X(3872) as a DD* MOLECULE BOUND BY QUARK EXCHANGE FORCES

Carlos Peña

In collaboration with D. Blaschke

Matter at highest baryon densities in the laboratory and in space NICA/JINR-FAIR Bilateral Workshop, FIAS Frankfurt (Germany), April 2 - 4, 2012 • What is X(3872) resonance ?

Experimental evidence of X(3872) Expected composition Lippmann-Schwinger equation (T=D)

 What could it be Its role if HIC ? Charmonium suppression in HIC RAA/RAA(CNM) [InIn] EoS and initial temperatures Self energy contribution to Jpsi potential (T≠O)

Experimental evidence of X(3872)

BaBar-SLAC (U.S.A 2003+)

Belle-KEK (Japan2003)

CDF-Fermilab (U.S.A 2009)

Invariant mass distribution for X(3872) candidates

N. Brambilla et al. EPJ C 71 (2011) 1

What is the X(3872) resonance? Experimental evidence of X(3872)

State	$m \; ({\rm MeV})$	Γ (MeV)	J^{PC}	Process (mode)	Experiment $(\#\sigma)$	Year	Status
X(3872)	3871.52 ± 0.20	1.3 ± 0.6	$1^{++}/2^{-+}$	$B \to K(\pi^+\pi^- J/\psi)$	Belle [85, 86] (12.8), BABAR [87] (8.6)	2003	OK
		(<2.2)		$p\bar{p} \rightarrow (\pi^+\pi^- J/\psi) + \dots$	CDF $[88-90]$ (np), DØ $[91]$ (5.2)		
				$B \to K(\omega J/\psi)$	Belle $[92]$ (4.3), BABAR $[93]$ (4.0)		
				$B \to K(D^{*0}\bar{D^0})$	Belle $[94, 95]$ (6.4), BABAR $[96]$ (4.9)		
				$B \to K(\gamma J/\psi)$	Belle $[92]$ (4.0), BABAR $[97, 98]$ (3.6)		
				$B \to K(\gamma \psi(2S))$	BABAR [98] (3.5), Belle [99] (0.4)		
X(3915)	3915.6 ± 3.1	28 ± 10	$0/2^{?+}$	$B \to K(\omega J/\psi)$	Belle [100] (8.1), BABAR [101] (19)	2004	OK
			,	$e^+e^- \to e^+e^-(\omega J/\psi)$	Belle [102] (7.7)		
G(3900)	3943 ± 21	52 ± 11	1	$e^+e^- \to \gamma(D\bar{D})$	$\underline{BABAR} \ [27] \ (np), Belle \ [21] \ (np)$	2007	OK
Y(4260)	4263 ± 5	108 ± 14	1	$e^+e^- \to \gamma(\pi^+\pi^- J/\psi)$	BABAR [108, 109] (8.0)	2005	OK
					CLEO [110] (5.4)		
					Belle [104] (15)		
				$e^+e^- \to (\pi^+\pi^- J/\psi)$	CLEO [111] (11)		
				$e^+e^- \to (\pi^0\pi^0 J/\psi)$	CLEO $[111]$ (5.1)		
17(1000)		0.01.10		+ - (+ - (20))		2005	OV
Y(4360)	4353 ± 11	96 ± 42	1	$e^+e^- \to \gamma(\pi^+\pi^-\psi(2S))$	BABAR [113] (np), Belle [114] (8.0)	2007	OK

N. Brambilla et al. EPJ C 71 (2011) 1

What is the X(3872) resonance? Expected composition

PDG

$$\frac{\mathbf{m}_{D^0} + \mathbf{m}_{\bar{D}^{*0}}}{\mathbf{MeV}} = (1864.5 \div 0.4) + (2006.7 \div 0.4) = 3871.2 \div 0.8$$

Mode	Mass	Width	Ref.
	(MeV)	(MeV)	$(\chi^2/d.o.f.)$
$\pi^+\pi^- J/\psi$	$3871.46 {\pm} 0.37 {\pm} 0.07$	$1.4 {\pm} 0.7$	Belle $[86]$
(B^{\pm})	$3871.4 \pm 0.6 \pm 0.1$	$1.1 \pm 1.5 \pm 0.2$	BABAR $[87]$
(B^0)	$3868.7 \pm 1.5 \pm 0.4$	-	BABAR $[87]$
	$3871.8 \pm 3.1 \pm 3.0$	-	DØ [<mark>88</mark>]
	$3871.61 {\pm} 0.16 {\pm} 0.19$	-	CDF [90]
	3871.52 ± 0.20	1.3 ± 0.6	Avg^3 (2.1/4)
$D^{*0}\bar{D^0}$	$3875.1^{+0.7}_{-0.5}\pm0.5$	$3.0^{+1.9}_{-1.4} \pm 0.9$	BABAR [96]
	$3872.9^{+0.6}_{-0.4}{}^{+0.4}_{-0.5}$	$3.9^{+2.8}_{-1.4}{}^{+0.2}_{-1.1}$	Belle $[95]$
	3874.0 ± 1.2	$3.5^{+1.6}_{-1.0}$	$\mathrm{Avg}^3~(4.7/1)$

Is X(3872) composed by two D-mesons?

N. Brambilla et al. EPJ C 71 (2011) 1

CLEO $m[X(3872)] - [m(D^{*0}) + m(D^0)] = -0.42 \pm 0.39 \text{ MeV}$

What is the X(3872) resonance?

Expected composition

The DD*bar threshold remains ambiguous !!! D-mesons binding energy less than 1Mev

It is likely a narrow resonant structure with the most probably quantum numbers

 $J^{PC} = 1^{++}$ and I = 0 , I = 1

It may have comparable decay rates to $D^{*0} D^{0}$

N. Brambilla et al. EPJ C 71 (2011) 1

Lippmann-Schwinger equation (T=0)

Relativistic equation for bound state problems Phys. Rev. 82, 291–346 (1951)

$$\mathbf{T} = \mathbf{U} + \mathbf{U} \frac{1}{\mathbf{E} - \mathbf{H}_0} \mathbf{T}$$

Bound States in Quantum Field Theory Phys. Rev. 84, 350–354 (1951)

Salpeter

Hans Albrecht Bethe

Nobel prize in 1967

Successfully applications in QED and semiconductors were published in 70's -80's

Lippmann-Schwinger equation (T=D)

It is a non-relativistic version of the Bethe-Salpeter equation

D. Gamermann et al. Phys. Rev D 81 (2010) 014029

Resonance is formed before D-mesons decay !!

Lippmann-Schwinger equation (T=0)

It is a non-relativistic version of the Bethe-Salpeter equation

D. Gamermann et al. Phys. Rev D 81 (2010) 014029

Can X(3872) be formed in a D-mesons symmetric T-matrix ?

Lippmann-Schwinger equation (T=O)

C. Peña, D. Blaschke. X(3872) as a D D* molecule bound by quark exchange forces.

ArXiv:1201.0309v1 To appear in Acta Polonica

 $T(a, a', z) = U^{(2)}(a, a') + \sum_{a''} U^{(2)}(a, a'') G^0_{2D}(a'', z) T(a'', a', z)$

 $\mathbf{U}^{(2)}(a,a',z) = \sum_{a'''} \mathbf{U}(a,a''') G^0_{J_1}(a''',z) \mathbf{U}^*(a''',a')$

What is the X(3872) resonance? Lippmann-Schwinger equation (T=0)

C. Peña, D. Blaschke. X(3872) as a D D* molecule bound by quark exchange forces.

ArXiv:1201.0309v1 To appear in Acta Polonica

 $\mathbf{U}(a, a') = -\lambda L(a) R(a'), \quad \mathbf{U}^*(a', a) = -\lambda R(a') L(a)$

$$\mathbf{U}^{(2)}(a,a',z) = \mathbf{V}(z) L(a) L(a')$$

$$\mathbf{V}(z) = \lambda^2 \sum_{a'''} R^2(a''') G^0_{J_1}(a''', z) > \mathbf{0}$$

Positive for $z > m_{J/\psi} + m_{\rho}$

Lippmann-Schwinger equation (T=O)

What is the X(3872) resonance?

C. Peña, D. Blaschke. X(3872) as a D D* molecule bound by quark exchange forces.

ArXiv:1201.0309v1 To appear in Acta Polonica

$$T(a, a', z) = L(a) L(a') t(\mathbf{0}, z)$$

In the C.M. P=0

$$t(\mathbf{0}, z) = \frac{\mathbf{V}(z)}{1 - \mathbf{V}(z) \sum_{a''} L^2(a'') \ G^0_{2D}(a'', z)}$$

By integrating around the pole of the propagator of two D-mesons T(a,a',z) is complex !!

Lippmann-Schwinger equation (T=0)

C. Peña, D. Blaschke. X(3872) as a D D* molecule bound by quark exchange forces.

ArXiv:1201.0309v1 To appear in Acta Polonica

$$\delta = \arctan\left[\frac{\operatorname{Im}\left[t\left(0, z\right)\right]}{\operatorname{Re}\left[t\left(0, z\right)\right]}\right]$$

Re[t(0,z)] changes sign around 3.872 GeV creating a resonance. Binding energy B=0 !! C. Peña, D. Blaschke. Binding D D* by quark exchange. prog.

Lippmann-Schwinger equation (T=D)

Annals of physics 202, 57 (1990). M. Schmidt, G. Ropke, H. Schulz

What could be its role in HIC? Charmonium suppression in HIC RAA/RAA(CNM)

$$S_{\psi} = a S_{J/\psi} + b S_{\chi} + c S_{\psi'} + S_{X (3872)}$$
?

What could be its role in HIC? Charmonium suppression in HIC RAA/RAA(CNM)

Can hot medium effects creates a wiggle for Npart~100 ?

$$s(T_0) = \frac{\xi}{V_0} \left(\frac{\mathrm{d}N}{\mathrm{d}y}\right)_{y=0}$$

Npart

What could be its role in HIC? Charmonium suppression at InIn

$$s(T_0) = \frac{\xi}{V_0} \left(\frac{\mathrm{d}N}{\mathrm{d}y}\right)_{y=0}$$

D. Blaschke, C. Peña. Nuclear Physics B (Proc. Suppl.) 214 (2011) 137

What could be its role in HIC? Charmonium suppression at InIn

1.3 Tc - 1.4 Tc

Onset of Charmonium Suppression

 $s(T_0) = \frac{\xi}{V_0} \left(\frac{\mathrm{d}N}{\mathrm{d}y}\right)_{\mathrm{v}=0}$

FIG. 3: Variable $\left(\frac{dN_{ch}}{d\eta}\right)_{\eta=0}$ as a function of initial temperature.

NA60-InIn							
$\left(\frac{\mathrm{d}N_{ch}}{\mathrm{d}\eta}\right)_{\eta=0}$	V_0/fm^3	$T_0/{ m Gev}$					
246.332	110.7	0.210					
228.062	106.0	0.209					
202.409	99.0	0.207					
178.545	92.2	0.204					
154.682	84.9	0.201					
131.773	77.5	0.198					
109.818	69.9	0.195					
96.4545	64.9	0.193					

EoS shows that are some mesons in medium !!

What could be its role in HIC? Charmonium suppression at InIn

energy (s) and temperature (T) dependence of the effective cross section (σ^*) for J/ψ breakup by ρ -meson impact.

D. Blaschke, DESY-PROC-2009-07. arXiv:0912.4479v1

How does Charmonium interact with light mesons?

The width of this decay is calculated from the self energy

$$\Gamma(p,\omega) = \Sigma^{>}(p,\omega) - \Sigma^{<}(p,\omega)$$

Leo P. Kadanof, Gordon Baym. Quantum Statistical Mechanics. Green's Function Methods in Equilibrium and Nonequilibrium Problems. Addison-Wesley Publishing Co.,Inc, New York, 1962. 97

Rapp, Blaschke, Crochet Prog.Part.Nucl.Phys. 65 (2010) 209-266

D. Blaschke, DESY-PROC-2009-07. arXiv:0912.4479v1

At Quark level is the 4-particle T -matrix T4

At meson level

Figure F.5: $Q\bar{Q}$ Hamiltonian contribution due to production of the exotic resonance X(3872) inside the T-matrix interaction of $D\bar{D}^*$.

$$\Delta H_{Q\bar{Q}} = \sum_{34} (E_x - E_1 - E_2 - E_3 - E_4)^2 \psi_{\psi}(12) \psi_{\psi}^*(1'2') |\psi_{\rho}(34)|^2 \frac{f(E_x) - f(E_{\rho})}{E_x - iz_{\mu} - E_{\rho}} + \sum_{34} (E_x - E_1 - E_2 - E_3 - E_4) \psi_{\psi}(12) \psi_{\psi}^*(1'2') |\psi_{\rho}(34)|^2 f(E_p)$$

 $Re[\Delta H_{QQ}]$

Т

Im[ΔH_{QQ}]

Т

- 1. Would be it possible that X(3872) be produced in HIC ?
- 2. If so, the X(3872) may give us information about the onset of Charmonium suppression.

