left(q^{T} C i \gamma_{5} \tau_{A} \lambda_{A^{\prime}} q\right)\left(\bar{q} i \gamma_{5} \tau_{A} \lambda_{A^{\prime}} C \bar{q}^{T}\right)$
- allow for homogeneous u-d pairing $\left(\mu_{u}=\mu_{d}\right)$
- phase diagram: $H=0.5 G_{S}$

- typical result: 2SC phase favored at low T, inhomogeneous at larger T

Competition with color superconductivity

[D. Nowakowski et al., MSc thesis]

- additional quark-quark interaction: $\quad \mathcal{L}_{q q}=H\left(q^{T} C i \gamma_{5} \tau_{A} \lambda_{A^{\prime}} q\right)\left(\bar{q} i \gamma_{5} \tau_{A} \lambda_{A^{\prime}} C \bar{q}^{T}\right)$
- allow for homogeneous u-d pairing $\left(\mu_{u}=\mu_{d}\right)$
- phase diagram: $H=0.6 G_{S}$

- typical result: 2SC phase favored at low T, inhomogeneous at larger T

Competition with color superconductivity

[D. Nowakowski et al., MSc thesis]

- additional quark-quark interaction: $\quad \mathcal{L}_{q q}=H\left(q^{T} C i \gamma_{5} \tau_{A} \lambda_{A^{\prime}} q\right)\left(\bar{q} i \gamma_{5} \tau_{A} \lambda_{A^{\prime}} C \bar{q}^{T}\right)$
- allow for homogeneous u-d pairing $\left(\mu_{u}=\mu_{d}\right)$
- phase diagram: $H=0.5 G_{S}$

- typical result: 2SC phase favored at low T, inhomogeneous at larger T

Competition with color superconductivity

[D. Nowakowski et al., MSc thesis]

- additional quark-quark interaction: $\mathcal{L}_{q q}=H\left(q^{T} C i \gamma_{5} \tau_{A} \lambda_{A^{\prime}} q\right)\left(\bar{q} i \gamma_{5} \tau_{A} \lambda_{A^{\prime}} C \bar{q}^{T}\right)$
- allow for homogeneous u-d pairing $\left(\mu_{u}=\mu_{d}\right)$
- phase diagram: $H=0.4 G_{S}$

- typical result: 2SC phase favored at low T, inhomogeneous at larger T

Competition with color superconductivity

[D. Nowakowski et al., MSc thesis]

- additional quark-quark interaction: $\mathcal{L}_{q q}=H\left(q^{T} C i \gamma_{5} \tau_{A} \lambda_{A^{\prime}} q\right)\left(\bar{q} i \gamma_{5} \tau_{A} \lambda_{A^{\prime}} C \bar{q}^{T}\right)$
- allow for homogeneous u-d pairing $\left(\mu_{u}=\mu_{d}\right)$
- phase diagram: $H=0.3 G_{S}$

- typical result: 2SC phase favored at low T, inhomogeneous at larger T

Competition with color superconductivity

[D. Nowakowski et al., MSc thesis]

- additional quark-quark interaction: $\mathcal{L}_{q q}=H\left(q^{T} C i \gamma_{5} \tau_{A} \lambda_{A^{\prime}} q\right)\left(\bar{q} i \gamma_{5} \tau_{A} \lambda_{A^{\prime}} C \bar{q}^{T}\right)$
- allow for homogeneous u-d pairing ($\left.\mu_{u}=\mu_{d}\right)$
- phase diagram: $H=0.2 G_{S}$

- typical result: 2SC phase favored at low T, inhomogeneous at larger T

Competition with color superconductivity

[D. Nowakowski et al., MSc thesis]

- additional quark-quark interaction: $\quad \mathcal{L}_{q q}=H\left(q^{T} C i \gamma_{5} \tau_{A} \lambda_{A^{\prime}} q\right)\left(\bar{q} i \gamma_{5} \tau_{A} \lambda_{A^{\prime}} C \bar{q}^{T}\right)$
- allow for homogeneous u-d pairing $\left(\mu_{u}=\mu_{d}\right)$
- phase diagram: $\quad H=0$

- typical result: 2SC phase favored at low T, inhomogeneous at larger T

Competition with color superconductivity

[D. Nowakowski et al., MSc thesis]

- additional quark-quark interaction: $\mathcal{L}_{q q}=H\left(q^{T} C i \gamma_{5} \tau_{A} \lambda_{A^{\prime}} q\right)\left(\bar{q} i \gamma_{5} \tau_{A} \lambda_{A^{\prime}} C \bar{q}^{T}\right)$
- allow for homogeneous u-d pairing $\left(\mu_{u}=\mu_{d}\right)$
- phase diagram: $H=0.4 G_{S}$

- typical result: 2SC phase favored at low T, inhomogeneous at larger T
- depends strongly on diquark coupling constant

Conclusions

- Inhomogeneous phases must be considered!

Conclusions

- Inhomogeneous phases must be considered!
- NJL model with one- and two-dimensional modulations of $\langle\bar{q} q\rangle$:
- 1st-order line and critical point covered by an inhomogeneous region
- inhomogeneous phase rather stable w.r.t. vector interactions
- number susceptibility always finite (for $G_{v}>0$)
- 1d modulations favored at "moderate" μ
- 2d modulations might be favored at higher μ
- competition with color superconductivity must be taken into account

Conclusions

- Inhomogeneous phases must be considered!
- NJL model with one- and two-dimensional modulations of $\langle\bar{q} q\rangle$:
- 1st-order line and critical point covered by an inhomogeneous region
- inhomogeneous phase rather stable w.r.t. vector interactions
- number susceptibility always finite (for $G_{v}>0$)
- 1d modulations favored at "moderate" μ
- 2d modulations might be favored at higher μ
- competition with color superconductivity must be taken into account
- experimental signatures?

Conclusions

- Inhomogeneous phases must be considered!
- NJL model with one- and two-dimensional modulations of $\langle\bar{q} q\rangle$:
- 1st-order line and critical point covered by an inhomogeneous region
- inhomogeneous phase rather stable w.r.t. vector interactions
- number susceptibility always finite (for $G_{v}>0$)
- 1d modulations favored at "moderate" μ
- 2d modulations might be favored at higher μ
- competition with color superconductivity must be taken into account
- experimental signatures?
- theory: calculate mesonic correlations (\rightarrow dilepton spectra)

Collaborators

Stefano Carignano (TU Darmstadt)

Daniel Nowakowski (TU Darmstadt)

