SHOT NOISE AND COULOMB BLOCKADE OF ANDREEV REFLECTION

A.D. Zaikin

Institute for Nanotechnology, Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany

I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physics Institute, 119991 Moscow, Russia

E-mail: andrei.zaikin@kit.edu

We derive low energy effective action for a short coherent conductor between normal (N) and superconducting (S) reservoirs [1]. We evaluate interaction correction δG to Andreev conductance and highlight a fundamental relation between interaction effects and shot noise in NS systems. In the diffusive limit doubling of both shot noise power and charge of the carriers yields $|\delta G|$ four times bigger than in the normal case. We further generalize our effective action formalism to describe interaction effects on non-local electron transport in three-terminal NSN structures [2]. We demonstrate that the non-linear non-local conductance of such devices can acquire a non-trivial S-shape which is a unique signature of electron-electron interactions. Our predictions [1,2] can quantitatively explain recent experimental observations [3,4] and can further be tested in future experiments.

References

- [1] A.V. Galaktionov and A.D. Zaikin, *Shot noise and Coulomb blocade of Andreev reflection.* Phys. Rev. B, **80**, 174527 (2009).
- [2] D.S. Golubev and A.D. Zaikin, *Coulomb blockade of non-local electron transport*. Preprint (2010).
- [3] A. T. Bollinger, A. Rogachev, and A. Bezryadin, *Dichotomy in short superconducting nanowires: thermal phase slippage vs. Coulomb blockade.* Europhys. Lett. **76**, 505 (2006).
- [4] J. Brauer, F. Hbbler, M. Smetanin, D. Beckmann, and H. v. Luhneysen, *Non-local transport in normal-metal/superconductor hybrid structures: the role of interference and interaction.* ArXiv:0912.0123 (2009).