

Hybrid Approaches to Heavy Ion Collisions and Future Perspectives

Marcus Bleicher Institut für Theoretische Physik Frankfurt Institute for Advanced Studies Goethe Universität Frankfurt Germany

Thanks to

- Hannah Petersen (now at Duke U)
- Jan Steinheimer
- Elvira Santini
- Bjoern Baeuchle
- Gunnar Graef
- Gerhard Burau
- Sascha Vogel (now at Nantes)
- Qingfeng Li (now in China)
- Dirk Rischke
- Horst Stoecker

Outline

- Model Description
 - Initial Conditions
 - Equations of State
 - Freeze-out Scenarios
- Multiplicities and Spectra
- HBT Results
- Leptonic Probes
- Open Questions
- Conclusions

(Petersen et al., PRC 78:044901, 2008, arXiv: 0806.1695) (Petersen et al., arXiv: 0901.3821, PRC in print)

The QCD Phase Diagram

In heavy ion collisions heated and compressed nuclear matter is produced under controlled conditions

Hybrid Approaches (history)

- Hadronic freezeout following a first order hadronization phase transition in ultrarelativistic heavy ion collisions.
 S.A. Bass, A. Dumitru, M. Bleicher, L. Bravina, E. Zabrodin, H. Stoecker, W. Greiner, Phys.Rev.C60:021902,1999
- Dynamics of hot bulk QCD matter: From the quark gluon plasma to hadronic freezeout.
 - S.A. Bass, A. Dumitru, Phys.Rev.C61:064909,2000
- Flow at the SPS and RHIC as a quark gluon plasma signature.
 D. Teaney, J. Lauret, Edward V. Shuryak, Phys.Rev.Lett.86:4783-4786,2001
- A Hydrodynamic description of heavy ion collisions at the SPS and RHIC.
 D. Teaney, J. Lauret, E.V. Shuryak, e-Print: nucl-th/0110037
- Hadronic dissipative effects on elliptic flow in ultrarelativistic heavy-ion collisions.
 T. Hirano, U. Heinz, D. Kharzeev, R. Lacey, Y. Nara, Phys.Lett.B636:299-304,2006
- 3-D hydro + cascade model at RHIC.
 C. Nonaka, S.A. Bass, Nucl.Phys.A774:873-876,2006
- Results On Transverse Mass Spectra Obtained With Nexspherio F. Grassi, T. Kodama, Y. Hama, J.Phys.G31:S1041-S1044,2005

Present Approaches

(3+1)dim. hydrodynamics with nonequilibrium initial conditions (Nexus) and isothermal freeze-out or continuous emission scenario:

- Results On Transverse Mass Spectra Obtained With Nexspherio F. Grassi, T. Kodama, Y. Hama, J.Phys.G31:S1041-S1044,2005
- See also recent work of K. Werner, M. Bleicher, T. Pierog (2010)

with Glauber or CGC initial conditions and hadronic afterburner:

- Hadronic dissipative effects on elliptic flow in ultrarelativistic heavy-ion collisions.
 T. Hirano, U. Heinz, D. Kharzeev, R. Lacey, Y. Nara, Phys.Lett.B636:299-304,2006
- 3-D hydro + cascade model at RHIC.
 C. Nonaka, S.A. Bass, Nucl.Phys.A774:873-876,2006

Hybrid Approach

- Essential to draw conclusions from final state particle distributions about initially created medium
- The idea here: Fix the initial state and freeze-out
 - Jearn something about the EoS and the effect of viscous dynamics

(Petersen et al., PRC 78:044901, 2008, arXiv: 0806.1695)

The UrQMD transport approach

UrQMD = Ultra-relativistic Quantum Molecular Dynamics

- Initialisation:
 - Nucleons are set according to a Woods-Saxon distribution with randomly chosen momenta p_i < p_F
- Propagation and Interaction:

Rel. Boltzmann equation $(p^{\mu}\partial_{\mu})f = I_{coll}$ Collision criterium $d_{\min} \le d_0 = \sqrt{\frac{\sigma_{tot}}{\pi}}$

• Final state:

all particles with their final positions and momenta

Very successful in describing different observables in a broad energy range But: modeling of the phase transition and hadronization not yet possible

Initial State

 Contracted nuclei have passed through each other

> 2R $t_{start} =$

- Energy is deposited
- Baryon currents have separated
- Energy-, momentum- and baryon number densities are mapped onto the hydro grid
- Event-by-event fluctuations are taken into account
- Spectators are propagated separately in the cascade

(J.Steinheimer et al., PRC 77,034901,2008)

Initial State for Non-Central Collisions

Pb+Pb at E_{lab} =40 AGeV with b= 7fm at t_{start} =2.83 fm

→ Event-by-event fluctuations are taken into account (H.Petersen et.al., arXiv:0901.3821, PRC 2009

Marcus Bleicher, NICA-FAIR Workshop 2012

Equations of State

Ideal relativistic one fluid dynamics:

 $\partial_{\mu} T^{\mu\nu} = 0$ and $\partial_{\mu} (nu^{\mu}) = 0$

- HG: Hadron gas including the same degrees of freedom as in UrQMD (all hadrons with masses up to 2.2 GeV)
- CH: Chiral EoS from SU(3) hadronic Lagrangian with first order transition and critical endpoint
- BM: Bag Model EoS with a strong first order phase transition between QGP and hadronic phase

D. Rischke et al., NPA 595, 346, 1995,

D. Zschiesche et al., PLB 547, 7, 2002

Papazoglou et al., PRC 59, 411, 1999

Marcus Bleicher, NICA-FAIR Workshop 2012

Freeze-out

Transition from hydro to transport when
 ε < 730 MeV/fm³ (≈ 5 * ε₀) in all cells of one transverse slice
 (Gradual freeze-out, GF)

 \rightarrow iso-eigentime criterion

2) Transition when $\varepsilon < 5^* \varepsilon_0$ in all cells (Isochronuous freeze-out, IF)

• Particle distributions are generated according to the Cooper-Frye formula $E\frac{dN}{d^3p} = \int_{\sigma} f(x,p)p^{\mu}d\sigma_{\mu}$

with boosted Fermi or Bose distributions f(x,p) including μ_B and μ_S

 Rescatterings and final decays calculated via hadronic cascade (UrQMD)

Final State Interactions (after Hydro)

Marcus Bleicher, NICA-FAIR Workshop 2012

Multiplicities vs. Energy

- Both models are purely hadronic without phase transition, but different underlying dynamics
- Results for particle multiplicities from AGS to SPS are surprisingly similar
- Strangeness is enhanced in the hybrid approach due to local equilibration

Central (b<3.4 fm) Pb+Pb/Au+Au collisions

Rapidity Spectra

full lines: hybrid model dotted lines: UrQMD-2.3 symbols: experimental data

Rapidity spectra for pions and kaons have a very similar shape in both calculations

Strangeness Centrality Dependence

----- UrQMD-2.3

(Petersen et al., arXiv: 0903.0396)

Pb+Pb collisions for different centralities

Marcus Bleicher, NICA-FAIR Workshop 2012

The Phi

- Comparison between
 - NA60 data
 - UrQMD
 - Hybrid model
- Thermalization is essential to describe phi yield and slope
- Stronger deviation from transport for central reactions

4

4.5

Comparison to data

Bjoern Bauechle, MB, PRC (2010)

<m_T> Excitation Function

- Resonance excitations and non-equilibrium effects in intermediate energy regime lead to a softening of the EoS in pure UrQMD calculation
- Hybrid calculation with hadronic EoS just rises as a function of beam energy
- Even strong first order phase transition leads only to a small effect

Central (b<3.4 fm) Au+Au/Pb+Pb collisions, Gradual freeze-out for hybrid calculation

HBT radii (EoS effects)

Hydro evolution leads to larger radii, esp. with phase transition

Marcus Bleicher, NICA-FAIR Workshop 2012

PLB in print

et al., arXiv: 0812.0375,

Ξ.

R_o/R_s Ratio

- Hydro phase leads to smaller ratios
- Hydro to transport transition does not matter, if final rescattering is taken into account
- EoS dependence is visible, but not as strong as previuosly predicted (factor of 5)

(Q. Li et al., PLB 674, 111, 2009)

Findings

- Intermediate hydrodynamics improves description of the data
- (+) Strangeness
- (+) HBT
- (+) Elliptic flow
- (+) Photons / dileptons
- (+) allows direct testing of EoS
- (-) radial flow (viscosities)
- (+/-) no understanding of phase transition
- (+/-) no understanding of thermalisation

Thermalisation: multi-particle interactions

MB, PLB 2000 "np→BBbar may be important"

See also Rapp, Shuryak 2001, Wetterich, Stachel, PBM 2002

Cassing, NPA 2001

$$\frac{d}{dt}\rho_{\bar{Y}} = -\langle\!\langle \sigma_{\bar{Y}N} v_{\bar{Y}N} \rangle\!\rangle \left\{ \rho_{\bar{Y}}\rho_N - \sum_n \mathcal{R}_{(n,n_Y)}(T,\mu_B,\mu_s)(\rho_\pi)^n(\rho_K)^{n_Y} \right\}$$

Marcus Bleicher, NICA-FAIR Workshop 2012

Hagedorn States

From Belkacem, Bleicher, Stoecker 1998, nucl-th/98040058, PRC 1998

However, in the above sums, string degrees of freedom (which can be considered as heavy mass resonances with small life times) are not taken into account. Therefore, a direct comparison with the UrQMD model (which includes these degrees of freedom) shall yield different results at high energy densities. The same results from the UrQMD box model and the corresponding statistical model can only be expected if strings (or higher mass resonances) are included in the statistical model. For this, the Hagedorn mass spectrum [35] for the strings given by:

$$\rho^{(s)}(m) = \rho_0^{(s)} m^{a_H} \exp(m/T_H) \tag{6}$$

 First steps to implement Hagedorn states in dynamical simulations are currently underway (cf. talk by C. Greiner)

Hadronisation

- How to go from partonic matter to hadronic matter?
 - energy conservation?
 - free quarks in the end?
 - what to do with gluons?
 - decrease in entropy?
 - transition to fragmentation?

Quark Molecular Dynamics

Hamiltonian of the model :

$$H = \sum_{i=1}^{N} \sqrt{\mathbf{p}_i^2 + m_i^2} + \frac{1}{2} \sum_{i \neq j} C_{ij} V(|\mathbf{r}_i - \mathbf{r}_j|)$$

Potential :

linear potential $V(r) = \kappa r$

• Color factor C_{ij} :

can be attractive or repulsive depending on the color of the quarks

Quarks :

classical point-particles with light masses $m_{u,d} = 5$ MeV, $m_s = 150$ MeV

Trajectories

qMD features :

- mesons
- baryons
- confinement
- recombination
- out-of-equilibrium

M. Hofmann Ph.D. thesis

Hofmann, Bleicher, Scherer, Neise, Stoecker, Greiner. Phys.Lett.B478:161-171,2000.

Susceptibilities

• Strangeness, baryon charge and isospin susceptibilities are well reproduced

• Model may be trustful around $\rm T_{\rm c}$

Open symbols : lattice data from Gavai, Gupta. Phys.Rev.D73:014004,2006 Full symbols with lines are the result of qMD calculations

Time evolution

• Hadronisation blurs the signatures from the QGP phase (here C_{BS} , also true for others)

Marcus Bleicher, NICA-FAIR Workshop 2012

Conclusions

- Hybrid approach combines the advantages of a transport and a hydrodynamic prescription
- Integrated approach with the same initial conditions and freeze-out for different EoS
- Well suited for the **FAIR-CBM** energy range (but also available for RHIC and LHC)
- Particle multiplicities and spectra are reasonably reproduced, strangeness enhanced
- Open tasks:
 - understand thermalisation
 - multi-particle interactions
 - hagedorn states in dynamical models
 - hadronisation
 - critical phenomena/fluctuations

Time Evolution

Central Pb+Pb collisions at 40A GeV:

•Number of particles decreases in the beginning due to resonance creation

•Qualitative behaviour very similar in both calculations

UrQMD equilibrates to a rather large degree

Limitations in small systems

- Small systems lack sufficient thermalisation
- Lambda's etc are still driven by initial state

(Petersen et al., arXiv: 0903.0396)

HBT radii (freeze-out effects)

Freeze-out effects are small, if hadronic rescattering is included

Marcus Bleicher, NICA-FAIR Workshop 2012

Hadronic channels

$$\pi + \pi \to \gamma + \rho, \quad \pi + \rho \to \gamma + \pi$$

$$\pi + \pi \to \gamma + \eta, \quad \pi + \eta \to \gamma + \pi, \quad \pi + \pi \to \gamma + \gamma$$

$$\pi + \mathbf{K}^* \to \gamma + \mathbf{K}, \ \pi + \mathbf{K} \to \gamma + \mathbf{K}^*, \ \rho + \mathbf{K} \to \gamma + \mathbf{K}, \ \mathbf{K} + \mathbf{K}^* \to \gamma + \pi$$

Example for a differential cross section:

$$\frac{d\sigma}{dt} \left(\pi^{\pm} \rho^{0} \to \gamma \pi^{\pm} \right) = \frac{\alpha g_{\rho}^{2}}{12 s p_{\text{c.m.}}^{2}} \left[2 - \frac{s(m_{\rho}^{2} - 4m_{\pi}^{2})}{(s - m_{\pi}^{2})^{2}} - \frac{(m_{\rho}^{2} - 4m_{\pi}^{2})}{t - m_{\pi}^{2}} \left(\frac{s - m_{\rho}^{2} + m_{\pi}^{2}}{(s - m_{\pi}^{2})(t - m_{\pi}^{2})} + \frac{m_{\pi}^{2}}{(t - m_{\pi}^{2})} \right) \right]$$

Marcus Bleicher, NICA-FAIR Workshop 2012

Partonic channels

 \rightarrow from QGP: sensitivity to parton density and temperature

 \rightarrow from initial state: sensitivity to PDFs (gluon!)

Cross section Refs

¹E.g. Aurenche, Fontannaz *et. al*, PRD **73**, 094007 (2006)

²Turbide, Rapp and Gale, PRC **69**, 014903 (2004); Turbide, Gale *et al.*, PRC **72**, 014906 (2005); Liu and Werner, arXiv:0712.3612 [hep-ph]; Vitev and Zhang, arXiv:0804.3805 [hep-ph]; Haglin, PRC **50**, 1688 (1994); Haglin, JPG **30**, L27 (2004), Chatterjee *et al.*, Nucl. Phys. A **830** (2009) 503C

³Dumitru, Bleicher, Bass, Spieles, Neise, Stöcker and Greiner, PRC **57**, 3271 (1998); Huovinen, Belkacem, Ellis and Kapusta, PRC **66**, 014903 (2002); Li, Brown, Gale and Ko, arXiv:nucl-th/9712048; Bratkovskaya and Cassing, NPA **619**, 413 (1997); Bratkovskaya, Kiselev and Sharkov, arXiv:0806.3465 [nucl.th]

Some properties: equilibrium

Tc ~ 140 MeV

$$\xi = N_{hadrons}/N_{all}$$
 particles