Heavy baryons in quantum field approaches

Valery Lyubovitskij

Institute of Theoretical Physics, Tübingen University

"HQP05", 6 June 2005, Dubna (Russia)

Plan

- Historical overview
 - ★ Experimental status and classification
 - ★ Basic trends in theory:
 - $m_Q \rightarrow \infty$ limit in QCD
 - Heavy Quark Effective Theory (HQET)
 - Single and double heavy baryons in HQET
 - Heavy Hadron Chiral Perturbation Theory (HHChPT)
 - Heavy baryons at Large N_c
- Three-quark model for heavy baryons
 - ⋆ Framework
 - ⋆ Application to weak, em and strong decays
 - ★ Magnetic moments of single and double heavy baryons
- Summary

- ★ Discovery of J/Ψ at BNL and SLAC (1974)
- ★ Charmed baryons Λ_c^+ , Σ_c^{++} at BNL (1975), FNAL (1976)
- ★ Charmed baryons confirmed (masses, decays) at FNAL (1979)
- ★ Further experimental progress [Λ_c^+ baryon at SLAC]: e^+e^- annihilation (1979), semileptonic decays (1982)
- ★ Discovery of Υ at FNAL (1977)
- ★ Bottom baryon Λ_b^0 at FNAL (1981,1986), at CERN (since 1992)
- ★ Doubly charmed baryons Ξ_{cc}^+ at FNAL (2002)
- Masses, lifetimes, decay form factors and widths, asymmetry parameters: BNL, CERN, CLEO, DESY, FNAL, KEK, IHEP

★ Algebraic schemes, 3q and qD models:

- classification

- mass formulas
- magnetic moments
- sum rules for weak decay amplitudes

A.De Rujula, H.Georgi, S.Glashow, PRD12 (1975) 147M.Gaillard, B.Lee, J.Rosner, RMP47 (1975) 277D.Lichtenberg, PRD15 (1977) 345J.Körner, G.Kramer, J.Willrodt, ZPC2 (1979) 117

- ★ SU(5) classification of baryon states $5 \otimes 5 \otimes 5 = 10_A \oplus 40_M \oplus 40_M \oplus 35_S$
 - $F^{[mnk]}$ antisymmetric 10-plet $J^P = \frac{1}{2}^-$
 - $B^{m[nk]}$ two mixed 40-plets $J^P = \frac{1}{2}^+$
 - $D^{\{mnk\}}$ symmetric 35-plet $J^P = \frac{3}{2}^+$

Light Baryons 19 = 1 [singlet] + 8 [octet] + 10 [decuplet]

 $\star \ F^{[123]} = \Lambda^{*0}$

★
$$B^{1[23]} = \frac{\Sigma^{0}}{\sqrt{2}} + \frac{\Lambda^{0}}{\sqrt{6}}$$
 $B^{2[23]} = \Sigma^{-}$ $B^{3[23]} = \Xi^{-}$
 $B^{1[13]} = \Sigma^{+}$ $B^{2[31]} = -\frac{\Sigma^{0}}{\sqrt{2}} + \frac{\Lambda^{0}}{\sqrt{6}}$ $B^{3[13]} = \Xi^{0}$
 $B^{1[12]} = p$ $B^{2[12]} = n$ $B^{3[12]} = -\frac{2\Lambda^{0}}{\sqrt{6}}$

$$\begin{array}{ll} \star & D^{\{111\}} = \Delta^{++} & D^{\{112\}} = \frac{\Delta^{+}}{\sqrt{3}} & D^{\{122\}} = \frac{\Delta^{0}}{\sqrt{3}} & D^{\{222\}} = \Delta^{-} \\ & D^{\{113\}} = \frac{\Sigma^{*+}}{\sqrt{3}} & D^{\{123\}} = \frac{\Sigma^{*0}}{\sqrt{6}} & D^{\{223\}} = \frac{\Sigma^{*-}}{\sqrt{3}} \\ & D^{\{133\}} = \frac{\Xi^{*0}}{\sqrt{3}} & D^{\{233\}} = \frac{\Xi^{*-}}{\sqrt{3}} & D^{\{333\}} = \Omega^{-} \end{array}$$

Single Charm Baryons 18 = 3 + 9 + 6

*
$$F^{[124]} = \Lambda_c^{*+}$$
 $F^{[134]} = \Lambda_{cs}^{*+}$ $F^{[234]} = \Lambda_{cs}^{*0}$

$$\star D^{\{114\}} = \frac{\Sigma_c^{*++}}{\sqrt{3}} \qquad D^{\{124\}} = \frac{\Sigma_c^{*+}}{\sqrt{6}} \qquad D^{\{224\}} = \frac{\Sigma_c^{*0}}{\sqrt{3}} \\ D^{\{134\}} = \frac{\Xi_c^{*+}}{\sqrt{6}} \qquad D^{\{234\}} = \frac{\Xi_c^{*0}}{\sqrt{6}} \qquad D^{\{334\}} = \frac{\Omega_c^{*0}}{\sqrt{3}} \\ D^{\{134\}} = \frac{\Omega_c^{*0}}{\sqrt$$

Single Bottom Baryons18 = 3 + 9 + 6

*
$$F^{[125]} = \Lambda_b^{*0}$$
 $F^{[135]} = \Lambda_{bs}^{*0}$ $F^{[235]} = \Lambda_{bs}^{*-}$

$$\begin{array}{ll} \star & B^{1}[25] = \frac{\Sigma_{b}^{0}}{\sqrt{2}} + \frac{\Lambda_{b}^{0}}{\sqrt{6}} & B^{2}[51] = -\frac{\Sigma_{b}^{0}}{\sqrt{2}} + \frac{\Lambda_{b}^{0}}{\sqrt{6}} & B^{5}[12] = -\frac{2\Lambda_{b}^{0}}{\sqrt{6}} \\ & B^{3}[15] = \frac{\Xi_{b}^{\prime 0}}{\sqrt{2}} + \frac{\Xi_{b}^{0}}{\sqrt{6}} & B^{1}[53] = -\frac{\Xi_{b}^{\prime 0}}{\sqrt{2}} + \frac{\Xi_{b}^{0}}{\sqrt{6}} & B^{5}[31] = -\frac{2\Xi_{b}^{0}}{\sqrt{6}} \\ & B^{3}[25] = \frac{\Xi_{b}^{\prime -}}{\sqrt{2}} + \frac{\Xi_{b}^{-}}{\sqrt{6}} & B^{2}[53] = -\frac{\Xi_{b}^{\prime -}}{\sqrt{2}} + \frac{\Xi_{b}^{-}}{\sqrt{6}} & B^{5}[32] = -\frac{2\Xi_{b}^{-}}{\sqrt{6}} \\ & B^{1}[15] = \Sigma_{b}^{+} & B^{2}[25] = \Sigma_{b}^{-} & B^{3}[35] = \Omega_{b}^{-} \end{array}$$

$$\star D^{\{115\}} = \frac{\Sigma_b^{*+}}{\sqrt{3}} \qquad D^{\{125\}} = \frac{\Sigma_b^{*0}}{\sqrt{6}} \qquad D^{\{225\}} = \frac{\Sigma_b^{*-}}{\sqrt{3}} \\ D^{\{135\}} = \frac{\Xi_b^{*0}}{\sqrt{6}} \qquad D^{\{235\}} = \frac{\Xi_b^{*-}}{\sqrt{6}} \qquad D^{\{335\}} = \frac{\Omega_b^{*-}}{\sqrt{3}} \\ D^{\{35\}} = \frac{\Omega_b^{*-}}{\sqrt{3}} \\ D^{\{35\}} = \frac{\Omega_b^{*-}}{\sqrt{3}} \\ D^{\{35\}} = \frac{\Omega_b^{*-}}{\sqrt{3}} \\ D^{\{15\}} = \frac{\Omega_b^{*-}}{$$

Double Charm Baryons 6 = 3 + 3

- ★ $B^{4[41]} = \Xi_{cc}^{++}$ $B^{4[42]} = \Xi_{cc}^{+}$ $B^{4[43]} = \Omega_{cc}^{+}$
- ★ $D^{\{144\}} = \frac{\Xi_{cc}^{*++}}{\sqrt{3}}$ $D^{\{244\}} = \frac{\Xi_{cc}^{*+}}{\sqrt{3}}$ $D^{\{344\}} = \frac{\Omega_{cc}^{*+}}{\sqrt{3}}$

Double Bottom Baryons6 = 3 + 3

- ★ $B^{5[51]} = \Xi_{bb}^{0}$ $B^{5[52]} = \Xi_{bb}^{-}$ $B^{5[53]} = \Omega_{bb}^{-}$
- ★ $D^{\{155\}} = \frac{\Xi_{bb}^{*0}}{\sqrt{3}}$ $D^{\{255\}} = \frac{\Xi_{bb}^{*-}}{\sqrt{3}}$ $D^{\{355\}} = \frac{\Omega_{bb}^{*-}}{\sqrt{3}}$

Bottom-Charm Baryons | 12 = 3 + 6 + 3

$$\star \ F^{[145]} = \Lambda_{cb}^{*+}$$

★
$$B^{1[45]} = \frac{\Xi_{cb}^{\prime +}}{\sqrt{2}} + \frac{\Xi_{cb}^{+}}{\sqrt{6}}$$

 $B^{2[45]} = \frac{\Xi_{cb}^{\prime 0}}{\sqrt{2}} + \frac{\Xi_{cb}^{0}}{\sqrt{6}}$
 $B^{3[45]} = \frac{\Omega_{cb}^{\prime 0}}{\sqrt{2}} + \frac{\Omega_{cb}^{0}}{\sqrt{6}}$

★ $D^{\{145\}} = \frac{\Xi_{cb}^{*+}}{\sqrt{6}}$

$$F^{[245]} = \Lambda_{cb}^{*0}$$
$$B^{4[51]} = -\frac{\Xi_{bc}^{\prime +}}{\sqrt{2}} + \frac{\Xi_{cb}^{+}}{\sqrt{6}}$$
$$B^{4[52]} = -\frac{\Xi_{cb}^{\prime 0}}{\sqrt{2}} + \frac{\Xi_{cb}^{0}}{\sqrt{6}}$$

$$B^{4[53]} = -\frac{\Omega_{bc}^{\prime 0}}{\sqrt{2}} + \frac{\Omega_{cb}^{0}}{\sqrt{6}}$$

$$F^{[345]} = \Lambda_{cbs}^{*0}$$
$$B^{5[14]} = -\frac{2\Xi_{cb}^{+}}{\sqrt{6}}$$
$$B^{5[24]} = -\frac{2\Xi_{cb}^{0}}{\sqrt{6}}$$
$$B^{5[34]} = -\frac{2\Omega_{cb}^{0}}{\sqrt{6}}$$

$$D^{\{245\}} = \frac{\Xi_{cb}^{*0}}{\sqrt{6}} \qquad \qquad D^{\{345\}} = \frac{\Omega_{cb}^{*0}}{\sqrt{6}}$$

Triple Heavy Baryons

$$6 = 2 + 4$$
 \star
 $B^{4[45]} = \Omega_{bcc}^+$
 $B^{5[45]} = \Omega_{bbc}^0$
 \star
 $D^{\{444\}} = \Omega_{ccc}^{*++}$
 $D^{\{445\}} = \frac{\Omega_{ccb}^{*+}}{\sqrt{3}}$
 $D^{\{455\}} = \frac{\Omega_{cbb}^{*0}}{\sqrt{3}}$
 $D^{\{555\}} = \Omega_{bbb}^{*-}$

★ J.Körner, M.Krämer, D.Pirjol, PPNP33 (1994) 787

Notation	Content	J^P	SU(3)	(I, I_3)	S	С	Mass (GeV)
Λ_c^+	c[ud]	$1/2^{+}$	3*	(0, 0)	0	1	2.285
Ξ_c^+	c[su]	$1/2^{+}$	3^*	(1/2, 1/2)	-1	1	2.466
Ξ_c^0	c[sd]	$1/2^+$	3^*	(1/2, -1/2)	-1	1	2.472
Σ_c^{++}	cuu	$1/2^{+}$	6	(1, 1)	0	1	2.453
Σ_c^+	$c\{ud\}$	$1/2^{+}$	6	(1, 0)	0	1	2.451
Σ_c^0	cdd	$1/2^+$	6	(1, -1)	0	1	2.452
$\Xi_c'^+$	$c\{su\}$	$1/2^{+}$	6	(1/2, 1/2)	-1	1	2.574
$\Xi_c^{\prime 0}$	$c\{sd\}$	$1/2^+$	6	(1/2, -1/2)	-1	1	2.579
$\Omega_c^{ar 0}$	CSS	$1/2^{+}$	6	(0, 0)	-2	1	2.698
Σ_c^{*++}	cuu	$3/2^{+}$	6	(1, 1)	0	1	2.519
Σ_c^{*+}	cud	$3/2^{+}$	6	(1, 0)	0	1	2.516
Σ_c^{*0}	cdd	$3/2^+$	6	(1, -1)	0	1	2.518
Ξ^{*+}	cus	$3/2^+$	6	(1/2, 1/2)	-1	1	2.647
Ξ^{*0}	cds	$3/2^{+}$	6	(1/2, -1/2)	-1	1	2.645
Ω_c^{*0}	CSS	$3/2^+$	6	(0, 0)	-2	1	2.74

Charm $1/2^+$ and $3/2^+$ baryons

Notation	Content	J^P	SU(3)	(I, I_3)	S	В	Mass (GeV)
Λ_b	b[ud]	$1/2^{+}$	3*	(0, 0)	0	1	5.624
Ξ_b^0	b[su]	$1/2^{+}$	3^*	(1/2, 1/2)	-1	1	5.80
Ξ_b^{-}	b[sd]	$1/2^{+}$	3^*	(1/2, -1/2)	-1	1	5.80
Σ_{h}^{+}	buu	$1/2^{+}$	6	(1, 1)	0	1	5.82
Σ_{b}^{0}	$b\{ud\}$	$1/2^{+}$	6	(1, 0)	0	1	5.82
Σ_{h}^{\bullet}	bdd	$1/2^{+}$	6	(1, -1)	0	1	5.82
$\Xi_{b}^{\prime 0}$	$b\{su\}$	$1/2^{+}$	6	(1/2, 1/2)	-1	1	5.94
$\Xi_{b}^{\check{\prime}-}$	$b\{sd\}$	$1/2^{+}$	6	(1/2, -1/2)	-1	1	5.94
Ω_b^{-}	bss	$1/2^{+}$	6	(0, 0)	-2	1	6.04
Σ_{h}^{*+}	buu	$3/2^{+}$	6	(1, 1)	0	1	5.84
Σ_{b}^{*0}	bud	$3/2^+$	6	(1, 0)	0	1	5.84
Σ_{h}^{*-}	bdd	$3/2^{+}$	6	(1, -1)	0	1	5.84
$\Xi_{b}^{st 0}$	bus	$3/2^+$	6	(1/2, 1/2)	-1	1	5.94
$\Xi_{b}^{\check{*}-}$	bds	$3/2^{+}$	6	(1/2, -1/2)	-1	1	5.94
$\Omega_b^{\check{*}-}$	bss	$3/2^{+}$	6	(0, 0)	-2	1	6.06

Bottom $1/2^+$ and $3/2^+$ baryons

★ V.Kiselev, A.Likhoded, Phys.Usp.45 (2002) 455

Notation	Content	J^P	Ι	S	С	В	Mass (GeV)
Ξ_{cc}	$q\{cc\}$	$1/2^{+}$	1/2	0	2	0	3.519
Ω_{cc}^+	$s\{cc\}$	$1/2^{+}$	0	-1	2	0	3.59
Ξ_{cc}^*	$q\{cc\}$	$3/2^+$	1/2	0	2	0	3.61
Ω_{cc}^{*+}	$s\{cc\}$	$3/2^{+}$	0	-1	2	0	3.69
Ξ_{bb}	$q\{bb\}$	$1/2^+$	1/2	0	0	2	10.09
Ω_{bb}^{-}	$s\{bb\}$	$1/2^{+}$	0	-1	0	2	10.18
Ξ_{bb}^{*}	$q\{bb\}$	$3/2^+$	1/2	0	0	2	10.13
Ω_{bb}^{*-}	$s\{bb\}$	$3/2^{+}$	0	-1	0	2	10.20
Ξ_{cb}^{oo}	q[cb]	$1/2^+$	1/2	0	1	1	6.82
Ω^0_{ch}	s[cb]	$1/2^{+}$	0	-1	1	1	6.91
$\Xi_{cb}^{\prime \circ}$	$q\{cb\}$	$1/2^{+}$	1/2	0	1	1	6.85
$\Omega_{cb}^{\prime 0}$	$s\{cb\}$	$1/2^{+}$	0	-1	1	1	6.93
$\Xi_{cb}^{\check{*}\check{o}}$	$q\{cb\}$	$3/2^{+}$	1/2	0	1	1	6.90
$\Omega_{ch}^{\check{*}\check{0}}$	$s\{cb\}$	$3/2^{+}$	0	-1	1	1	6.99

Double heavy $1/2^+$ and $3/2^+$ baryons [q = u or d]

Triple heavy $1/2^+$ and $3/2^+$ baryons

Notation	Content	J^P	С	В	Mass (GeV)
Ω_{ccb}^+	ccb	$1/2^{+}$	2	1	8.0
Ω_{cbb}^{0}	cbb	$1/2^{+}$	1	2	11.5
Ω_{ccc}^{*++}	ccc	$3/2^{+}$	3	0	4.73
Ω_{ccb}^{*+}	ccb	$3/2^{+}$	2	1	8.0
Ω^{*0}_{cbb}	cbb	$3/2^{+}$	1	2	11.5
Ω_{bbb}^{*-}	bbb	$3/2^{+}$	0	3	15.0

★ QCD simplifies in the $m_Q \rightarrow \infty$ limit

★ E.Shuryak, PLB93 (1980) 134, NPB198 (1982) 83

Q in hadron c.m., static center \rightarrow proton in H-atom; masses, spin and em splittings of D, B, Σ_c and Λ_c ; 3q currents of heavy baryons

★ E.Eichten, F.Feinberg, PRD23 (1981) 2724

 $1/m_Q$ expansion of heavy quark propagator; spin-dependent forces for $Q\bar{q}$ systems are governed by m_q

- W.Caswell, G.Lepage, PLB167 (1986) 437
 G.Lepage, B.Thacker, NPB Proc. Suppl. 4 (1988) 504
 Nonrelativistic effective Lagrangians for bound-state systems
- ★ M.Voloshin, M.Shifman, SJNP45 (1987) 292 H.Politzer, M.Wise, PLB206 (1988) 681 Asymptotic behavior of $f_P \sim m_Q^{-1/2}$ at $m_Q \to \infty$

Heavy Quark Symmetry (Isgur-Wise Symmetry)
 N.Isgur, M.Wise, PLB 232 (1989) 113; 237 (1990) 527

Limit $m_Q \to \infty$ gives rise to a new spin-flavor symmetry

Q is surrounded by a light quark (heavy meson)

or by a light diquark cloud (heavy baryon)

 $\mu_H = \frac{m_Q m_l}{m_Q + m_l} \rightarrow m_l$ no dependence on m_Q [flavor symmetry]

 $H_{s_Q s_l} \sim \frac{\vec{s}_Q \vec{s}_l}{m_Q m_l} \to 0$ spins decouple [spin symmetry]

★ Velocity Superselection Rule

H.Georgi, PLB 240 (1990) 447

Initial state $P^{\mu} = m_Q v^{\mu} \rightarrow \text{Final state } P'^{\mu} = m_Q v'^{\mu} + k^{\mu}$ $v^{\mu} = v'^{\mu} \text{ at } m_Q \rightarrow \infty \text{ for fixed } k^{\mu}$

★ <u>Heavy Quark Effective Theory (HQET)</u>

H.Politzer, M.Wise, PLB206 (1988) 681; N.Isgur, M.Wise, PLB232 (1989) 113;
E.Eichten, B.Hill, PLB234 (1990) 511; B.Grinstein, NPB339 (1990) 253;
H.Georgi, PLB240 (1990) 447; J.Korner, G.Thompson, PLB264 (1991) 185;
T.Mannel, W.Roberts, Z.Ryzak, NPB368 (1992) 204; ...

Systematic approximation to QCD using methods of EFT

 $\begin{array}{l} \hline \textbf{QCD} \quad \mathcal{L}_{\text{QCD}} = \bar{Q}[i \not D - m_Q]Q \\ Q(x) = e^{-im_Q v \cdot x} \left[h_v^+(x) + h_v^-(x) \right), \quad \not p h_v^\pm(x) = \pm h_v^\pm(x) \\ D_\mu = v_\mu v \cdot D + D_\mu^\perp, \qquad D_\mu^\perp = D_\mu - v_\mu v \cdot D \\ \hline \textbf{HQET} \quad \text{Integrate out low component} \quad h_v^- \\ \mathcal{L}_{\text{HQET}} = \bar{h}_v^+ iv \cdot Dh_v^+ - \lim_{\epsilon \to +0} \bar{h}_v^+ \not D^\perp \frac{1}{iv \cdot D + 2m_Q - i\epsilon} \not D^\perp h_v^+ \\ \hline \textbf{Factorization of long and short distance effects at any order in 1/m_Q \\ G_{\text{full}}(p_1...p_n; m_Q, \mu_0 = m_Q) = \sum_N (\frac{1}{m_Q})^N \underbrace{Z^{(N)}(m_Q, \mu)}_{\text{short}} \underbrace{G^{(N)}_{\text{eff}}(p_1...p_n; \mu)}_{\text{long}} \end{array}$

Review M.Neubert, PR245 (1994) 259

Introduction to HQET; SB corrections; weak decays of HL hadrons

★ Single heavy baryons in HQET

N.Isgur, M.Wise, NPB348 (1991) 276; H.Georgi, NPB348 (1990) 447; T.Mannel, W.Roberts, Z.Ryzak, NPB355 (1991) 38; F.Hussain, J.Körner, M.Krämer, G.Thompson, ZPC51 (1991) 321; ...

• Flavor symmetry: mass difference coincide for c and b baryons with different quantum numbers of light degrees of freedom $m_{\Sigma_b} - m_{\Lambda_b} = m_{\Sigma_c} - m_{\Lambda_c} \simeq 200 \text{ MeV}$

Spin symmetry: 3/2 and 1/2 states degenerate, mass splitting $\sim 1/m_Q$ $m_{\Sigma_c^*} - m_{\Sigma_c} \simeq 75 \text{ MeV} \ll \bar{\Lambda} = 500 - 700 \text{ MeV}$

Weak decays matrix elements

$$\begin{split} \langle \Lambda_{Q_2}(v_2) | \bar{h}_{v_2}^{Q_2} \Gamma h_{v_1}^{Q_1} | \Lambda_{Q_1}(v_1) \rangle &= \xi(\omega) \ \bar{u}(v_2) \Gamma u(v_1) \\ \langle \Sigma_{Q_2}^{(*)}(v_2) | \bar{h}_{v_2}^{Q_2} \Gamma h_{v_1}^{Q_1} | \Sigma_{Q_1}^{(*)}(v_1) \rangle &= [-g^{\mu\nu}\zeta_1(\omega) + v_1^{\mu}v_2^{\nu}\zeta_2(\omega)] \ \bar{u}_{\mu}(v_2) \Gamma u_{\nu}(v_1) \\ u_{\mu}(v) \ \text{for} \ \Sigma_Q^* \qquad u_{\mu}(v) &= \frac{1}{\sqrt{3}} \left(\gamma_{\mu} + v_{\mu}\right) \gamma_5 u(v) \ \text{for} \ \Sigma_Q \\ \text{Isgur-Wise functions} \qquad \xi(\omega) , \ \zeta_1(\omega) , \ \zeta_2(\omega) \qquad \text{with} \ \omega = v_1 \cdot v_2 \\ \text{Normalization} \qquad \xi(1) &= \zeta_1(1) = 1 \end{split}$$

★ Double heavy baryons in HQET

M.Savage, M.Wise, PLB248 (1990) 177; M.White, M.Savage, PLB271 (1991) 410

QQq - bound state of heavy QQ pair (pointlike object) and light quark q

Color triplet system $\varepsilon^{abc} \bar{Q}^b \bar{Q}^c \simeq T^a$

No dependence on heavy triplet mass and spin Heavy quarks move in spin-independent Coulomb potential

• Antibaryon $ar{Q}ar{Q}ar{q}$ related to heavy meson $Qar{q}$

$$m_{\Sigma_{\bar{Q}_{12}}^*} - m_{\Sigma_{\bar{Q}_{12}}} = \frac{3}{2} \frac{m_{Q_3}}{\mu_{\bar{Q}_{12}}} [m_{P_{Q_3}^*} - m_{P_{Q_3}}]$$

Semileptonic decay matrix elements

 $\langle \Lambda_{Q_{23}}(v_2) | \bar{Q}_2 \gamma_{\mu} (1 - \gamma_5) Q_1 | \Lambda_{Q_{13}}(v_1) \rangle = \eta_{Q_{123}}(v_1, v_2) \frac{(v_1 + v_2)_{\mu}}{4\tilde{m}} \bar{u}(v_2) u(v_1)$ $\eta_{Q_{123}}(v_1, v_2) \text{ product of IW function } \xi(\omega) \text{ with overlap of "in" and "fin" Coulomb wf}$ $\tilde{m} = [(m_{Q_1} + m_{Q_3}) (m_{Q_2} + m_{Q_3})]^{1/2}$

Double heavy baryons in combined approach HQET + NRQCD + pNRQCD
 V.Kiselev, A.Likhoded, Phys.Usp.45 (2002) 455

★ <u>Heavy Hadron Chiral Perturbation Theory (HHChPT)</u>

M.Wise, PRD45 (1992) R2188; G.Burdman, J.Donoghue, PLB280 (1992) 287; T.Yan, et al., PRD46 (1992) 1148; P.Cho, PLB285 (1992) 145; P.Cho, H.Georgi, PLB296 (1992) 408

• EFT based on ChPT (expansion in m_q) and HQET (expansion in $1/m_Q$) HH and light PS mesons $U = \xi^2 = \exp(i\hat{P}/F_{\pi})$ HH emit and absorb chiral fields without change of velocity v

• LO chiral Lagrangian for soft hadronic and em interactions of heavy baryons $\begin{aligned} \mathcal{L} &= \bar{T}_{i} i v D T_{i} - \bar{S}_{\mu,ij} i v D S_{ij}^{\mu} + \Delta_{\mathrm{ST}} \bar{S}_{\mu,ij} S_{ij}^{\mu} + g_{2} \varepsilon_{\mu\nu\sigma\lambda} v^{\nu} \bar{S}_{\mu,ik} i \xi_{ij}^{\sigma} S_{jk}^{\rho} \\ &+ g_{3} \varepsilon_{ijk} \left[\bar{T}_{i} \xi_{jl}^{\mu} S_{\mu,kl} + \bar{S}_{\mu,kl} \xi_{lj}^{\mu} T_{i} \right] \end{aligned}$ $\begin{aligned} S_{ij}^{\mu} &= (\gamma^{\mu} + v^{\mu}) \gamma^{5} S_{ij} / \sqrt{3} + S_{ij}^{*\mu} \qquad \xi_{\mu} = \frac{i}{2} (\xi D_{\mu} \xi^{\dagger} - \xi^{\dagger} D_{\mu} \xi) \\ T &= \{ \Xi_{c}^{0A}, -\Xi_{c}^{+A}, \Lambda_{c}^{+} \} \qquad S = \{ \Sigma_{c}^{++}, \Sigma_{c}^{+}, \Sigma_{c}^{0}, \Xi_{c}^{0S}, -\Xi_{c}^{+S}, \Omega_{c}^{0} \} \end{aligned}$

Corrections: long-distance $1/\Lambda_{\chi}$, short-distance $1/m_Q$ and chiral m_q

Chiral Lagrangians for heavy baryons
 Yu.Kalinovsky, V.Pervushin, N.Sarikov, PLB166 (1986) 351; PLB180 (1986) 141

 \star Heavy baryons at Large N_c

C.Galan, I.Klebanov, NPB262 (1985) 365; PLB202 (1988) 269; E.Jenkins, A.Manohar, PLB294 (1992) 273; Z.Guralnik et al., NPB390 (1993) 474; E.Jenkins et al., NPB396 (1993) 7

- Bound states of solitons (N, Δ , etc.) and heavy mesons D, D^* , B, B^* Attractive harmonic oscillator potential
- Combined HQ and large-N_c limit: a new contracted symmetry exists connecting orbitally excited and ground states
- Universal relations between baryon IW functions
 Large N_c C.-K. Chow, PRD51 (1995) 1224; PRD54 (1996) 837

Spectator quark model J.Körner, M.Krämer, D.Pirjol, PPNP33 (1994) 787; M.Ivanov, J.Körner, V.Lyubovitskij, A.Rusetsky, PRD59 (1999) 074016

$$\xi(\omega) = \zeta_1(\omega) = \zeta_2(\omega)(\omega+1) = f(\omega)\frac{\omega+1}{2}$$
 with $f(1) = 1$

Soliton model: E.Jenkins et al., NPB396 (1993) 7 $\xi(\omega) = \exp[-\lambda N_c^{3/2}(\omega - 1)]$ with $\lambda \sim 1$

- ★ Heavy baryons in QCD motivated approaches
- Lattice QCD
- QCD sum rules
- Quark models
- Bethe-Salpeter approaches
- Soliton approaches
- . . .
- ★ Calculated characteristics
- Isgur-Wise functions
- Mass spectrum and lifetimes
- Weak, em and strong decay amplitudes, widths, etc.

★ Collaboration

M.Ivanov (Dubna), J.Körner (Mainz), P.Kroll (Wuppertal), A.Rusetsky (Bonn), A.Faessler, T.Gutsche, D.Nicmorus, K.Pumsa-ard (Tübingen)

- ★ Baryons bound states of constituent quarks
- \star Int. Lagrangian of three low-lying SU(5) multiplets with their 3q currents

$$\mathcal{L}_{\text{int}} = \mathcal{L}_{\text{int}}^{1/2^-} + \mathcal{L}_{\text{int}}^{1/2^+} + \mathcal{L}_{\text{int}}^{3/2^+}$$

$$\mathcal{L}_{\text{int}}^{1/2^{-}} = g_F \bar{F}^{[m_1 m_2 m_3]} J_F^{m_1 m_2 m_3} + \text{h.c.}$$

$$\mathcal{L}_{\text{int}}^{1/2^+} = g_B \bar{B}^{[m_1 m_2] m_3} J_B^{m_1 m_2 m_3} + \text{h.c.}$$

$$\mathcal{L}_{\text{int}}^{3/2^+} = g_D \bar{D}^{\{m_1 m_2 m_3\};\mu} J_D^{m_1 m_2 m_3;\mu} + \text{h.c.}$$

Compositeness condition

$$Z_B = 1 - g_B^2 \Sigma_B'(m_B) = 0$$

★ Three-quark currents

 $J_B(x) = \int dx_1 dx_2 dx_3 \underbrace{F_B(x; x_1 x_2 x_3)}_{P_B(x; x_1 x_2 x_3)} \Gamma_B^1 q^a(x_1) q^b(x_2) C \Gamma_B^2 q^c(x_3) \varepsilon^{abc}$

vertex function

- Proton $J_{p}^{V} = \gamma^{\mu}\gamma^{5}d^{a}u^{b}C\gamma_{\mu}u^{c}\varepsilon^{abc}$ $J_{p}^{T} = \sigma^{\mu\nu}\gamma^{5}d^{a}u^{b}C\sigma_{\mu\nu}u^{c}\varepsilon^{abc}$
- Λ_Q baryons
 - $J^P_{\Lambda_Q} = Q^a u^b C \gamma_5 d^c \varepsilon^{abc}$

$$J^S_{\Lambda_Q} = \gamma^5 Q^a u^b C d^c \varepsilon^{abc}$$

- $J^A_{\Lambda_Q} = \gamma^\mu Q^a u^b C \gamma_\mu \gamma_5 d^c \varepsilon^{abc}$
- Σ_Q baryons $J_{\Sigma_Q}^V = \gamma^{\mu} \gamma^5 Q^a u^b C \gamma_{\mu} u^c \varepsilon^{abc}$ $J_{\Sigma_Q}^T = \sigma^{\mu\nu} \gamma^5 Q^a u^b C \sigma_{\mu\nu} u^c \varepsilon^{abc}$

★ Vertex function

$$F_B(x; x_1 x_2 x_3) = \delta(x - \sum_{i=1}^3 \mu_i x_i) \Phi_B[\sum_{i < j} (x_i - x_j)^2]$$

• Euclidean region $\tilde{\Phi}_B[(k_1^2 + k_2^2)/\Lambda_B^2] = \exp[-(k_1^2 + k_2^2)/\Lambda_B^2]$

Provide UV convergense of loop integrals

***** Quark propagator
$$S_i(k) = \frac{1}{m_i - k}$$
 with $i = u, d, s, c, b$

• $1/m_Q$ expansion for c and b quark

$$S_{v}(k,\bar{\Lambda},m_{Q}) = \frac{1+\psi}{2} \left[-\frac{1}{kv+\bar{\Lambda}} + \frac{(k+v\bar{\Lambda})^{2}}{2m_{Q}(kv+\bar{\Lambda})^{2}} - \frac{1}{2m_{Q}} \right]$$

 $\bar{\Lambda} = M_{B_Q} - m_Q = 600 \text{ MeV}$

- ⋆ Parameters
- Quark masses

m_u	m_s	m_c	m_b	
0.420	0.570	1.67	5.1	(GeV)

• Baryon size parameters Λ

$$\begin{array}{c|ccc} \Lambda_{qqq} & \Lambda_{Qqq} & \Lambda_{QQq} \\ \hline 1 & 1.25 & 2.5 & (\text{GeV}) \end{array}$$

★ Semileptonic decays
$$B_i \rightarrow B_f + l + \nu_l$$

M.Ivanov, V.Lyubovitskij, J.Körner, P.Kroll, PRD56 (1997) 348; M.Ivanov et al., PRD61 (2000) 114010; A.Faessler et al., PLB518 (2001) 55

$$\begin{split} \Lambda_b \to \Lambda_c \\ \delta_b \to \Lambda_c \\ & \xi(\omega) = \left(\frac{2}{1+\omega}\right)^{1.7+1/\omega} \\ \rho_{\xi} = -\xi'(1) = 1.05 \pm 0.3 \\ & \text{Br}(\Lambda_b \to \Lambda_c e\nu_e) = (7.8 \pm 1.1)\% \\ & \text{DELPHI Coll., PLB585 (2004) 63} \\ & \rho_{\xi} = 2.03 \pm 0.46(\text{stat}) \\ & \text{Br}(\Lambda_b \to \Lambda_c e\nu_e) = (5.0^{+1.1}_{-0.8}(\text{stat}))\% \end{split}$$

 $\rho_{\xi} = 0.65 \text{ (QCD SR, Dai et al, 96); } 0.65-0.85 \text{ (QCD SR, Grozin, Yakovlev, 92/99)}$ = $1.2^{+0.8}_{-1.1}$ (Lattice QCD, Bowler et al, 98); 1.3 (Skyrme model, Jenkins et al, 93) = 1.44 (IMF QM, König et al, 97); 2.35 (MIT Bag, Sadzikowski, Zalewski, 93)

★ Nonleptonic decays $B_i \rightarrow B_f + M$

M.Ivanov, J.Körner, V.Lyubovitskij, A.Rusetsky, PRD57 (1998) 5632

Branchings (in %) for heavy-light transitions

Process	Our	Experiment
$\Lambda_c^+ \to \Lambda \pi^+$	0.79	0.90 ± 0.28
$\Lambda_c^+ \to \Sigma^0 \pi^+$	0.88	0.99 ± 0.32
$\Lambda_c^+ \to \Sigma^+ \pi^0$	0.88	1.00 ± 0.34
$\Lambda_c^+ \to p\bar{K}^0$	2.06	2.3 ± 0.6
$\Lambda_c^+ \to \Xi^0 K^+$	0.31	0.39 ± 0.14
$\Lambda_c^+ \to p\phi$	0.14	$0.082{\pm}~0.027$
$\Xi_c^0 \to \Xi^0 \pi^0$	0.04	
$\Xi_c^0 \to \Sigma^+ K^-$	0.27	
$\Omega_c^0 \to \Xi^0 \bar{K}^0$	0.02	
$\Lambda^0_b \to \Lambda \pi^0$	4.92 $\times 10^{-5}$	
$\Lambda_b^0 \to p K^-$	2.1 $\times 10^{-4}$	< 5 × 10 ⁻³
$\Lambda_b^0 o J/\psi \Lambda$	0.06	0.047 ± 0.028

Decay widths Γ (in 10¹⁰ s⁻¹) for heavy-heavy transitions

Process	Γ	Process	Γ
$\Lambda_b^0 \to \Lambda_c^+ \pi^-$	0.382	$\Xi_b^0 \to \Xi_c^{\prime 0} \pi^0$	0.014
$\Lambda_b^0 \to \Sigma_c^+ \pi^-$	0.039	$\Xi_b^0 o \Xi_c^{\prime 0} \eta$	0.015
$\Lambda^0_b \to \Sigma^0_c \pi^0$	0.039	$\Xi_b^0 ightarrow \Xi_c^{\prime 0} \eta^{\prime}$	0.021
$\Lambda^0_b o \Sigma^0_c \eta$	0.023	$\Xi_b^0 \to \Lambda_c^+ K^-$	0.010
$\Lambda_b^0 o \Sigma_c^0 \eta'$	0.029	$\Xi_b^0 \to \Sigma_c^+ K^-$	0.030
$\Lambda^0_b o \Xi^0_c K^0$	0.021	$\Xi_b^0 \to \Sigma_c^0 \bar{K}^0$	0.021
$\Lambda^0_b \to \Xi_c^{\prime 0} K^0$	0.032	$\Xi_b^0 \to \Omega_c^0 K^0$	0.023
$\Xi_b^0 \to \Xi_c^+ \pi^-$	0.479	$\Xi_b^- \to \Xi_c^0 \pi^-$	0.645
$\Xi_b^0 \to \Xi_c^{\prime +} \pi^-$	0.018	$\Xi_b^- \to \Xi_c^{\prime 0} \pi^-$	0.007
$\Xi_b^0 o \Xi_c^0 \pi^0$	0.002	$\Xi_b^- \to \Sigma_c^0 K^-$	0.016
$\Xi^0_b o \Xi^0_c \eta$	0.012	$\Omega_b^- \to \Omega_c^0 \pi^-$	0.352

★ Strong decays $B_i \rightarrow B_f + M$

One-pion decay widths (in MeV):

M.Ivanov, J.Korner, V.Lyubovitskij, A.Rusetsky, PRD60 (1999) 094002

Process	Our	Experiment	
P-wave transitions		-	
$\Sigma_c^+ \to \Lambda_c \pi^0$	3.63 ± 0.27		
$\Sigma_c^0 \to \Lambda_c \pi^-$	2.65 ± 0.19	$\Gamma_{\Sigma_c^0} = 2.5 \pm 0.2 \pm 0.3$	
$\Sigma_c^{++} \to \Lambda_c \pi^+$	2.85 ± 0.19	$\Gamma_{\Sigma_c^{++}} = 2.3 \pm 0.2 \pm 0.3$	
$\Sigma_c^{*0} \to \Lambda_c \pi^-$	21.21 ± 0.81	$13.0^{+3.7}_{-3.0}$	
$\Sigma_c^{*++} \to \Lambda_c \pi^+$	21.99 ± 0.87	$17.9^{+3.8}_{-3.2}$	
$\Xi_c^{*0} \to \Xi_c^0 \pi^0$	1.01 ± 0.15		
$\Xi_c^{*0} \to \Xi_c^+ \pi^-$	2.11 ± 0.29	$\Gamma_{\Xi^{*0}} < 5.5$	
$\Xi_c^{*+} \to \Xi_c^0 \pi^+$	1.78 ± 0.33		
$\Xi_c^{*+} o \Xi_c^+ \pi^0$	1.26 ± 0.17	$\Gamma_{\Xi^{*+}} < 3.1$	
S-wave transitions			
$\Lambda_{c1;S} \to \Sigma_c^0 \pi^+$	0.83 ± 0.09	0.86 ± 0.25	
$\Lambda_{c1;S} \to \Sigma_c^+ \pi^0$	0.98 ± 0.12		
$\Lambda_{c1;S} \to \Sigma_c^{++} \pi^-$	0.79 ± 0.09	0.86 ± 0.25	
$\Xi^*_{c1;S} \to \Xi^{*0}_c \pi^+$	0.46 ± 0.03		
$\Xi_{c1;S}^* \to \Xi_c^{*+} \pi^0$	0.24 ± 0.02	$\Gamma_{\Xi_{c1;S}^*} < 2.4$	
$\Sigma_{c1;A}^{0} \to \Sigma_{c}^{+} \pi^{-}$	0.11 ± 0.001		

One-pion decay widths (in MeV)

Process	Our	Experiment
D-wave transitions		
$\Lambda^*_{c1;S} \to \Sigma^0_c \pi^+$	0.08 ± 0.01	< 0.13
$\Lambda^*_{c1;S} \to \Sigma^+_c \pi^0$	0.10 ± 0.01	$\Gamma_{\Lambda_{c1}^*} < 1.9$
$\Lambda_{c1;S}^* \to \Sigma_c^{++} \pi^-$	0.08 ± 0.01	< 0.15
$\Xi^*_{c1;S} \to \Xi^{0\prime}_c \pi^+$	0.35 ± 0.05	
$\Xi_{c1;S}^* \to \Xi_c^{+\prime} \pi^0$	0.21 ± 0.03	$\Gamma_{\Xi_{c1}^*} < 2.4$
$\Sigma_{c1;A}^{*0} \to \Sigma_c^+ \pi^-$	pprox 0.001	

 \star Electromagnetic decays $B_i \rightarrow B_f + \gamma$

Radiative decay widths (in KeV):

M.Ivanov, J.Körner, V.Lyubovitskij, PLB448 (1999) 143

Process	Decay width	Process	Decay width
$\Sigma_c^+ \to \Lambda_c^+ \gamma$	60.7 ± 1.5	$\Lambda_{c1;S} \to \Lambda_c^+ \gamma$	$120\pm1~{ m M}$
$\Lambda^*_{c1;S} \to \Sigma^+_c \gamma$	40 ± 0.5	$\Lambda^*_{c1;S} \to \Sigma^{*+}_c \gamma$	50 ± 6
$\Xi_{c1;S}^{*+} \to \Xi_c^+ \gamma$	200 ± 5	$\Lambda_{c1;S} \to \Sigma_c^+ \gamma$	80 ± 1
$\Xi_{c1;S}^{*0}\to \Xi_c^0\gamma$	500 ± 10	$\Lambda_{c1;S} \to \Sigma_c^{*+} \gamma$	6 ± 0.1
$\Lambda_{b1;S} o \Lambda_b^0 \gamma$	130 ± 20	$\Lambda^*_{b1;S}\to\Lambda^0_b\gamma$	170 ± 30
$\Sigma_c^{*+} \to \Lambda_c^+ \gamma$	151 ± 4	$\Sigma_c^{*+} \to \Sigma_c^+ \gamma$	0.14 ± 0.004
$\Xi_c^{\prime +} \to \Xi_c^+ \gamma$	12.7 ± 1.5	$\Xi_c^{\prime 0} ightarrow \Xi_c^0 \gamma$	0.17 ± 0.02
$\Xi_c^{*+} \to \Xi_c^+ \gamma$	54 ± 3	$\Xi_c^{*0} \to \Xi_c^0 \gamma$	0.68 ± 0.04

★ Magnetic moments of single and double heavy baryons

Magnetic moments of light baryons

Baryon	Зq	Meson cloud	Total	Experiment
p	2.582	0.211	2.793	2.793
n	-1.593	-0.32	-1.913	-1.913
Λ	-0.561	-0.052	-0.613	-0.613
Σ^+	2.327	-0.131	2.458	2.458
Σ^{-}	-0.939	-0.221	-1.16	-1.16
Ξ^0	-1.205	-0.045	-1.25	-1.25
[I]	-0.611	-0.040	-0.6507	-0.6507

Magnetic moments of single heavy baryons

Reproduce the model-indenependent structrure dictated by HHChPT: M.Savage, PLB326 (1994) 203; M.Banuls et al, PRD61 (2000) 074007

$$\mu_{\Lambda_Q} = \frac{e_Q}{m_Q} + \frac{\alpha_{\Lambda}}{m_Q \Lambda_{\chi}} + \dots$$

$$\mu_{\Sigma_Q} = \frac{\alpha_{\Sigma}}{\Lambda_{\chi}} + \frac{e_Q}{m_Q} + \dots$$

Results for heavy baryons

Baryon	Our	HHChPTT
Λ_c^+	0.381	0.37
Ξ_c^+	0.378	0.42
Ξ_c^0	0.375	0.32
Λ_b^0	-0.062	
Ξ_b^0	-0.062	
Ξ_b^{-}	-0.062	
Σ_c^{++}	0.46	
Σ_c^+	0.025	
Σ_c^{+0}	-0.41	
Σ_b^+	0.51	
Σ_b^{0}	0.14	
Σ_b^0	-0.22	
Ξ_{cc}^{++}	0.25	
Ξ_{cc}^+	0.64	
Ξ_{bb}^{0}	-0.38	
Ξ_{bb}^{-}	0.070	

Conclusions

- HQET combined with ChPT, Large N_c, NRQCD, etc. is powerful method to study heavy baryons
- To investigate the long-distance effects we need to apply the model approaches
- Three-quark model of baryons works in the world of light and heavy baryons