

Dynamics of the QGP in relativistic heavy-ion collisions

Elena Bratkovskaya

Institut für Theoretische Physik & FIAS, Uni. Frankfurt

Bilateral FAIR-JINR-NICA Workshop on "Matter at highest baryon densities in the laboratory and in space" Frankfurt-am-Main, Germany, 2-4 April 2012

The holy grail:

Study of the in-medium properties of hadrons at high baryon density and temperature

Study of the partonic medium beyond the phase boundary

From hadrons to partons

In order to study the phase transition from hadronic to partonic matter – Quark-Gluon-Plasma – we need a consistent non-equilibrium (transport) model with >explicit parton-parton interactions (i.e. between quarks and gluons) beyond strings!

explicit phase transition from hadronic to partonic degrees of freedom
 IQCD EoS for partonic phase

Transport theory: off-shell Kadanoff-Baym equations for the Green-functions $S_h^{<}(x,p)$ in phase-space representation for the partonic and hadronic phase

Parton-Hadron-String-Dynamics (PHSD)

W. Cassing, E. Bratkovskaya, PRC 78 (2008) 034919; NPA831 (2009) 215; W. Cassing, EPJ ST 168 (2009) 3

Dynamical QuasiParticle Model (DQPM)

QGP phase described by

A. Peshier, W. Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)

The Dynamical QuasiParticle Model (DQPM)

Basic idea: Interacting quasiparticles

- massive quarks and gluons (g, q, q_{bar}) with spectral functions :
- Fit to lattice (IQCD) results (e.g. entropy density)
 - ➔ Quasiparticle properties:

large width and mass for gluons and quarks

 $\rho(\omega) = \frac{\gamma}{\mathbf{E}} \left(\frac{1}{(\omega - \mathbf{E})^2 + \gamma^2} - \frac{1}{(\omega + \mathbf{E})^2 + \gamma^2} \right)$

DQPM matches well lattice QCD
 DQPM provides mean-fields (1PI) for gluons and quarks as well as effective 2-body interactions (2PI)
 DQPM gives transition rates for the formation of hadrons → PHSD

Peshier, Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)

PHSD - basic concept

Initial A+A collisions – HSD: string formation and decay to pre-hadrons

Fragmentation of pre-hadrons into quarks: using the quark spectral functions from the Dynamical QuasiParticle Model (DQPM) - approximation to QCD

Partonic phase: quarks and gluons (= ,dynamical quasiparticles') with off-shell spectral functions (width, mass) defined by the DQPM

□ elastic and inelastic parton-parton interactions: using the effective cross sections from the DQPM

- ✓ q + qbar (flavor neutral) <=> gluon (colored)
- ✓ gluon + gluon <=> gluon (possible due to large spectral width)
- ✓ q + qbar (color neutral) <=> hadron resonances

□ self-generated mean-field potential for quarks and gluons !

Hadronization: based on DQPM - massive, off-shell quarks and gluons with broad spectral functions hadronize to off-shell mesons and baryons: gluons \rightarrow q + qbar; q + qbar \rightarrow meson (or string); q + q + q \rightarrow baryon (or string) (strings act as ,doorway states' for hadrons)

Hadronic phase: hadron-string interactions – off-shell HSD

W. Cassing, E. Bratkovskaya, PRC 78 (2008) 034919; NPA831 (2009) 215; EPJ ST 168 (2009) 3; NPA856 (2011) 162.

PHSD: hadronization of a partonic fireball

► Hadronization: q+q_{bar} or 3q or 3q_{bar} fuse to

color neutral hadrons (or strings) which subsequently decay into hadrons in a microcanonical fashion, i.e. **obeying all conservation laws (i.e. 4-momentum conservation, flavor current conservation) in each event!**

➤ Hadronization yields an increase in total entropy S (i.e. more hadrons in the final state than initial partons) and not a decrease as in the simple recombination models!

➢Off-shell parton transport roughly leads a hydrodynamic evolution of the partonic system

W. Cassing, E. Bratkovskaya, PRC 78 (2008) 034919; NPA831 (2009) 215; W. Cassing, EPJ ST 168 (2009) 3 Bulk properties: rapidity, m_T-distributions, multi-strange particle enhancement in Au+Au

Application to nucleus-nucleus collisions

partonic energy fraction vs energy

energy balance

Dramatic decrease of partonic phase with decreasing energy

□ Pb+Pb, 160 A GeV: only about 40% of the converted energy goes to partons; the rest is contained in the large hadronic corona and leading partons!

Central Pb + Pb at SPS energies

Central Au+Au at RHIC

PHSD gives harder m_T spectra and works better than HSD at high energies
 – RHIC, SPS (and top FAIR, NICA)

□ however, at low SPS (and low FAIR, NICA) energies the effect of the partonic phase decreases due to the decrease of the partonic fraction

W. Cassing & E. Bratkovskaya, NPA 831 (2009) 215 E. Bratkovskaya, W. Cassing, V. Konchakovski, O. Linnyk, NPA856 (2011) 162

Centrality dependence of (multi-)strange (anti-)baryons

PHSN

enhanced production of (multi-) strange antibaryons in PHSD
 relative to HSD
 Cassing & Bratkovskava, NPA 831 (2009) 215

Collective flow: anisotropy coefficients (v₁, v₂, v₃, v₄) in A+A

Final angular distributions of hadrons

10k Au+Au collision events at b = 8 fm rotated to different event planes:

Excitation function of elliptic flow

Excitation function of elliptic flow is not described by hadron-string or purely partonic models !

Elliptic flow v₂ vs. collision energy for Au+Au

18

v_2 in PHSD is larger than in HSD due to the repulsive scalar mean-field potential $U_s(\rho)$ for partons

 \mathbf{v}_2 grows with bombarding energy due to the increase of the parton fraction

V. Konchakovski, E. Bratkovskaya, W. Cassing, V. Toneev, V. Voronyuk, Phys. Rev. C 85 (2012) 011902

Flow coefficients versus centrality

 \Box increase of v_2 with impact parameter but flat v_3 and v_4

V. P. Konchakovski et al., PRC (2012), arXiv:1201.3320

$v_4/(v_2)^2$, v_{3, v_4} excitation functions

0.025

 v_3

 \Box v_3 , v_4 from PHSD are systematically larger than those from HSD

□ very low v_3 and v_4 at FAIR/NICA energies □ almost constant $v_4/(v_2)^2$ for PHSD

Au + Au, all charged

Scaling properties

PHSD: v₂/ɛ vs. centrality follows an approximate scaling with energy in line with experimental data

V. P. Konchakovski et al., PRC (2012), arXiv:1201.3320

In-plane flow v_1

versus beam energy versus centrality 0.150.10 Au + Au, 30-60% Au + Au, 39 GeV 0-10% 0.10 10-40% 0.05 0.05 - 40-80% > 0.00 > 0.00 PHSD/STAR prel. -0.05 7 GeV -0.05 11 GeV 39 GeV -0.1062 GeV -0.10200 GeV -0.151.0 -1.0 -0.5 0.0 0.5 1.4 -1.5-3 -2 _4 2 3 0 -1 η/y_{beam} η

PHSD: v_1 vs. pseudo-rapidity follows an approximate scaling for high invariant energies $s^{1/2}=39$, 62, 200 GeV - in line with experimental data – whereas at low energies the scaling is violated!

Transverse momentum dependence

elliptic flow

triangular flow

■ v₂ vs. p_T follows an approximate scaling for high invariant energies s^{1/2}=27, 39, 62, 200 GeV

v₃: needs partonic degrees-of-freedom !

V. P. Konchakovski et al., PRC (2012), arXiv:1201.3320

Elliptic flow scaling at RHIC

The mass splitting at low p_T is approximately reproduced as well as the meson-baryon splitting for $p_T > 2$ GeV/c !

The scaling of v_2 with the number of constituent quarks n_q is roughly in line with the data .

E. Bratkovskaya, W. Cassing, V. Konchakovski, O. Linnyk, NPA856 (2011) 162

Ratio $v_4/(v_2)^2$ vs. p_T

The ratio $v_4/(v_2)^2$:

□ is very sensitive to the microscopic dynamics

D PHSD: ratio grows at low \mathbf{p}_{T} - in line with exp. data

V. P. Konchakovski et al., PRC (2012), arXiv:1201.3320

Dileptons

Dileptons from SIS to FAIR/NICA

Dileptons : ,free' vs. ,in-medium' scenarios (collisional broadening , collisional broadening +dropping mass) for vector mesons (ρ, ω, ϕ)

→ enhancement of dilepton yield for 0.2<M<0.7 GeV and
 → reduction at M~m_{o/∞} for all energies from SIS to FAIR/NICA!

Acceptance corrected NA60 data

O. Linnyk, E.B., V. Ozvenchuk, W. Cassing and C.-M. Ko, PRC 84 (2011) 054917

Dileptons at SPS: NA60

O. Linnyk, E.B., V. Ozvenchuk, W. Cassing and C.-M. Ko, PRC 84 (2011) 054917

NA60: m_T spectra

Conjecture:

 spectrum from sQGP is softer than from hadronic phase since quark-antiquark annihilation occurs dominantly before the collective radial flow has developed (cf. NA60)

> O. Linnyk, E.B., V. Ozvenchuk, W. Cassing and C.-M. Ko, PRC 84 (2011) 054917

Dileptons at RHIC: data vs. theor. models

→ PHENIX dilepton puzzle ?!

PHENIX: dileptons from partonic channels

•The excess over the considered mesonic sources for M=0.15-0.6 GeV is not explained by the QGP radiation as incorporated presently in PHSD • The partonic channels fill up the discrepancy between the hadronic contributions and the data for M>1 GeV

PHENIX: mass spectra

Peripheral collisions (and pp) are well described, however, central fail!

PHENIX: p_T **spectra**

- The lowest and highest mass bins are described very well
- Underestimation of p_T data for 100<M<750 MeV bins consistent with dN/dM
- The 'missing source'(?) is located at low p_T !

STAR: mass spectra

Chiral magnetic effect and evolution of the electromagnetic field in relativistic heavy-ion collisions

PHSD - transport model with electromagnetic fields

Generalized transport equations in the presence of electromagnetic fields :

$$\begin{split} \dot{\vec{r}} &\to \frac{\vec{p}}{p_0} + \vec{\nabla}_p U \ , \qquad U \sim Re(\Sigma^{ret})/2p_0 \\ \dot{\vec{p}} &\to -\vec{\nabla}_r U + e\vec{E} + e\vec{v} \times \vec{B} \end{split}$$

$$\begin{bmatrix} \vec{B} = \vec{\nabla} \times \vec{A} \\ \vec{E} = -\vec{\nabla} \Phi - \frac{\partial \vec{A}}{\partial t} \end{bmatrix}$$

$$\begin{split} \vec{A}(\vec{r},t) &= \frac{1}{4\pi} \int \frac{\vec{j}(\vec{r'},t') \ \delta(t-t'-|\vec{r}-\vec{r'}|/c)}{|\vec{r}-\vec{r'}|} \ d^3r' dt' \\ \Phi(\vec{r},t) &= \frac{1}{4\pi} \int \frac{\rho(\vec{r'},t') \ \delta(t-t'-|\vec{r}-\vec{r'}|/c)}{|\vec{r}-\vec{r'}|} \ d^3r' dt \end{split}$$

Magnetic field evolution in HSD/PHSD :

V. Voronyuk, et al., Phys.Rev. C83 (2011) 054911

Angular correlation wrt. reaction plane

 $\langle \cos(\psi_{\alpha} + \psi_{\beta} - 2\Psi_{RP}) \rangle$

Angular correlation is of hadronic origin up to sqrt(s) = 11 GeV !

V. D. Toneev et al., PRC 85 (2012), arXiv:1112.2595

Compensation of magnetic and electric forces

There are not only strong magnetic forces but also strong electric forces which compensate each other!

V. D. Toneev et al., PRC 85 (2012), arXiv:1112.2595

•PHSD provides a consistent description of off-shell parton dynamics in line with the lattice QCD equation of state (from the BMW collaboration)

• **PHSD versus experimental observables:**

enhancement of meson m_T slopes (at top SPS and RHIC) strange antibaryon enhancement (at SPS) partonic emission of high mass dileptons at SPS and RHIC enhancement of collective flow v_2 with increasing energy quark number scaling of v_2 (at RHIC) jet suppression

•••

⇒ evidence for strong nonhadronic interactions in the early phase of relativistic heavy-ion reactions
⇒ formation of the sQGP !

How to describe a first-order phase transition in transport models?

• How to describe parton-hadron interactions in a ,mixed' phase?

A possible solution (?) :

,mixed' phase description within molecular dynamics?

PHSD group

Wolfgang Cassing (Giessen Univ.) Volodya Konchakovski (Giessen Univ.) Olena Linnyk (Giessen Univ.) Elena Bratkovskaya (FIAS & ITP Frankfurt Univ.) Vitalii Ozvenchuk (HGS-HIRe, FIAS & ITP Frankfurt Univ.) + Rudy Marty (SUBATECH→FIAS, Frankfurt Univ.)

External Collaborations:

SUBATECH, Nantes Univ. : Jörg Aichelin **Christoph Hartnack Pol-Bernard Gossiaux Texas A&M Univ.: Che-Ming Ko JINR, Dubna:** Vadim Voronyuk **Viatcheslay Toneev Kiev Univ.: Mark Gorenstein Barcelona Univ.** Laura Tolos, Angel Ramos Wayne State Uni. Sergei Voloshin

