Two-Body Nonleptonic B-Meson Decays – II (Analysis of Selected Modes)

Alexander Parkhomenko Yaroslavl State University, Russia

Helmholtz International Summer School HEAVY QUARK PHYSICS Dubna, June 6-16, 2005

Dubna, June 6-16, 2005 Helmholtz International Summer School "HEAVY QUARK PHYSICS"

Two-Body Nonleptonic B-Meson Decays – II (Analysis of Selected Modes) (page 1)

Contents

Contents

I. Introduction

II. Theoretical Approaches

1. Effective Electroweak Theory

2. QCD Factorization (QCD-F)

3. Perturbative QCD (pQCD)

4. Soft-Collinear Effective Theory (SCET)

III. Phenomenological Analysis

1. $B \rightarrow \pi \pi$ Decays

2. $B \rightarrow VV$ Decays

IV. Summary

Dubna, June 6-16, 2005 Helmholtz International Summer School "HEAVY QUARK PHYSICS"

Two-Body Nonleptonic B-Meson Decays – II (Analysis of Selected Modes) (page 2)

Two-Body Nonleptonic B-Meson Decays – II (Analysis of Selected Modes) (page 3)

Analysis of $B \rightarrow \pi \pi$ Decays **Isospin** Relations • Effective Hamiltonian for $b \to d$ transitions ($\lambda_p^{(d)} = V_{pb}V_{nd}^*$) $\mathcal{H}_{W}^{b \to d} = \frac{G_{F}}{\sqrt{2}} \sum_{n=n-2} \lambda_{p}^{(d)} \left(C_{1} \mathcal{O}_{1}^{(p)} + C_{2} \mathcal{O}_{2}^{(p)} + \sum_{i=2}^{10} C_{i} \mathcal{O}_{i} + C_{7\gamma} \mathcal{O}_{7\gamma} + C_{8g} \mathcal{O}_{8g} \right)$ $\sqrt{2}|P_c|\sin\gamma$ • $B \rightarrow \pi\pi$ decay amplitudes $\tilde{ heta}_A$ (subdominant topologies are neglected): $\frac{A^{+-}}{\sqrt{2}}$ A^{00} \tilde{A}^{00} $A^{+0} = A(B^+ \to \pi^+ \pi^0) = -\frac{1}{\sqrt{2}} (\mathcal{T} + \mathcal{C})$ $\frac{\tilde{A}^{+-}}{\sqrt{2}}$ 2θ $A^{+-} = A(B^0 \to \pi^+ \pi^-) = -(\mathcal{T} + \mathcal{P})$ $A^{00} = A(B^0 \to \pi^0 \pi^0) = \frac{1}{\sqrt{2}} (\mathcal{P} - \mathcal{C})$ $A^{+0} = \tilde{A}^{-0}$ • The amplitudes A^{ij} and their charged-conjugate ones A^{ij} are satisfied the isospin relations $A^{+0} = \frac{1}{\sqrt{2}}A^{+-} + A^{00}, \qquad \bar{A}^{-0} = \frac{1}{\sqrt{2}}\bar{A}^{+-} + \bar{A}^{00}$

Dubna, June 6-16, 2005 Helmholtz International Summer School "HEAVY QUARK PHYSICS" Two-Body Nonleptonic B-Meson Decays – II (Analysis of Selected Modes) (page 4)

Parameterization

• Effective Hamiltonian results two independent CKM factors (improved Wolfenstein parameterization is used)

 $\lambda_c^{(d)} = V_{cb} V_{cd}^* \simeq -A\lambda^3$ $\lambda_u^{(d)} = V_{ub} V_{ud}^* \simeq A\lambda^3 \left(\bar{\rho} - i\bar{\eta}\right) = A\lambda^3 R_b \,\mathrm{e}^{-i\gamma}$

• In this convention, amplitudes are

$$\bar{\eta} \underbrace{(\bar{\rho}, \bar{\eta})}_{(0,0)} \underbrace{(\bar{\rho}, \bar{\eta})}_{R_{b}} \underbrace{R_{t}}_{\beta} \underbrace{(1,0) \quad \bar{\rho}}$$

$$\begin{aligned}
\sqrt{2} A^{+0} &= -(T_c + C_c) = -|T_c| e^{i\delta_T} e^{i\gamma} \left[1 + |C_c/T_c| e^{i\Delta_c} \right] \\
A^{+-} &= -(T_c + P_c) = -|T_c| e^{i\delta_T} \left[e^{i\gamma} + |P_c/T_c| e^{i\delta_c} \right] \\
\sqrt{2} A^{00} &= -(C_c - P_c) = -|T_c| e^{i\delta_T} \left[|C_c/T_c| e^{i\Delta_c} e^{i\gamma} - |P_c/T_c| e^{i\delta_c} \right]
\end{aligned}$$

- Charged-conjugate amplitudes \bar{A}^{ij} differ by the replacement $\gamma
 ightarrow -\gamma$
- 5 strong parameters $[|T_c|, r_c \equiv |P_c/T_c|, \delta_c, |C_c/T_c|, \Delta_c]$ (the choice $\delta_T = 0$ for the overall phase can be adopted) and the weak phase γ can be phenomenologically extracted if a complete set of experimental data on $B \to \pi\pi$ decays exist

CP Asymmetry in $B^0 \to \pi \pi$ Decays

- Both final states: $\pi^+\pi^-$ and $\pi^0\pi^0$, are CP conjugate
- The phenomenon of $B^0 \overline{B}{}^0$ mixing should be taken into account
- The mixing parameter $q/p \simeq V_{td}/V_{td}^* = e^{-2i\beta}$ is the pure phase factor with a good accuracy
- Results in the time-dependent CP asymmetry ($\Delta\Gamma_{B^0}=0$)

$$a_{\pi\pi}^{+-}(t) \equiv \frac{\Gamma[\bar{B}^0(t) \to \pi^+\pi^-] - \Gamma[B^0(t) \to \pi^+\pi^-]}{\Gamma[\bar{B}^0(t) \to \pi^+\pi^-] + \Gamma[B^0(t) \to \pi^+\pi^-]} = S_{\pi\pi}^{+-} \sin(\Delta M_B t) - C_{\pi\pi}^{+-} \cos(\Delta M_B t)$$

• Direct $C_{\pi\pi}^{+-}$ and mixing-induced $S_{\pi\pi}^{+-}$ CP asymmetries can be expressed

$$C_{\pi\pi}^{+-} = \frac{2r_c \sin \delta_c \sin \gamma}{1 + 2r_c \cos \delta_c \cos \gamma + r_c^2}$$

$$S_{\pi\pi}^{+-} = -\frac{\sin(2\beta + 2\gamma) + 2r_c \cos \delta_c \sin(2\beta + \gamma) + r_c^2 \sin(2\beta)}{1 + 2r_c \cos \delta_c \cos \gamma + r_c^2}$$

• Taking weak phases β and γ from elsewhere, for example from the SM fit, the ratio $r_c = |P_c/T_c|$ and strong phase δ_c can be determined

Dubna, June 6-16, 2005 Helmholtz International Summer School "HEAVY QUARK PHYSICS"

Two-Body Nonleptonic B-Meson Decays – II (Analysis of Selected Modes) (page 6)

- Analysis of $B \to \pi \pi$ Decays						
	Experimental Data					
	Branching fractions (in units of 10^{-6})					
Mode	Mode BABAR BELLE CLEO Average [HFAG]					
$B^+ \rightarrow$	$\pi^+\pi^0$	$5.8 \pm 0.6 \pm 0.4$	$5.0 \pm 1.2 \pm 0.5$	$4.6^{+1.8}_{-1.6}{}^{+0.6}_{-0.7}$	5.5 ± 0.6	
$B^0 \rightarrow$	$\pi^+\pi^-$	$4.7\pm0.6\pm0.2$	$4.4\pm0.6\pm0.3$	$4.5^{+1.4}_{-1.2}_{-0.4}$	$4.5 \pm 0.4^{\ddagger}$	
$B^0 \rightarrow$	$\pi^0\pi^0$	$1.17 \pm 0.32 \pm 0.10$	$2.3_{-0.5-0.3}^{+0.4+0.2}$	< 4.4	1.45 ± 0.29	
			P Asymmetry		Average [HFAG]	
$\mathcal{A}_{\mathrm{CP}}$	$(\pi^+\pi^0)$	$\begin{array}{r} CI \\ \\ \hline \\ BABAR \\ \hline \\ -0.01 \pm 0.10 \pm \end{array}$	P Asymmetry BEL $0.02 - 0.02 \pm 0.02$	LE .10 ± 0.01	Average [HFAG] -0.02 ± 0.07	
$\mathcal{A}_{ ext{CP}}$ $C_{\pi\pi}^{+-}$	$\overline{(\pi^+\pi^0)} = -A_{\pi\pi}^{+-}$	C BABAR $-0.01 \pm 0.10 \pm$ $-0.09 \pm 0.15 \pm$	P Asymmetry BEL $0.02 - 0.02 \pm 0$ $0.04 - 0.56 \pm 0$	LE .10 ± 0.01 .12 ± 0.06	Average [HFAG] -0.02 ± 0.07 -0.37 ± 0.10	
$\mathcal{A}_{\rm CP} \\ C_{\pi\pi}^{+-} \\ S_{\pi\pi}^{+-}$	$ {(\pi^+\pi^0)} = -A^{+-}_{\pi\pi} $	CI BABAR $-0.01 \pm 0.10 \pm$ $-0.09 \pm 0.15 \pm$ $-0.30 \pm 0.17 \pm$	P Asymmetry BEL $0.02 -0.02 \pm 0$ $0.04 -0.56 \pm 0$ $0.03 -0.67 \pm 0$	$\begin{array}{c c} \textbf{LE} \\ .10 \pm 0.01 \\ .12 \pm 0.06 \\ .16 \pm 0.06 \end{array}$	Average [HFAG] -0.02 ± 0.07 -0.37 ± 0.10 -0.50 ± 0.12	
$\mathcal{A}_{ ext{CP}}$ $C_{\pi\pi}^{+-}$ $S_{\pi\pi}^{+-}$ $\mathcal{A}_{ ext{CP}}$	$ \frac{(\pi^{+}\pi^{0})}{= -A_{\pi\pi}^{+-}} $ $ \frac{(\pi^{0}\pi^{0})}{(\pi^{0}\pi^{0})} $	CI BABAR $-0.01 \pm 0.10 \pm$ $-0.09 \pm 0.15 \pm$ $-0.30 \pm 0.17 \pm$ $0.12 \pm 0.56 \pm 0$	P Asymmetry BEL $0.02 - 0.02 \pm 0$ $0.04 - 0.56 \pm 0$ $0.03 - 0.67 \pm 0$ $0.06 0.44^{+0.53}_{-0.52}$	$\begin{array}{c} \textbf{LE} \\ .10 \pm 0.01 \\ .12 \pm 0.06 \\ .16 \pm 0.06 \\ .2 \pm 0.17 \end{array}$	Average [HFAG] -0.02 ± 0.07 -0.37 ± 0.10 -0.50 ± 0.12 $0.28^{+0.40}_{-0.39}$	
$\mathcal{A}_{ ext{CP}}$ $C_{\pi\pi}^{+-}$ $S_{\pi\pi}^{+-}$ $\mathcal{A}_{ ext{CP}}$	$ \frac{(\pi^{+}\pi^{0})}{= -A_{\pi\pi}^{+}} $ $ \frac{(\pi^{0}\pi^{0})}{L} $	Cl BABAR $-0.01 \pm 0.10 \pm$ $-0.09 \pm 0.15 \pm$ $-0.30 \pm 0.17 \pm$ $0.12 \pm 0.56 \pm 0$ Life-time ratio	P Asymmetry BEI $0.02 - 0.02 \pm 0$ $0.04 - 0.56 \pm 0$ $0.03 - 0.67 \pm 0$ $0.06 0.44^{+0.53}_{-0.52}$ $\tau_{B^+}/\tau_{B^0} = 1$	$ \begin{array}{c} LE \\ .10 \pm 0.01 \\ .12 \pm 0.06 \\ .16 \pm 0.06 \\ \frac{3}{2} \pm 0.17 \\ I.081 \pm 0.0 \\ \end{array} $	Average [HFAG] -0.02 ± 0.07 -0.37 ± 0.10 -0.50 ± 0.12 $0.28^{+0.40}_{-0.39}$ 015	
$\mathcal{A}_{ ext{CP}}$ $C_{\pi\pi}^{+-}$ $S_{\pi\pi}^{+-}$ $\mathcal{A}_{ ext{CP}}$	$\overline{(\pi^{+}\pi^{0})} = -A_{\pi\pi}^{+-}$ $\underline{(\pi^{0}\pi^{0})}$ L $CP as$	Cl BABAR $-0.01 \pm 0.10 \pm$ $-0.09 \pm 0.15 \pm$ $-0.30 \pm 0.17 \pm$ $0.12 \pm 0.56 \pm 0$ Life-time ratio symmetry in the	P Asymmetry BEL $0.02 - 0.02 \pm 0$ $0.04 - 0.56 \pm 0$ $0.03 - 0.67 \pm 0$ $0.06 0.44^{+0.53}_{-0.52}$ $\tau_{B^+}/\tau_{B^0} = 1$ $B \rightarrow J/\psi K_S$	$\begin{array}{c} -\text{LE} \\ .10 \pm 0.01 \\ .12 \pm 0.06 \\ .16 \pm 0.06 \\ \frac{3}{2} \pm 0.17 \\ 1.081 \pm 0.0 \\ \text{and related} \end{array}$	Average [HFAG] -0.02 ± 0.07 -0.37 ± 0.10 -0.50 ± 0.12 $0.28^{+0.40}_{-0.39}$ 015 decays	

Two-Body Nonleptonic B-Meson Decays – II (Analysis of Selected Modes) (page 7) Analysis of $B \rightarrow \pi \pi$ Decays

Numerical Analysis of $C_{\pi\pi}^{+-}$ and $S_{\pi\pi}^{+-}$

• For the construction of C.L. contours, the χ^2 -function is introduced

$$\chi^{2}(\beta,\alpha,|P_{c}/T_{c}|,\delta_{c}) = \left[\frac{C_{\pi\pi}^{+-} - (C_{\pi\pi}^{+-})_{\exp}}{\Delta C_{\pi\pi}^{+-}}\right]^{2} + \left[\frac{S_{\pi\pi}^{+-} - (S_{\pi\pi}^{+-})_{\exp}}{\Delta S_{\pi\pi}^{+-}}\right]^{2}$$

- SM relation $\alpha + \beta + \gamma = \pi$ between the unitarity-triangle angles was used to eliminate γ
- In getting the C.L. contours, χ^2 -function was equated to 2.30, 6.18. and 11.83, corresponding to 68.3%, 95.5%, and 99.7%, respectively, for two degrees of freedom
- The correlations $|P_c/T_c| \delta_c$ at fixed values of α , β and $\alpha \delta_c$ at fixed values of $|P_c/T_c|$, β are presented further

1

Two-Body Nonleptonic B-Meson Decays - II (Analysis of Selected Modes) (page 8)

Two-Body Nonleptonic B-Meson Decays – II (Analysis of Selected Modes) (page 9)

Analysis of $B \rightarrow \pi \pi$ Decays Results of the SM Fit (Spring 2004) • Combining the above χ^2 -function with the one used for the SM fit results the following 68% C.L. ranges $(C_{\pi\pi}^{+-} = -0.46 \pm 0.13, S_{\pi\pi}^{+-} = -0.74 \pm 0.16)$ $A = 0.79 \div 0.86$ $\alpha = (81 \div 103)^{\circ}$ $\Delta M_{B_s} = (16.6 \div 20.3) \text{ ps}^{-1}$ $\bar{\rho} = 0.10 \div 0.24$ $\beta = (21.9 \div 25.5)^{\circ}$ $|P_c/T_c| = 0.43 \div 5.30$ $\bar{\eta} = 0.32 \div 0.40$ $\gamma = (54 \div 75)^{\circ}$ $\delta_c = -(29 \div 112)^{\circ}$ • The ranges of $|P_c/T_c|$ and δ_c can be reduced if restriction on the penguin "pollution" $\cos(2\theta)$ is taken into account [Gronau et al.] $\cos(2\theta) \ge \frac{(B_{\pi\pi}^{+-} + 2B_{\pi\pi}^{+0} - 2B_{\pi\pi}^{00})^2 - 4B_{\pi\pi}^{+-}B_{\pi\pi}^{+0}}{4B_{\pi\pi}^{+-}B_{\pi\pi}^{+0}\sqrt{1 - (C_{\pi\pi}^{+-})^2}} \simeq 0.27$ Here, $B_{\pi\pi}^{ij} = (|A^{ij}|^2 + |\bar{A}^{ij}|^2)/2$ • $|P_c/T_c| = 0.77^{+0.58}_{-0.34}$ and $\delta_c = (-43^{+14}_{-21})^\circ$ at 68% C.L. $\chi^2_{\rm min}$ $\chi^2_{\rm min}$ -140 -120 -100 -80 -60 -40 -20 2 б $|P_c/T_c|$ $\delta_{\rm C}\,{}_{\rm (deg)}$

Dubna, June 6-16, 2005 Helmholtz International Summer School "HEAVY QUARK PHYSICS" Two-Body Nonleptonic B-Meson Decays – II (Analysis of Selected Modes) (page 10)

Analysis of $B \rightarrow \pi \pi$ Decays Bounds from $B \to \pi \pi$ Decays Based on the Quantities • $B^{ij} \equiv \left(|A^{ij}|^2 + |\bar{A}^{ij}|^2 \right) / 2$ • $C \equiv \left(|A^{+-}|^2 - |\bar{A}^{+-}|^2 \right) / \left(|A^{+-}|^2 + |\bar{A}^{+-}|^2 \right)$ • $Y \equiv 2|A^{+-}||\bar{A}^{+-}|/(|A^{+-}|^2 + |\bar{A}^{+-}|^2)$ • $S \equiv Y \sin(2\alpha_{\text{eff}}) \equiv Y \sin(2\alpha + 2\theta)$ • $C^2 + S^2 = 1 - Y^2 \cos^2(2\alpha_{\text{eff}}) < 1$ Bounds on Penguin Pollution • Grossman and Quinn $\cos(2\theta) \ge 1 - 2B^{00}/B^{+0}$ $\cos(2\theta)_{\min}^{\cos}$ • Charles $\cos(2\theta) \ge \left[1 - 2B^{00}/B^{+0}\right]/Y$ Bound GQ 0.30 $\cos(2\theta) \ge \left[1 - 4B^{00}/B^{+-}\right]/Y$ Ch-I 0.32 • Gronau, London, Sinha, Sinha (GLSS) **GLSS** 0.35 $\cos(2\theta) \ge \left[(B^{+-}/2 + B^{+0} - B^{00})^2 / (B^{+-}B^{+0}) - 1 \right] / Y$

 $\theta_{\rm max}^{\rm cons}$

 36.4°

 35.7°

 34.8°

Two-Body Nonleptonic B-Meson Decays – II (Analysis of Selected Modes) (page 12)

Isospin Analysis

- B(B⁺ → π⁺π⁰), B(B⁰ → π⁺π⁻), B(B⁰ → π⁰π⁰), S⁺⁻_{ππ}, C⁺⁻_{ππ}, C⁰⁰_{ππ}
 (6 measurements) are included in the χ²-function; depends on 6 variables
 (|T_c|, r_c, δ_c, x_c, Δ_c, γ); isospin analysis can be done
- The best-fit solutions and 1σ ranges $[T_c, P_c, C_c]$ are in units of $3.0 \times 10^{-8} \,\text{GeV}]$

				IV
γ	$(68.9^{+4.1}_{-4.4})^{\circ}$	$(32.0^{+2.7}_{-2.8})^{\circ}$	$(11.4^{+2.6}_{-2.6})^{\circ}$	$(154.6^{+5.0}_{-4.7})^{\circ}$
r_c	$0.466^{+0.091}_{-0.079}$	$0.466^{+0.031}_{-0.034}$	$1.619\substack{+0.047\\-0.041}$	$1.619\substack{+0.110 \\ -0.094}$
δ_c	$(-38.6^{+9.4}_{-9.2})^{\circ}$	$(-159.2^{+6.6}_{-5.9})^{\circ}$	$(-152.6^{+4.0}_{-3.4})^{\circ}$	$(-93.3^{+6.9}_{-8.8})^{\circ}$
x_c	$1.040^{+0.088}_{-0.096}$	$0.173_{-0.098}^{+0.079}$	$2.213_{-0.069}^{+0.064}$	$2.835_{-0.151}^{+0.140}$
Δ_c	$(-53.5^{+14.3}_{-13.0})^{\circ}$	$(82.8^{+19.2}_{-21.2})^{\circ}$	$(-157.8^{+5.4}_{-5.0})^{\circ}$	$(95.4^{+8.6}_{-9.0})^{\circ}$
$ T_c $	$0.618^{+0.032}_{-0.032}$	$1.086^{+0.032}_{-0.032}$	$0.838^{+0.060}_{-0.055}$	$0.386^{+0.047}_{-0.049}$
$ P_c $	$0.288^{+0.038}_{-0.037}$	$0.506\substack{+0.031\\-0.032}$	$1.358\substack{+0.027\\-0.026}$	$0.625_{-0.027}^{+0.028}$
$ C_c $	$0.642_{-0.059}^{+0.055}$	$0.188\substack{+0.085\\-0.106}$	$1.856_{-0.058}^{+0.054}$	$1.094_{-0.058}^{+0.054}$
$S^{00}_{\pi\pi}$	$0.801\substack{+0.125\\-0.180}$	$-0.835^{+0.078}_{-0.052}$	$-0.835^{+0.165}_{-0.119}$	$0.801^{+0.145}_{-0.271}$

• Larger but consistent with the standard CKM fit

 $\gamma_{\rm CKM} = (58^{+7}_{-5})^{\circ}$

Two-Body Nonleptonic B-Meson Decays – II (Analysis of Selected Modes) (page 14)

Comparison with Theoretical Predictions

• Allowed values of the dynamical quantities at 68% C.L.

 $|P_c/T_c| = 0.47^{+0.09}_{-0.08}$ $\delta_c = (-38.6^{+9.4}_{-9.2})^{\circ}$

• This should be compared with predictions from the dynamical model

 $\begin{array}{ll} |P_c/T_c| = 0.29 \pm 0.09 & \delta_c = (9 \pm 15)^{\circ} & \text{QCDF} & [\text{Buchalla \& Safir}] \\ |P_c/T_c| = 0.23^{+0.07}_{-0.05} & \delta_c = (-37 \pm 5)^{\circ} & \text{pQCD} & [\text{Keum \& Sanda}] \end{array}$

 Phenomenology supports enhanced penguin contribution which is not the case of QCD-F but can be explained within pQCD approach

Dubna, June 6-16, 2005 Helmholtz International Summer School "HEAVY QUARK PHYSICS"

Two-Body Nonleptonic B-Meson Decays – II (Analysis of Selected Modes) (page 15)

Similar Phenomenological Analysis of $B\to\pi\pi$ Decays

• Isospin analysis [AP, this School]

 $|P_c/T_c| = 0.47^{+0.09}_{-0.08} \qquad \delta_c = (-38.6^{+9.4}_{-9.2})^{\circ}$

• Isospin analysis [A. Höcker, this School]

$$|P_c/T_c| = 0.37 \pm 0.17$$
 $\delta_c = (-36^{+10}_{-12})^{\circ}$

Analysis accounts for the flavor SU(3) symmetry
 [Buras, Fleischer, Reckseigel, Schwab, hep-ph/0410407; hep-ph/0411373]

$$|P_c/T_c| = 0.51^{+0.26}_{-0.20}$$
 $\delta_c = \theta - \pi = (-40^{+14}_{-18})^{\circ}$

• Analysis is performed within SCET [Pirjol, hep-ph/0502141]

$$|P_c/T_c| = 0.49 \pm 0.14$$
 $\delta_c = -(41 \pm 15)^\circ$

• Isospin analysis of $B^0 \rightarrow \pi^+\pi^-$ time-dependent CP asymmetry [Ali, Lunghi and AP, hep-ph/0403275]

$$|P_c/T_c| = 0.77^{+0.58}_{-0.34} \qquad \delta_c = (-43^{+14}_{-21})^{\circ}$$

Dubna, June 6-16, 2005 Helmholtz International Summer School "HEAVY QUARK PHYSICS"

Two-Body Nonleptonic B-Meson Decays – II (Analysis of Selected Modes) (page 16)

SCET: Heavy-to-Light Transitions

 $B \rightarrow M_1 M_2$ Factorization in SCET

[Chey, Kim, hep-ph/0301262] [Bauer, Pirjol, Rothstein, Stewart, hep-ph/0401188]

 $\Lambda^2 \ll Q\lambda \ll Q^2$, $Q = \{m_b, E, m_c\}$

- form-factor and hard-spectator terms are formally the same as in QCD Factorization Approach
- long-distance charming-penguin contribution appears in LO

Dubna, June 6-16, 2005 Helmholtz International Summer School "HEAVY QUARK PHYSICS"

Two-Body Nonleptonic B-Meson Decays – II (Analysis of Selected Modes) (page 17)

SCET: Heavy-to-Light Transitions $B \rightarrow \pi \pi$ Decay Amplitudes in SCET [Bauer et al., hep-ph/0401188] In terms of SCET Wilson coefficients $c_i^{(d)}(u)$ and $b_i^{(d)}(u, z)$ $A(B^{-} \to \pi^{-}\pi^{0}) = \frac{G_{F}}{2} m_{B}^{2} \int_{0}^{1} du f_{\pi} \phi_{\pi}(u) \left\{ \zeta^{B\pi} \left[c_{1}^{(d)}(u) + c_{2}^{(d)}(u) - c_{3}^{(d)}(u) \right] \right\}$ $+ \int_{a}^{1} dz \, \zeta_{J}^{B\pi}(z) \left[b_{1}^{(d)}(u,z) + b_{2}^{(d)}(u,z) - b_{3}^{(d)}(u,z) \right] \Big\}$ $A(\bar{B}^0 \to \pi^+ \pi^-) = \frac{G_F}{\sqrt{2}} m_B^2 \int_0^1 du \, f_\pi \phi_\pi(u) \bigg\{ \zeta^{B\pi} \left[c_1^{(d)}(u) + c_4^{(d)}(u) \right] \bigg\}$ $+ \int_{0}^{1} dz \, \zeta_{J}^{B\pi}(z) \left[b_{1}^{(d)}(u,z) + b_{4}^{(d)}(u,z) \right] \right\} + \lambda_{c}^{(d)} A_{\bar{c}c}^{B\pi}$ $A(\bar{B}^0 \to \pi^0 \pi^0) = \frac{G_F}{\sqrt{2}} m_B^2 \int_0^1 du \, f_\pi \phi_\pi(u) \bigg\{ \zeta^{B\pi} \left[c_2^{(d)}(u) - c_3^{(d)}(u) - c_4^{(d)}(u) \right] \bigg\}$ $+ \int_{0}^{1} dz \, \zeta_{J}^{B\pi}(z) \left[b_{2}^{(d)}(u,z) - b_{3}^{(d)}(u,z) - b_{4}^{(d)}(u,z) \right] \left\{ -\lambda_{c}^{(d)} A_{\bar{c}c}^{B\pi} \right\}$ In agreement with isospin relation $\sqrt{2} A(B^- \to \pi^- \pi^0) = A(\bar{B}^0 \to \pi^+ \pi^-) + A(\bar{B}^0 \to \pi^0 \pi^0)$

Dubna, June 6-16, 2005 Helmholtz International Summer School "HEAVY QUARK PHYSICS" Two-Body Nonleptonic B-Meson Decays – II (Analysis of Selected Modes) (page 18)

SCET: Heavy-to-Light Transitions

$$B \rightarrow \pi \pi$$
 Phenomenology
[Bauer et al., hep-ph/0401188]

• World averages [HFAG] for branching ratios and CP asymmetries

 $\bar{\mathcal{B}}(B^{\pm} \to \pi^{\pm}\pi^{0}) = (5.5 \pm 0.6) \times 10^{-6}$ $\bar{\mathcal{B}}(B^0 \to \pi^+\pi^-) = (4.5 \pm 0.4) \times 10^{-6}$ $\bar{\mathcal{B}}(B^0 \to \pi^0 \pi^0) = (1.45 \pm 0.29) \times 10^{-6}$

$$A_{\rm CP}(\pi^{\pm}\pi^{0}) = -0.02 \pm 0.07$$

$$C_{\pi\pi}^{+-} = -0.37 \pm 0.10$$

$$S_{\pi\pi}^{+-} = -0.50 \pm 0.12$$

blue $S_{\pi\pi}^{00} = -0.28 \pm 0.40$

Matching full theory onto SCET and neglecting electroweak penguins

• To leading order in $\alpha_s(m_b)$ and assuming $\langle u^{-1} \rangle_{\pi} \simeq 3$

$$\begin{split} A(B^{-} \to \pi^{-} \pi^{0}) &\simeq \frac{G_{F}}{\sqrt{2}} \frac{f_{\pi} m_{B}^{2}}{3\sqrt{2}} \lambda_{u}^{(d)} \left(C_{1} + C_{2}\right) \left[4\zeta^{B\pi} + 7\zeta_{J}^{B\pi}\right] \\ A(\bar{B}^{0} \to \pi^{+} \pi^{-}) &= \frac{G_{F}}{\sqrt{2}} \frac{f_{\pi} m_{B}^{2}}{3} \left\{\lambda_{u}^{(d)} \left(3C_{1} + C_{2} + C_{3} + 3C_{4}\right)\zeta^{B\pi} + \lambda_{c}^{(d)} \left(C_{3} + 3C_{4}\right)\zeta^{B\pi} + \lambda_{u}^{(d)} \left(3C_{1} + 4C_{2} + 4C_{3} + 3C_{4}\right)\zeta_{J}^{B\pi} + \lambda_{c}^{(d)} \left(4C_{3} + 3C_{4}\right)\zeta_{J}^{B\pi}\right\} + A_{\bar{c}c}^{B\pi} \end{split}$$

• 4 unknowns: real
$$\zeta^{B\pi}$$
 and $\zeta^{B\pi}_J = \int_0^1 dz \, \zeta^{B\pi}_J(z)$; complex $A^{B\pi}_{\bar{c}c}$

Dubna, June 6-16, 2005 Helmholtz International Summer School "HEAVY QUARK PHYSICS"

Two-Body Nonleptonic B-Meson Decays - II (Analysis of Selected Modes) (page 19)

Two-Body Nonleptonic B-Meson Decays – II (Analysis of Selected Modes) (page 20)

Two-Body Nonleptonic B-Meson Decays – II (Analysis of Selected Modes) (page 21)

Polarization Effects in $B \rightarrow VV$ Decays

Polarization in $B \rightarrow VV$ Decays

- In $\overline{B} \to VV$ decays, there are three helicity amplitudes, $\overline{\mathcal{A}}^{(0)}$, $\overline{\mathcal{A}}^{(-)}$ and $\overline{\mathcal{A}}^{(+)}$, in which both vector mesons are longitudinally, negatively and positively polarized.
- In naive factorization supplemented by the large energy form factor relations

$$\bar{\mathcal{A}}_{V_1V_2}^{(0,-,+)} = -i\frac{G_F}{\sqrt{2}}\,\lambda_p^{(q)}\,\tilde{a}\,f_{V_2}m_B\left\{-m_B\zeta_{\parallel}^{V_1},\,m_{V_2}\zeta_{\perp}^{V_1},\,m_{V_2}\zeta_{\perp}^{V_1}r_{\perp}^{V_1}\right\}$$

Here, \tilde{a} is a combination of Wilson coefficients, ζ_{\parallel}^V and ζ_{\perp}^V are universal $B \to V$ form factors, and r_{\perp}^V parameterizes the form factor helicity suppression

- The helicity suppression $\bar{\cal A}^{(\pm)}/\bar{\cal A}^{(0)}\sim m_V/m_B$ is clearly seen
- In large-energy limit, $r_{\perp}^V \to 0$ at leading power in $\Lambda/m_b \Longrightarrow \bar{\mathcal{A}}^{(+)}/\bar{\mathcal{A}}^{(-)} \sim \mathcal{O}(1/m_b)$
- Transversity basis $\bar{A}_L \equiv \bar{A}^{(0)}$, $\bar{A}_{\perp,\parallel} \equiv [\bar{A}^{(-)} \mp \bar{A}^{(+)}]\sqrt{2}$ occurs more convenient, so

 $1 - f_L = \mathcal{O}(1/m_b^2), \quad f_\perp/f_\parallel = 1 + \mathcal{O}(1/m_b), \quad f_i \equiv \Gamma_i/\Gamma_{\text{tot}}$

- First relation remains formally true when non-factorizable contributions are included in the QCD Factorization approach and is realized in $B \rightarrow \rho \rho$ [Kagan, hep-ph/0405134]
- Similar result follows from SCET where at LO only long-distance charming-penguin operator contributes to the $B \rightarrow V_1^{\perp} V_2^{\perp}$ amplitude [Bauer et al., hep-ph/0401188]
- The observation of $f_L(\phi K^*) \simeq 0.5$ can be accounted for in the Standard Model within QCD-F approach, with large theoretical errors [Rohrer, this School]

- Phenomenological Analysis: $B \rightarrow VV$ Decays

 $B \rightarrow VV$ Decays: Experimental Data

Longitudinal polarization fraction f_L

Mode	BABAR	BELLE	Average [HFAG]
$B^+ \to K^{*0} \rho^+$	$0.79 \pm 0.08 \pm 0.04$	$0.43 \pm 0.11^{+0.05}_{-0.02}$	0.66 ± 0.07
$B^+ \to K^{*+} \rho^0$	$0.96^{+0.04}_{-0.15} \pm 0.04$		$0.96\substack{+0.06 \\ -0.15}$
$B^+ \to \phi K^{*+}$	$0.46 \pm 0.12 \pm 0.03$	$0.52 \pm 0.08 \pm 0.03$	0.50 ± 0.07
$B^+ \to \rho^+ \rho^0$	$0.97^{+0.03}_{-0.07} \pm 0.04$	$0.95 \pm 0.11 \pm 0.02$	$0.97\substack{+0.05 \\ -0.07}$
$B^+ \to \omega \rho^+$	$0.88^{+0.12}_{-0.15} \pm 0.03$		$0.88\substack{+0.12 \\ -0.15}$
$B^0 \to \phi K^{*0}$	$0.52 \pm 0.05 \pm 0.02$	$0.45 \pm 0.05 \pm 0.02$	0.48 ± 0.04
$B^0 \to \rho^+ \rho^-$	$0.99 \pm 0.03^{+0.04}_{-0.03}$		$0.99\substack{+0.05\\-0.04}$

Full angular analysis is also avaluable for $B \to \phi K^*$ modes Transverse polarization fraction f_{\perp}

Mode	BABAR	BELLE	Average [HFAG]
$B^+ \to \phi K^{*+}$		$0.19 \pm 0.08 \pm 0.02$	0.19 ± 0.08
$B^0 \to \phi K^{*0}$	$0.25 \pm 0.05 \pm 0.02$	$0.31^{+0.06}_{-0.05} \pm 0.02$	0.26 ± 0.04

Dubna, June 6-16, 2005 Helmholtz International Summer School "HEAVY QUARK PHYSICS"

Two-Body Nonleptonic B-Meson Decays – II (Analysis of Selected Modes) (page 23)

- Polarization Effects in $B \rightarrow VV$ Decays

Polarization in $B \rightarrow VV$ Decays [Li, Mishina, hep-ph/0411146]

- Tree-dominated decays into two light vector mesons $B \rightarrow \rho \rho$, ... can be understood by kinematics in the large enery limit; this is also robust under subleading corrections; all are negligible within pQCD; QCD dynamics play a minor role for the polarization
- For penguin-dominated decays, polarization fractions can deviate from the naive counting rules; important annihilation contributions from the (S-P)(S+P) operators; R_L can be decrease up to 0.75 for decays like $B^+ \rightarrow \rho^+ K^{*0}$, ...; can be accommodated within the SM
- $f_L \simeq 0.5$ for $B \to \phi K^*$. In the SM, suggested solutions taking into account penguin-annihilation contributions [Kagan, hep-ph/0405134], rescattering effects [Colangelo et al., hep-ph/0406162], etc., are not satisfactory.
- It is too early talk about effects of New Physics as complicated QCD dynamics in $B\to VV$ decays is not properly worked out

Two-Body Nonleptonic B-Meson Decays – II (Analysis of Selected Modes) (page 24) - Summary

Summary

- Experiment requires a deeper understanding of QCD dynamics in hadronic *B*-meson decays
- Several theoretical approaches (QCD-F, pQCD, SCET, etc) are proposed and experimentally tested
- Majority of experimental data can be successfully explained within these approaches; puzzles still exist and require satisfactory explanation
- SCET the emerging QCD technology, hold the promise to provide a better theoretical description of *B*-meson hadronic decays than existing approaches
- Progress in understanding of QCD dynamics in exclusive processes will allow to reduce theoretical errors in determination of the CKM matrix elements and check a mechanism of CP violation

Two-Body Nonleptonic B-Meson Decays – II (Analysis of Selected Modes) (page 25)