

Dubna, June 6-16, 2005 Helmholtz International Summer School "HEAVY QUARK PHYSICS"

Two-Body Nonleptonic B-Meson Decays – I (Theoretical Approaches) (page 1)

Contents

Contents

I. Introduction

II. Theoretical Approaches

1. Effective Electroweak Theory

2. QCD Factorization (QCD-F)

3. Perturbative QCD (pQCD)

4. Soft-Collinear Effective Theory (SCET)

III. Phenomenological Analysis

1. $B \rightarrow \pi \pi$ Decays

2. $B \rightarrow VV$ Decays

3. $B \rightarrow K\pi$ Decays

IV. Summary

Dubna, June 6-16, 2005 Helmholtz International Summer School "HEAVY QUARK PHYSICS"

Two-Body Nonleptonic B-Meson Decays – I (Theoretical Approaches) (page 2) - Introduction

The aim of the study of B-meson weak decays:

- 1. To determine the elements of the CKM matrix and to explore the origin of CP violation at low-energy scale
- 2. To study the strong interaction dynamics related to the confinement of quarks and gluons inside hadrons
- 3. To explore possibility of New Physics beyond the Standard Model (SM)

All tasks complement each other

An understanding of the connection between parton and hadron properties is a necessary prerequiste for a precise determination of the CKM matrix elements and CP-violating phase (the Kobayashi-Maskawa phase)

Two-Body Nonleptonic B-Meson Decays – I (Theoretical Approaches) (page 3) - Introduction

Theoretical Approaches for $B \rightarrow M_1 M_2$ Decays

- SU(2)/SU(3) Symmetries, supplemented with phenomenological Ansaetze [Lipkin; Gronau, London; Grossman, Quinn; Charles; Gronau, London, Sinha, Sinha; Fleisher, Mannel; Neubert, Rosner; Buras, Fleisher; Grossman, Legeti, Nir; Buchalla, Safir; Botella, Silva; Lavoura; Fleisher et al.; Buras et al.; Soni et al.; Ali, Lunghi, AP]
- 2. QCD Factorization (QCD-F) Approach [Beneke, Buchalla, Neubert, Sachrajda (BBNS)]
- 3. Perturbative QCD (pQCD) Approach [Keum, Li, Sanda]
- 4. Charming Penguins [Cuichini et al.] using the Renormalization Group (RG) Invariant Topological Approach [Buras, Silvestrini]
- 5. QCD Light-Cone Sum Rules (QCD-LCSR) [Khodjamirian et al.]
- 6. Soft-Collinear Effective Theory (SCET) [Bauer et al.; Beneke et al.; Neubert et al.]

- The Cabibbo-Kobayashi-Maskawa Matrix

- By convention, the quark mixing is often expressed in terms of a (3×3) unitarity matrix $V_{\rm CKM}$ operating on the charge Q = -1/3 quark mass eigenstates d, s and b
- Weak charged current

$$j_{\alpha}^{W} = (\bar{u}, \bar{c}, \bar{t}) \gamma_{\alpha} (1 - \gamma_{5}) V_{CKM} \begin{pmatrix} d \\ s \\ b \end{pmatrix}, \quad V_{CKM} \equiv \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

- Four parameters completely determine mixing in the quark sector
- Elements of the CKM matrix are expressed as an expansion in λ :

$$V_{\text{CKM}} \simeq \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda (1 + iA^2\lambda^4\eta) & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 (1 + i\lambda^2\eta) & 1 \end{pmatrix}$$

• Perturbatively improved version of the Wolfenstein parameterization

$$\bar{\rho} = \rho \left(1 - \lambda^2/2\right) \qquad \bar{\eta} = \eta \left(1 - \lambda^2/2\right)$$

occurs more convenient in physical applications

- The Cabibbo-Kobayashi-Maskawa Matrix

• All the parameters are of order unity; global CKM fit of experimental data [CKMfitter Group (2005)]

 $\lambda = 0.2265 \pm 0.0020$ $A = 0.801^{+0.029}_{-0.018}$

 $\bar{\rho} = 0.204^{+0.036}_{-0.043}$ $\bar{\eta} = 0.340^{+0.025}_{-0.022}$

• Rescaled CKM-Unitarity triangle: $V_{cd}V_{cb}^* \simeq -A\lambda^3$ is almost real; basement equal to one; $R_b = |V_{ud}V_{ub}^*|/|V_{cd}V_{cb}^*|$ and $R_t = |V_{td}V_{tb}^*|/|V_{cd}V_{cb}^*|$ are the sides with lengths of order one

Dubna, June 6-16, 2005 Helmholtz International Summer School "HEAVY QUARK PHYSICS"

Two-Body Nonleptonic B-Meson Decays – I (Theoretical Approaches) (page 6)

Dubna, June 6-16, 2005 Helmholtz International Summer School "HEAVY QUARK PHYSICS"

Two-Body Nonleptonic B-Meson Decays – I (Theoretical Approaches) (page 7)

Effective Electroweak Theory

- Weak interaction phenomena at energies $E \ll M_W, M_Z$ are most conveniently described in the framework of an effective theory
- This theory is derived from the Standard Model (SM) by integrating out heavy particles the top quark, W- and Z-bosons
- Lagrangian density includes all the other quark flavors q=u,d,s,c,b

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{QCD} \times \text{QED}} + \mathcal{L}_{\text{weak}}^{b \to d} + \mathcal{L}_{\text{weak}}^{b \to s}$$

• Flavor-changing neutral current (FCNC) term $\mathcal{L}_{\text{weak}}^{b \to d}$ describes $b \to d$ transition $\mathcal{L}_{i}^{b \to d} = -\frac{G_F}{2} \sum_{\lambda} \lambda^{(d)} \sum_{i} C_i(\mu) \mathcal{O}_i(\mu)$

$$\sum_{\text{weak}} \sqrt{2} \sum_{p=u,c} \gamma_p \sum_j \mathcal{O}_j(\mu) \mathcal{O}_j(\mu)$$

C term $\mathcal{L}_{\text{weak}}^{b \to s}$ for $b \to s$ transition can be obtained from \mathcal{L}

- FCNC term $\mathcal{L}_{weak}^{b \to s}$ for $b \to s$ transition can be obtained from $\mathcal{L}_{weak}^{b \to d}$ by replacements:
- 1. $d \rightarrow s$ for the quark fields in all the operators $\mathcal{O}_j(\mu)$
- 2. $\lambda_d^{(p)} \equiv V_{pb}V_{pd}^* \rightarrow \lambda_s^{(p)} \equiv V_{pb}V_{ps}^*$ in the CKM factors

Operator Basis

- For most phenomenological applications, only operators $\mathcal{O}_j(\mu)$ of the dimension d=5 and d=6 are relevant
- The standard basis of four-fermion operators for the $b \rightarrow s$ transition
- Tree Operators

 $\mathcal{O}_1^{(p)} = (\bar{s}_\alpha p_\alpha)_{V-A} (\bar{p}_\beta b_\beta)_{V-A} \qquad \mathcal{O}_2^{(p)} = (\bar{s}_\alpha p_\beta)_{V-A} (\bar{p}_\beta b_\alpha)_{V-A}$

- QCD Penguins

$$\mathcal{O}_{3} = (\bar{s}_{\alpha}b_{\alpha})_{V-A} \sum_{q} (\bar{q}_{\beta}q_{\beta})_{V-A} \qquad \mathcal{O}_{4} = (\bar{s}_{\alpha}b_{\beta})_{V-A} \sum_{q} (\bar{q}_{\beta}q_{\alpha})_{V-A} \\ \mathcal{O}_{5} = (\bar{s}_{\alpha}b_{\alpha})_{V-A} \sum_{q} (\bar{q}_{\beta}q_{\beta})_{V+A} \qquad \mathcal{O}_{6} = (\bar{s}_{\alpha}b_{\beta})_{V-A} \sum_{q} (\bar{q}_{\beta}q_{\alpha})_{V+A}$$

- Electroweak Penguins

 $\mathcal{O}_{7} = (\bar{s}_{\alpha}b_{\alpha})_{V-A} \sum_{q} \frac{3e_{q}}{2} (\bar{q}_{\beta}q_{\beta})_{V+A} \qquad \mathcal{O}_{8} = (\bar{s}_{\alpha}b_{\beta})_{V-A} \sum_{q} \frac{3e_{q}}{2} (\bar{q}_{\beta}q_{\alpha})_{V+A} \\ \mathcal{O}_{9} = (\bar{s}_{\alpha}b_{\alpha})_{V-A} \sum_{q} \frac{3e_{q}}{2} (\bar{q}_{\beta}q_{\beta})_{V-A} \qquad \mathcal{O}_{10} = (\bar{s}_{\alpha}b_{\beta})_{V-A} \sum_{q} \frac{3e_{q}}{2} (\bar{q}_{\beta}q_{\alpha})_{V-A}$

• Electromagnetic and chromomagnetic dipole operators

 $\mathcal{O}_{7\gamma} = \frac{e}{8\pi^2} (\bar{s}_\alpha \sigma^{\mu\nu} (m_b R + m_s L) b_\alpha) F_{\mu\nu} \quad \mathcal{O}_{8g} = \frac{g_s}{8\pi^2} (\bar{s}_\alpha \sigma^{\mu\nu} (m_b R + m_s L) T^A_{\alpha\beta} b_\beta) G^A_{\mu\nu}$

Dubna, June 6-16, 2005 Helmholtz International Summer School "HEAVY QUARK PHYSICS"

Two-Body Nonleptonic B-Meson Decays – I (Theoretical Approaches) (page 9)

Wilson Coefficients

- Wilson coefficients $C_j(\mu)$ are determined by matching Green's functions of the effective theory and the SM (or its extension) at the electroweak scale $\mu_W = \mathcal{O}(M_W)$
- Application of the Renormalization Group Equation (RGE)

$$\mu \frac{d}{d\mu} C_j(\mu) = \gamma_{kj}(\mu) C_k(\mu)$$

allows to evolve $C_j(\mu)$ to the relevant low-energy scale $\mu_b = \mathcal{O}(m_b)$

- Large logarithms $\ln(\mu_W^2/\mu_b^2)$ are resummed from all orders of the perturbation series
- RGE general solution for the Wilson coefficients

 $C_j(\mu_b) = U_{jk}(\mu_b, \mu_W) C_k(\mu_W)$

involves the evolution matrix $U_{jk}(\mu_b, \mu_W)$ which depends on the strong gauge coupling ratio $\eta = \alpha_s(\mu_W)/\alpha_s(\mu_b)$

Dubna, June 6-16, 2005 Helmholtz International Summer School "HEAVY QUARK PHYSICS"

Two-Body Nonleptonic B-Meson Decays – I (Theoretical Approaches) (page 10)

Wilson Coefficients

• At the matching scale μ_W , Wilson coefficients can be calculated as a perturbative expansion

$$C_j(\mu_W) = \sum_{k=0}^{\infty} \left[\frac{\alpha_s(\mu_W)}{4\pi} \right]^k C_j^{(k)}(\mu_W)$$

• Neglecting QED effects, the Anomalous Dimension Matrix (ADM) $\gamma(\mu)$ has also a perturbative expansion in the strong coupling $\alpha_s(\mu)$

$$\gamma(\mu) = \sum_{k=0}^{\infty} \left[\frac{\alpha_s(\mu)}{4\pi} \right]^{k+1} \gamma^{(k)}$$

• Hierarchy in the Wilson coefficients exists; in the naive dimentional regularization scheme at the next-to-leading logarithmic (NLL) order

$$\begin{array}{ccccccccccccc} C_1(m_b) & 1.080 & C_3(m_b) & 0.011 & C_7(m_b) & 4.9 \times 10^{-4} \\ C_2(m_b) & -0.177 & C_4(m_b) & -0.033 & C_8(m_b) & 4.6 \times 10^{-4} \\ C_{7\gamma}(m_b) & -0.317 & C_5(m_b) & 0.010 & C_9(m_b) & -9.8 \times 10^{-3} \\ C_{8g}(m_b) & 0.149 & C_6(m_b) & -0.040 & C_{10}(m_b) & 1.9 \times 10^{-3} \end{array}$$

Dubna, June 6-16, 2005 Helmholtz International Summer School "HEAVY QUARK PHYSICS"

Two-Body Nonleptonic B-Meson Decays – I (Theoretical Approaches) (page 11)

CKM Factors

- A hierarchy of contributions is also possible due to CKM factors
- $b \rightarrow s$ transitions: in the improved Wolfenstein parameterization $\lambda_u^{(s)} = V_{ub}V_{us}^* \simeq A\lambda^4(\bar{\rho} - i\bar{\eta})$ $\lambda_c^{(s)} = V_{cb}V_{cs}^* \simeq A\lambda^2(1 - \lambda^2/2)$ $\lambda_t^{(s)} = V_{tb}V_{ts}^* \simeq -A\lambda^2(1 - i\lambda^2\bar{\eta})$
- The hierarchy in the CKM factors exists

 $\lambda_u^{(s)} \ll \lambda_c^{(s)}, \, \lambda_t^{(s)}$

• Applying the CKM unitarity relation

 $\lambda_u^{(s)} + \lambda_c^{(s)} + \lambda_t^{(s)} = 0$

and neglecting doubly Cabibbo-suppressed factor $\lambda_u^{(s)}$, the Lagrangian density is left with the unique overall CKM factor; usual choice is $\lambda_t^{(s)}$

Dubna, June 6-16, 2005 Helmholtz International Summer School "HEAVY QUARK PHYSICS"

Two-Body Nonleptonic B-Meson Decays – I (Theoretical Approaches) (page 12)

CKM Factors

- $b \rightarrow d$ transitions: in the improved Wolfenstein parameterization $\lambda_u^{(d)} = V_{ub}V_{ud}^* \simeq A\lambda^3(\bar{\rho} - i\bar{\eta})$ $\lambda_c^{(d)} = V_{cb}V_{cd}^* \simeq -A\lambda^3$ $\lambda_t^{(d)} = V_{tb}V_{td}^* \simeq A\lambda^3(1 - \bar{\rho} + i\bar{\eta})$
- \bullet No hierarchy: all factors are of the same order in λ
- One factor can be eliminated after the CKM unitarity relation is applied

$$\lambda_u^{(d)} + \lambda_c^{(d)} + \lambda_t^{(d)} = 0$$

• The (most popular) *c*- or *t*-convention for amplitudes is used in dependence on either $\lambda_t^{(d)}$ or $\lambda_c^{(d)}$ is eliminated

$$\begin{split} \mathcal{P}^{(EW)} &= \lambda_u^{(d)} \mathcal{P}_u^{(EW)} + \lambda_c^{(d)} \mathcal{P}_c^{(EW)} + \lambda_t^{(d)} \mathcal{P}_t^{(EW)} \\ &= \lambda_u^{(d)} \left[\mathcal{P}_u^{(EW)} - \mathcal{P}_t^{(EW)} \right] + \lambda_c^{(d)} \left[\mathcal{P}_c^{(EW)} - \mathcal{P}_t^{(EW)} \right] \quad \text{c-conv.} \\ &= \lambda_u^{(d)} \left[\mathcal{P}_u^{(EW)} - \mathcal{P}_c^{(EW)} \right] + \lambda_t^{(d)} \left[\mathcal{P}_t^{(EW)} - \mathcal{P}_c^{(EW)} \right] \quad \text{t-conv.} \end{split}$$

Dubna, June 6-16, 2005 Helmholtz International Summer School "HEAVY QUARK PHYSICS" Two-Body Nonleptonic B-Meson Decays – I (Theoretical Approaches) (page 13)

Factorization

Color-Transparancy Argument for *B*-Meson Decays Since b-quark decays into energetic light quarks (E > 1 GeV), the produced quark-antiquark pair does not have enough time to evolve to the real size hadronic entity, but remains a small size bound state with a correspondingly small chromomagnetic moment which suppress the QCD interaction between final state mesons [Bjorken; Brodsky and Lepage (1980)] 1. Naive Factorization Approach $b - > u\bar{u}d$ [Bauer, Stech, Wirbel (1985)] ,00000 Factorized part only was considered $\langle \pi^{-}(p_2)\pi^{+}(p_3)|(\bar{d}u)_{V-A}(\bar{u}b)_{V-A}|\bar{B}^0(p_1)\rangle =$ $M_2 = \pi^-(p_2)$ $\langle \pi^{-}(p_2)|(\bar{d}u)_{V-A}|0\rangle\langle \pi^{+}(p_3)|(\bar{u}b)_{V-A}|\bar{B}^{0}(p_1)\rangle$

 $f_{\pi} \otimes f^{B \to \pi}(q^2 = m_{\pi}^2)$

Dubna, June 6-16, 2005 Helmholtz International Summer School "HEAVY QUARK PHYSICS"

Two-Body Nonleptonic B-Meson Decays - I (Theoretical Approaches) (page 14)

- Hard-spectator corrections were left out
- No proof of the factorization was provided

Two-Body Nonleptonic B-Meson Decays – I (Theoretical Approaches) (page 15)

Helmholtz International Summer School "HEAVY QUARK PHYSICS"

B-Meson Decays - I (Theoretical Approaches) (page 16)

- QCD Factorization

Structure of $\mathcal{O}(\alpha_s)$ corrections:

I. Vertex corrections: $\langle M_1 | j_1^{(i)} | \bar{B} \rangle \Longrightarrow f^{B \to M_1}(q^2); \quad \langle M_2 | j_2^{(i)} | 0 \rangle \Longrightarrow f_{M_2} \phi_{M_2}(x)$ II. Hard-spectator corrections: $\langle M_1 | j_1^{(i)} | \bar{B} \rangle \Longrightarrow f_B \phi_B(\xi) f_{M_1} \phi_{M_1}(u); \quad \langle M_2 | j_2^{(i)} | 0 \rangle \Longrightarrow f_{M_2} \phi_{M_2}(x)$

Operator Q_{8g} contributes at $\mathcal{O}(\alpha_s)$ to hard-spectator corrections only

Factorization formula for $\overline{B} \to M_1 M_2$ hadronic matrix element is proven to $\mathcal{O}(\alpha_s)$ and leading twist; proof extended to all orders in α_s [Bauer et al.]

$$\langle M_1 M_2 | Q_i | \bar{B} \rangle = f^{B \to M_1} (m_{M_2}^2) \int_0^1 dx \, T_i^{\mathrm{I}}(x) \, f_{M_2} \phi_{M_2}(x)$$

+
$$\int_0^1 dx \int_0^1 du \int d\xi \, T_i^{\mathrm{II}}(x, u, \xi) \, f_{M_1} \phi_{M_1}(x) \, f_{M_2} \phi_{M_2}(u) \, f_B \phi_B(x)$$

- $T_i^{I}(x)$ and $T_i^{II}(x, u, \xi)$ are perturbatively calculable hard-scattering kernels
- Strong phases generates through Bander, Silverman, Soni (BSS) mechanism and hard-spectator corrections
- Annihilation contributions and Charm penguins are subleading in QCD Factorization

ξ

• Infrared logarithms appear at subleading powers; Breakdown of factorization

- Perturbative QCD Approach

Perturbative QCD Approach

Factorization theorem

• Example: $B \to M$ transition

- Form factor $F^{BM}(q^2)$ is in the kinematic region of fast-recoil meson; soft momentum $\sim \bar{\Lambda} = M_B m_b \sim 0.5 \text{ GeV}$ of spectator quark in B-meson; energetic spectator quark in the π -meson with momentum $\mathcal{O}(M_B)$; hard-gluon exchange is necessary in the leading order; off-shellness of the gluon $\sim \bar{\lambda}M_B$
- At higher orders, infinitely many gluon exchanges appear; such diagrams can generate infrared diverences: soft and collinear; they can be factorized into LCDAs of *B* and *M*-mesons, respectively; remaining finite part is the hard part
- Hard-scattering amplitudes are calculated in perturbation theory taking into account both longitudinal $\{x_i\}$ and transverse $\{\vec{k}_{Ti}\}$ momentum distributions
- Amplitude of non-leptonic B-meson decay

 $\langle M_1 M_2 | C_k(t) \mathcal{O}_k | \bar{B} \rangle = \int [dx] \int [d^2b] C_k(t) H_k(x_i, \vec{b}_i, t)$ $\times S_t(x_i) e^{-S(x_i, \vec{b}_i, t)} \Phi_B(x_1, \vec{b}_1) \Phi^*_{M_1}(x_2, \vec{b}_2) \Phi^*_{M_2}(x_3, \vec{b}_3)$

Dubna, June 6-16, 2005 Helmholtz International Summer School "HEAVY QUARK PHYSICS" Two-Body Nonleptonic B-Meson Decays – I (Theoretical Approaches) (page 18)

- Perturbative QCD Approach

End-point singularities

- Inclusion of k
 _{Ti} brings large double logarithms α_s ln²(k_{Ti}²/M_B²) through radiative corrections; should be resummed in order to improve perturbative calculations; k_T-resummation (Sudakov suppression) sets a distribution on k
 _T or, equvalently, on varaible b
 , e<sup>-S(x_i,b
 _i,t)</sup> = e<sup>-S_B(x₁,b
 ₁,t)</sup>e<sup>-S_{M1}(x₂,b
 ₂,t)</sup>e<sup>-S_{M2}(x₃,b
 ₃,t)</sup>, conjugate to k
 _T
- Off-shellness of internal particles $\mathcal{O}(\bar{\Lambda}M_B)$ even in the end-point regions; end-point singularitizes are smeared out
- Loop corrections to the weak decay vertex produce double logarithms $\alpha_s \ln^2 x_2$ where x_2 is momentum fraction associated with the spectator quark in the recoil meson
- These logarithms can be factored out from the hard part systematically and grouped into an exclusive quark jet function
- If the end-point region is important, these logarithms need to be resummed (threshold resummation), $S_t(x_i) \sim [x_i(1-x_i)]^{0.3-0.4}$; decrease faster than any power of x_2 as $x_2 \to 0$ and remove singularities
- If pQCD analysis is performed self-consistently, there exist no end-point singularity

Two-Body Nonleptonic B-Meson Decays – I (Theoretical Approaches) (page 19)

- Comparison pQCD and QCD-F Approaches with Data

- Dynamical enhancement mechanism in pQCD → Large branching fractions of PP, PV and VV modes [Keum, Li, Sanda]
- New sources of strong phases in pQCD \rightarrow Large direct CP violation [Keum, Li]

Branching fractions in $B^0 \to \pi^+\pi^-, \pi^0\pi^0$ and $B^0 \to \pi^+K^-$ modes (in units of 10^{-6})

Modes	BELLE	BABAR	pQCD	QCD-F (BBNS)
$\pi^+\pi^-$	$4.4 \pm 0.6 \pm 0.3$	$4.7 \pm 0.6 \pm 0.2$	$5.9 \div 11.0$	$4.3 \div 14.3$
$\pi^0\pi^0$	$2.5\pm0.5\pm0.3$	$1.17 \pm 0.32 \pm 0.10$	$0.33 \div 0.65$	$0.05 \div 0.75$
$\pi^+ K^-$	$18.5 \pm 1.0 \pm 0.7$	$17.9 \pm 0.9 \pm 0.7$	$12.6 \div 19.3$	$8.2 \div 31.2$

Direct CP asymmetry in $B^0 \to \pi^+\pi^-$ and $B^0 \to \pi^+K^-$ modes (%)

Modes	BELLE	BABAR	pQCD	QCD-F (BBNS)
$\pi^+\pi^-$	$58 \pm 15 \pm 7$	$9\pm15\pm4$	$16.0 \div 30.0$	$-19.8 \div 7.2$
$\pi^+ K^-$	$-10.1 \pm 2.5 \pm 0.5$	$-13.3 \pm 3.0 \pm 0.9$	$-13.0 \div -22.0$	$-5.4 \div +13.6$

Two-Body Nonleptonic B-Meson Decays – I (Theoretical Approaches) (page 20)

- SCET: Introduction

- Soft-Collinear Effective Theory (SCET) an effective theory for energetic hadrons, $E \gg \Lambda \sim \Lambda_{\rm QCD}$
- An attempt to provide a parameterization of power-suppressed long-distance effects in strong interactions
- For a large class of processes, principal difficulty arises from collinear modes, i.e., highly energetic but almost massless particles
- SCET key idea: Separate perturbative and non-perturbative scales at the level of operators
- SCET involves typically three scales: Q, $Q\lambda$ and $Q\lambda^2$, where Q is a hard scale and $\lambda \ll 1$ is an expansion parameter $\lambda = \sqrt{\Lambda/Q}$ or $\lambda = \Lambda/Q$ depending on the process
- Two formulations of SCET exist:
- 1. Hybrid momentum-position representation [Bauer, Pirjol, Stewart, Fleming, Luke]
- 2. Conventional position-space representation

[Beneke, Chapovsky, Diehl, Feldmann; Neubert, Hill]

- SCET: Introduction

Defining Effective Field Theories for $B\operatorname{-Meson}$ Decays

• $\mu^2 \sim m_W^2$: $A(B \to f) \sim C_i(\mu) \langle f | \mathcal{O}_i | \bar{B} \rangle$

- Matching Standard Model onto effective electroweak Hamiltonians; fluctuations $\sim m_t^2$, m_Z^2 , m_W^2 integrated out \implies Wilson coefficients $C_i(\mu)$
- Anomalous dimensions of \mathcal{O}_i calculated
- $-\,$ Effective theory evolves down to $\mu \sim m_b$ by RG method
- $\mu^2 \sim m_b^2$: $A(B \to f) \sim \int d\omega_i c_j(\omega_i, \mu) \langle f | Q_j^{(0)}(\omega_i) | \bar{B} \rangle + \dots$
- Matching effective electroweak Hamiltonians onto SCET_I; fluctuations $\sim m_b^2$ integrated out; SCET_I contains hard-collinear $p_{hc}^2 \sim m_b \Lambda$ and soft $p_s^2 \sim \Lambda^2$ fields \Longrightarrow Wilson coefficients $c_j(\omega_i, \mu)$
- Anomalous dimensions of $Q_j^{(0)}$, ... calculated
- Effective theory evolves down to $\mu \sim \sqrt{m_b \Lambda}$ by RG method

Dubna, June 6-16, 2005 Helmholtz International Summer School "HEAVY QUARK PHYSICS"

Two-Body Nonleptonic B-Meson Decays – I (Theoretical Approaches) (page 22)

- SCET: Introduction

Basic Idea of Factorization in $B\operatorname{-Meson}$ Decays

• $\mu^2 \sim m_b \Lambda$:

 $A(B \to f) \sim \int d\omega_i \int dk_m \, c_j(\omega_i) \, J_j(\omega_i, k_m) \, \langle f | \tilde{Q}_j^{(0)}(k_m) | \bar{B} \rangle + \dots$

- Matching SCET_I onto SCET_II; fluctuations $\sim m_b \Lambda$ integrated out
- WCs, $J_j(\omega_i, k_m)$, called jet functions, are either nonperturbative or perturbative expansion in $\alpha_s(m_b\Lambda)$
- Number of $J_j(\omega_i, k_m)$ is restricted by symmetry
- ${\rm SCET_{II}}$ operators and jet functions evolve down to $\mu\sim\Lambda$
- $\mu^2 \sim \Lambda^2:~\langle f| \tilde{Q}_j^{(0)}(k_m) |\bar{B}\rangle$ factorizes into non-perturbative objects
- Collinear and soft degrees of freedom decouple \Longrightarrow Factorization
- Matrix elements are identified with LCDAs, transition FFs, shape functions, etc

Two-Body Nonleptonic B-Meson Decays – I (Theoretical Approaches) (page 23)

SCET: Formalism SCET Formalism • SCET formulated in terms of Light-cone variables: $a_{\mu} = (n \cdot a) \frac{n_{\mu}}{2} + (\bar{n} \cdot a) \frac{n_{\mu}}{2} + a_{\mu}^{\perp} = (a^{+}, a^{-}, a^{\perp})$ $n^2 = \bar{n}^2 = 0, \quad (n \cdot \bar{n}) = 2, \quad (n \cdot a^{\perp}) = (\bar{n} \cdot a^{\perp}) = 0$ Energetic jets $\Lambda^2 \ll Q\Lambda \ll Q^2$ • SCET_I \rightarrow hard-collinear $p_{hc}^{\mu} \sim Q(\lambda^2, 1, \lambda) \quad p_{hc}^2 \sim Q\Lambda$ $p^{\mu}_{sh} \sim Q\left(\lambda, \lambda, \lambda\right) = p^2_{sh} \sim Q\Lambda \quad \lambda = \sqrt{\Lambda/Q}$ semi-hard $p_{s}^{\mu} \sim Q(\lambda^{2}, \lambda^{2}, \lambda^{2}) \quad p_{s}^{2} \sim \Lambda^{2}$ soft $\Lambda^2 \ll Q^2$ • SCET_{II} \rightarrow Energetic hadrons collinear $p_c^{\mu} \sim Q(\lambda'^2, 1, \lambda') \quad p_c^2 \sim \Lambda^2$ $p_s^{\mu} \sim Q(\lambda', \lambda', \lambda') \quad p_s^2 \sim \Lambda^2 \qquad \lambda' = \lambda^2 = \Lambda/Q$ soft

Dubna, June 6-16, 2005 Helmholtz International Summer School "HEAVY QUARK PHYSICS" Two-Body Nonleptonic B-Meson Decays – I (Theoretical Approaches) (page 24)

- SCET: Formalism

Lagrangian of the Effective Theory for B-Meson Decays

• Lagrangian consists of three parts:

$$\mathcal{L} = \mathcal{L}_{\mathrm{HQET}} + \mathcal{L}_{\mathrm{YM}} + \mathcal{L}_{\mathrm{SCET}}$$

• $\mathcal{L}_{\text{HQET}} = \bar{h}_v^{(b)} i(v \cdot D_s) h_v^{(b)}$ is the usual HQET Lagrangian

• $\mathcal{L}_{\rm YM}$ is the λ -expanded pure Yang-Mills Lagrangian

$$\mathcal{L}_{\rm YM} = -\frac{1}{2} \operatorname{Tr} \left(F_c^{\mu\nu} F_{\mu\nu}^c \right) - \frac{1}{2} \operatorname{Tr} \left(F_s^{\mu\nu} F_{\mu\nu}^s \right) + \mathcal{L}_{\rm YM}^{(1)} + O(\lambda^2)$$

• $\mathcal{L}_{\text{SCET}}$ is the light-quark Lagrangian $[\xi_n = (\eta \eta / 4) q_{c,n}]$

$$\mathcal{L}_{\text{SCET}} = \bar{\xi}_n \left[i(n \cdot D) + i D_c^{\perp} \frac{1}{i(\bar{n} \cdot D_c)} i D_c^{\perp} \right] \frac{\bar{\eta}}{2} \xi_n + \bar{q}_s i D_s q_s + \mathcal{L}_{\xi\xi}^{(1)} + \mathcal{L}_{\xiq}^{(1)} + O(\lambda^2)$$

Power-suppresed interaction terms are (W_c is a collinear Wilson line)

$$\mathcal{L}_{\xi\xi}^{(1)} = \bar{\xi}_n \left[x_{\perp}^{\mu} n^{\nu} W_c g F_{\mu\nu}^s W_c^{\dagger} \right] \frac{\vec{\eta}}{2} \xi_n, \qquad \mathcal{L}_{\xi q}^{(1)} = \bar{q}_s W_c^{\dagger} i D_c^{\perp} \xi_n - \bar{\xi}_n i \overleftarrow{D}_c^{\perp} W_c q_s$$

Dubna, June 6-16, 2005 Helmholtz International Summer School "HEAVY QUARK PHYSICS"

Two-Body Nonleptonic B-Meson Decays – I (Theoretical Approaches) (page 25)

Dubna, June 6-16, 2005 Helmholtz International Summer School "HEAVY QUARK PHYSICS"

Two-Body Nonleptonic B-Meson Decays – I (Theoretical Approaches) (page 26)

SCET: Formalism Matching of Heavy-to-Light Currents • Naively, $(\bar{q}\Gamma b) \rightarrow C(\mu) (\bar{\xi}_{n,v}^{(q)}\Gamma h_v^{(b)})$

• An arbitrary number of gluonic fields $(\bar{n} \cdot A_{n,q}) \sim \lambda^0$ can be included without power suppression

• In the position space, the leading-order heavy-to-light current in SCET for $Q\lambda < \mu < Q$ is

 $(\bar{q}\Gamma b) \to C(\mu) \, (\bar{\chi}_n^{(q)}\Gamma h_v^{(b)})$

• The jet field of collinear particles is introduced

$$\chi_n^{(q)}(0) \equiv W_c^{\dagger} \xi_n^{(q)}(0) = P \exp\left[-ig \int_{-\infty}^0 ds \ (\bar{n} \cdot A_c(s\bar{n}))\right] \xi_n^{(q)}(0)$$

Here, P denotes path ordering along the \bar{n} direction

- $\chi_n^{(q)}(0)$ is gauge-invariant under the collinear gauge transformations $\implies (\bar{\chi}_n^{(q)}\Gamma h_v^{(b)})$ is gauge-invariant under these transformations
- $(\bar{\chi}_n^{(q)}\Gamma h_v^{(b)})$ is also gauge-invariant under soft gauge transformations

Dubna, June 6-16, 2005 Helmholtz International Summer School "HEAVY QUARK PHYSICS"

Two-Body Nonleptonic B-Meson Decays – I (Theoretical Approaches) (page 27) - SCET: Formalism

• List of heavy-to-light currents (valid to all orders in α_s and LO in λ)

$$\begin{array}{ll} (\bar{q}b) &\to \ C^{(S)}(\mu) \big[\bar{\chi}_{n}^{(q)} h_{v}^{(b)} \big] \\ (\bar{q}\gamma_{5}b) &\to \ C^{(P)}(\mu) \big[\bar{\chi}_{n}^{(q)} \gamma_{5} h_{v}^{(b)} \big] \\ (\bar{q}\gamma_{\nu}b) &\to \ C_{1}^{(V)}(\mu) \big[\bar{\chi}_{n}^{(q)} \gamma_{\nu}^{\perp} h_{v}^{(b)} \big] + \Big\{ C_{2}^{(V)}(\mu) \, n_{\nu} + C_{3}^{(V)}(\mu) \, v_{\nu} \Big\} \big[\bar{\chi}_{n}^{(q)} h_{v}^{(b)} \big] \\ (\bar{q}\gamma_{\nu}\gamma_{5}b) &\to \ C_{1}^{(A)}(\mu) \, i\epsilon_{\nu\rho}^{\perp} \big[\bar{\chi}_{n}^{(q)} \gamma^{\perp\rho} h_{v}^{(b)} \big] + \Big\{ C_{2}^{(A)}(\mu) \, n_{\nu} + C_{3}^{(A)}(\mu) \, v_{\nu} \Big\} \big[\bar{\chi}_{n}^{(q)} \gamma_{5} h_{v}^{(b)} \big] \\ (\bar{q}i\sigma_{\nu\rho}b) &\to \ C_{1}^{(T)}(\mu) \, (v_{\nu}n_{\rho} - v_{\rho}n_{\nu}) \, \big[\bar{\chi}_{n}^{(q)} h_{v}^{(b)} \big] + C_{2}^{(T)}(\mu) \, i\epsilon_{\nu\rho}^{\perp} \big[\bar{\chi}_{n}^{(q)} \gamma_{5} h_{v}^{(b)} \big] \\ &+ \Big\{ C_{3}^{(T)}(\mu) \, [n_{\nu}g_{\rho\lambda} - n_{\rho}g_{\nu\lambda}] + C_{4}^{(T)}(\mu) \, [v_{\nu}g_{\rho\lambda} - v_{\rho}g_{\nu\lambda}] \Big\} \big[\bar{\chi}_{n}^{(q)} \gamma^{\perp\lambda} h_{v}^{(b)} \big]$$

Here, $\gamma^{\perp}_{\mu} = \gamma_{\mu} - n^{\mu} \vec{n}/2 - \bar{n}^{\mu} n/2$ and $\epsilon^{\perp}_{\mu\nu} = \epsilon_{\mu\nu\rho\sigma} v^{\rho} n^{\sigma}$

• At tree level, matching gives

$$C^{(S)}(m_b) = C^{(P)}(m_b) = C^{(V)}_{1,2}(m_b) = C^{(A)}_{1,2}(m_b) = C^{(T)}_{1,2,3}(m_b) = 1,$$
$$C^{(V)}_3(m_b) = C^{(A)}_3(m_b) = C^{(T)}_4(m_b) = 0$$

• Matching at one-loop level is also done [Bauer et al., hep-ph/0011336]

Dubna, June 6-16, 2005 Helmholtz International Summer School "HEAVY QUARK PHYSICS"

Two-Body Nonleptonic B-Meson Decays – I (Theoretical Approaches) (page 28)

SCET: Heavy-to-Light Transitions -

$B \to M$ Transition Form Factors

Proof of the factorization in $B \rightarrow M$ [Bauer, Pirjol, Stewart, hep-ph/0211069] [Beneke, Feldmann, hep-ph/0311335] [Becher, Hill, Lange, Neubert, hep-ph/0211069]

Result at leading-order in Λ/Q , where $Q = \{m_B, E_M\}$, and all orders in α_s Pseudoscalar FF: f_+ , f_0 , f_T Vector FF: V, A_0 , A_1 , A_2 , T_1 , T_2 , T_3 $F(E) = F^{NF}(E) + F^F(E) = C(m_b, E) \zeta^{BM}(Q\Lambda, \Lambda^2) + \int_0^1 dz T(z, E, m_b) \zeta_J^{BM}(z, E)$ If jet function $J(z, u, k^+, E)$ is known, $\zeta_J^{BM}(z, E)$ can be estimated by $\zeta_J^{BM}(z, E) = \frac{f_B f_M m_B}{4E^2} \int_0^1 du \int_0^\infty dk^+ J(z, u, k^+, E) \phi_M(u) \phi_B^+(k^+)$

Recent progress:

- one-loop matching: $C(m_b, E)$, $T(z, E, m_b)$, $J(z, u, k^+, E)$
- leading-logarithm resummation

Dubna, June 6-16, 2005 Helmholtz International Summer School "HEAVY QUARK PHYSICS"

Two-Body Nonleptonic B-Meson Decays – I (Theoretical Approaches) (page 29)

SCET: Heavy-to-Light Transitions

 $B \rightarrow M_1 M_2$ Factorization in SCET

[Chey, Kim, hep-ph/0301262] [Bauer, Pirjol, Rothstein, Stewart, hep-ph/0401188]

 $\Lambda^2 \ll Q\lambda \ll Q^2$, $Q = \{m_b, E, m_c\}$

- form-factor and hard-spectator terms are formally the same as in QCD Factorization Approach
- long-distance charming-penguin contribution appears in LO

Dubna, June 6-16, 2005 Helmholtz International Summer School "HEAVY QUARK PHYSICS"

Two-Body Nonleptonic B-Meson Decays – I (Theoretical Approaches) (page 30)

$$SCET: Heavy-to-Light Transitions$$

$$Operators in $B \to \pi\pi$ Decay
Effective weak Hamiltonian for $b \to d$ transition & QCD Lagrangian
$$\mathcal{H}_{W}^{b \to d} = \frac{G_F}{\sqrt{2}} \sum_{p=u,c} \lambda_p^{(d)} \left(C_1 \mathcal{O}_1^{(p)} + C_2 \mathcal{O}_2^{(p)} + \sum_{i=3}^{10} C_i \mathcal{O}_i + C_{7\gamma} \mathcal{O}_{7\gamma} + C_{8g} \mathcal{O}_{8g} \right)$$
SCET₁ Hamiltonian, fluctuations $\sim m_b$ are integrated out
$$\mathcal{H}_{W}^{b \to d} = \frac{2G_F}{\sqrt{2}} \left\{ \sum_{i=1}^6 \sum_{j=1}^3 \int d\omega_j c_i^{(d)}(\omega_j) \mathcal{Q}_{id}^{(0)}(\omega_j) + \sum_{i=1}^8 \sum_{j=1}^4 \int d\omega_j b_i^{(d)}(\omega_j) \mathcal{Q}_{id}^{(1)}(\omega_j) + \mathcal{Q}_{\bar{c}c} + \dots \right\}$$

$$Q_{1d}^{(0)}(\omega_j) = [\bar{u}_{n,\omega_1} \vec{\eta} P_L b_v] [\bar{d}_{\bar{n},\omega_2} \# P_L u_{\bar{n},\omega_3}], \dots$$

$$Q_{1d}^{(1)}(\omega_j) = \frac{-2}{m_b} [\bar{u}_{n,\omega_1} ig \mathcal{B}_{n,\omega_4}^{\perp \mu} P_L b_v] [\bar{d}_{\bar{n},\omega_2} \# \gamma_{\mu}^{\perp} P_L u_{\bar{n},\omega_3}], \dots$$$$

Dubna, June 6-16, 2005 Helmholtz International Summer School "HEAVY QUARK PHYSICS" Two-Body Nonleptonic B-Meson Decays – I (Theoretical Approaches) (page 31)

SCET: Heavy-to-Light Transitions

$$B \rightarrow M_1 M_2 \text{ Factorization Formula in SECT}_{II}$$
[Bauer et al., hep-ph/0401188]

$$A(B \rightarrow M_1 M_2) = A_{\bar{c}c}^{M_1 M_2} + \frac{G_F}{\sqrt{2}} m_B^2 \int_0^1 du \left\{ f_{M_2} \phi_{M_2}(u) \left[\zeta^{BM_1} T_{2\zeta}(u) + \frac{f_B f_{M_1}}{m_B} \int_0^1 dz \int_0^1 dx \int_0^\infty dk^+ T_{2J}(z, u) J(z, x, k^+) \phi_{M_1}(x) \phi_B^+(k^+) \right] + (1 \leftrightarrow 2) \right\}$$
SCET_{II} results the same jet function $J(z, x, k^+)$ as in $B \rightarrow M$ transition

New non-perturbative result in $\alpha_s(\sqrt{Q\Lambda})$, where $\zeta^{BM} \sim \zeta^{BM}_J(z) \sim (\Lambda/Q)^{3/2}$

$$A(B \to M_1 M_2) = A_{\bar{c}c}^{M_1 M_2} + \frac{G_F}{\sqrt{2}} m_B^2 \int_0^1 du \left\{ f_{M_2} \phi_{M_2}(u) \right\}$$
$$\times \left[\zeta^{BM_1} T_{2\zeta}(u) + \int_0^1 dz \, \zeta_J^{BM_1}(z) \, T_{2J}(u,z) \right] + (1 \leftrightarrow 2) \right\}$$

For comparison, QCD Factorization Approach gives

$$A(B \to M_1 M_2) \sim \int_0^1 du \left\{ F^{B \to M_1}(0) T^{\mathrm{I}}_{M_2}(u) f_{M_2} \phi_{M_2}(u) + F^{B \to M_2}(0) T^{\mathrm{I}}_{M_1}(u) f_{M_1} \phi_{M_1}(u) \right\} \\ + \int_0^1 du \int_0^1 dx \int_0^\infty dk^+ T^{\mathrm{II}}(u, x, k^+) f_{M_1} \phi_{M_1}(u) f_{M_2} \phi_{M_2}(x) f_B \phi_B^+(k^+)$$

Dubna, June 6-16, 2005 Helmholtz International Summer School "HEAVY QUARK PHYSICS"

Two-Body Nonleptonic B-Meson Decays – I (Theoretical Approaches) (page 32)

SCET: Heavy-to-Light Transitions $B \rightarrow \pi \pi$ Decay Amplitudes [Bauer et al., hep-ph/0401188] In terms of SCET Wilson coefficients $c_i^{(d)}(u)$ and $b_i^{(d)}(u, z)$ $A(B^{-} \to \pi^{-}\pi^{0}) = \frac{G_{F}}{2} m_{B}^{2} \int_{0}^{1} du f_{\pi} \phi_{\pi}(u) \left\{ \zeta^{B\pi} \left[c_{1}^{(d)}(u) + c_{2}^{(d)}(u) - c_{3}^{(d)}(u) \right] \right\}$ $+ \int_{2}^{1} dz \, \zeta_{J}^{B\pi}(z) \left[b_{1}^{(d)}(u,z) + b_{2}^{(d)}(u,z) - b_{3}^{(d)}(u,z) \right] \Big\}$ $A(\bar{B}^0 \to \pi^+ \pi^-) = \frac{G_F}{\sqrt{2}} m_B^2 \int_0^1 du \, f_\pi \phi_\pi(u) \bigg\{ \zeta^{B\pi} \left[c_1^{(d)}(u) + c_4^{(d)}(u) \right] \bigg\}$ $+ \int_{0}^{1} dz \, \zeta_{J}^{B\pi}(z) \left[b_{1}^{(d)}(u,z) + b_{4}^{(d)}(u,z) \right] \left\} + \lambda_{c}^{(d)} A_{\bar{c}c}^{B\pi} \right]$ $A(\bar{B}^0 \to \pi^0 \pi^0) = \frac{G_F}{\sqrt{2}} m_B^2 \int_0^1 du \, f_\pi \phi_\pi(u) \left\{ \zeta^{B\pi} \left[c_2^{(d)}(u) - c_3^{(d)}(u) - c_4^{(d)}(u) \right] \right\}$ $+ \int_{0}^{1} dz \, \zeta_{J}^{B\pi}(z) \left[b_{2}^{(d)}(u,z) - b_{3}^{(d)}(u,z) - b_{4}^{(d)}(u,z) \right] \left\{ -\lambda_{c}^{(d)} A_{\bar{c}c}^{B\pi} \right\}$ In agreement with isospin relation $\sqrt{2} A(B^- \to \pi^- \pi^0) = A(\bar{B}^0 \to \pi^+ \pi^-) + A(\bar{B}^0 \to \pi^0 \pi^0)$

Dubna, June 6-16, 2005 Helmholtz International Summer School "HEAVY QUARK PHYSICS"

Two-Body Nonleptonic B-Meson Decays – I (Theoretical Approaches) (page 33)

SCET: List of Applications —

Processes	[Stewart, hep-ph/0308185]	
Process	Degrees of Freedom (p^2)	NonPert. Functions
$B^0 ightarrow D^+ \pi^-$,	c (Λ^2) , s (Λ^2)	$\xi(w)$, $\phi_{\pi}(u)$
$B^0 ightarrow D^0 \pi^0$,	hc $(Q\lambda)$, c (Λ^2) , s (Λ^2)	$S(k_j^+)$, $\phi_\pi(u)$
$B \to X_s^{\mathrm{end}} \gamma$	hc $(Q\lambda)$, s (Λ^2)	$f(k^+)$
$B \to X_u^{\mathrm{end}} \ell \nu_\ell$	hc $(Q\lambda)$, s (Λ^2)	$f(k^+)$
$B \to \gamma \ell \nu_\ell$	hc $(Q\lambda)$, s (Λ^2)	$\phi_B(k^+)$
$B \to \gamma \gamma$	hc $(Q\lambda)$, s (Λ^2)	$\phi_B(k^+)$
$B o \pi \ell u_\ell$,	hc $(Q\lambda)$, s (Λ^2) , c (Λ^2)	$\phi_B(k^+)$, $\phi_\pi(u)$, $\zeta^{B\pi}(E)$
$B o \pi \pi$,	hc $(Q\lambda)$, s (Λ^2) , c (Λ^2)	$\phi_B(k^+)$, $\phi_\pi(u)$, $\zeta^{B\pi}(E)$
$B o K^* \gamma$,	hc $(Q\lambda)$, s (Λ^2) , c (Λ^2)	$\phi_B(k^+)$, $\phi_{K^*}(u)$, $\zeta_{\perp}^{(K^*)}(E)$
$e^-p \to e^-X$	c (Λ^2)	$f_{i/p}(\xi)$, $f_{g/p}(\xi)$
$e^-\gamma \to e^-\pi^0$	c (Λ^2) , s (Λ^2)	$\phi_{\pi}(u)$
$\gamma^*M \to M'$	c (Λ^2) , s (Λ^2)	$\phi_M(u)$, $\phi_{M'}(u')$
$e^+e^- \to J/\psi X^{\text{end}}$	hc ($Q\Lambda$), s (Λ^2)	$S^{(8,n)}(k^+)$
$\Upsilon \to X^{\mathrm{end}} \gamma$	hc ($Q\Lambda$), s (Λ^2)	$S^{(8,n)}(k^+)$

Dubna, June 6-16, 2005 Helmholtz International Summer School "HEAVY QUARK PHYSICS" Two-Body Nonleptonic B-Meson Decays – I (Theoretical Approaches) (page 34) - Summary

Summary – I

- Experiment requires a deeper understanding of QCD dynamics in hadronic *B*-meson decays
- Several theoretical approaches (QCD-F, pQCD, SCET, etc) are proposed and experimentally tested
- SCET the emerging QCD technology, hold the promise to provide a better theoretical description of *B*-meson hadronic decays than existing approaches, remarkable progress and activity in evidence

Two-Body Nonleptonic B-Meson Decays – I (Theoretical Approaches) (page 35)