Introduction to

non-perturbative Heavy Quark Effective Theory

Jochen Heitger

¢
institut für theoretische physik

Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Str. 9, D-48149 Münster, Germany

Helmholtz International Summer School HEAVY QUARK PHYSICS

Bogoliubov Laboratory of Theoretical Physics JINR, Dubna, Russia

June 6-16, 2005

LECTURE 1: Non-perturbative formulation of HQET

- Motivation
- Basics of HQET as an effective theory of QCD
- Non-perturbative formulation of HQET
- Matching of HQET and QCD in finite volume

LECTURE 2: Applications

- Tests of HQET in finite volume
- Advances in B-physics applications: M_{b} and $F_{\mathrm{B}_{\mathrm{s}}}$
- Status of (quenched) physics results
- Perspectives

Lecture 1

Non-perturbative formulation of HQET

B-physics from the lattice ...

... and the need for recoursing to an effective theory
Lattice QCD calculations with b-quarks

- valuably contribute to precision CKM-physics (unitarity triangle)
- provide an 'ab initio' approach to determine experimentally inaccessible key parameters such as
- the b-quark mass, M_{b}
- B-meson decay constants, e.g.

$$
\left\langle\mathrm{B}_{\mathrm{s}}(p)\right|\left[\bar{\psi}_{\mathrm{s}} \gamma_{\mu} \gamma_{5} \psi_{\mathrm{b}}\right](0)|0\rangle=i p_{\mu} F_{\mathrm{B}_{\mathrm{s}}}
$$

B-physics from the lattice

... and the need for recoursing to an effective theory
Lattice QCD calculations with b-quarks

- valuably contribute to precision CKM-physics (unitarity triangle)
- provide an 'ab initio' approach to determine experimentally inaccessible key parameters such as
- the b-quark mass, M_{b}
- B-meson decay constants, e.g.

$$
\left\langle\mathrm{B}_{\mathrm{s}}(p)\right|\left[\bar{\psi}_{\mathrm{s}} \gamma_{\mu} \gamma_{5} \psi_{\mathrm{b}}\right](0)|0\rangle=i p_{\mu} F_{\mathrm{B}_{\mathrm{s}}}
$$

Challenge of a realistic treatment of lattice B-systems:

- The b-quark is too heavy \Leftrightarrow highly localized
- Very fine lattice resolutions (not $m_{b}^{-1} \simeq(4 \mathrm{GeV})^{-1}<a \simeq 0.07 \mathrm{fm}$)
- in (at the same time) physically large volumes required
\Rightarrow Direct numerical simulation still beyond today's computing resources

B-physics from the lattice

... and the need for recoursing to an effective theory
Lattice QCD calculations with b-quarks

- valuably contribute to precision CKM-physics (unitarity triangle)
- provide an 'ab initio' approach to determine experimentally inaccessible key parameters such as
- the b-quark mass, M_{b}
- B-meson decay constants, e.g.

$$
\left\langle\mathrm{B}_{\mathrm{s}}(p)\right|\left[\bar{\psi}_{\mathrm{s}} \gamma_{\mu} \gamma_{5} \psi_{\mathrm{b}}\right](0)|0\rangle=i p_{\mu} F_{\mathrm{B}_{\mathrm{s}}}
$$

Challenge of a realistic treatment of lattice B-systems:

- The b-quark is too heavy \Leftrightarrow highly localized
- Very fine lattice resolutions (not $m_{b}^{-1} \simeq(4 \mathrm{GeV})^{-1}<a \simeq 0.07 \mathrm{fm}$)
- in (at the same time) physically large volumes required
\Rightarrow Direct numerical simulation still beyond today's computing resources
Viable framework for heavy quarks in the lattice regularization:
Effective theories \rightarrow NRQCD
HQET (even took its origin for the lattice [Eichten, 1988])

Lattice QCD

'Ab initio' approach to determine phenomenologically relevant key parameters

$\mathcal{L}_{\mathrm{QCD}}\left[g_{0}, m_{f}\right]=-\frac{1}{2 g_{0}^{2}} \operatorname{Tr}\left\{F_{\mu \nu} F_{\mu \nu}\right\}+\sum_{f=\mathrm{u}, \mathrm{d}, \mathrm{s}, \ldots} \bar{\psi}_{f}\left\{\gamma_{\mu}\left(\partial_{\mu}+g_{0} A_{\mu}\right)+m_{f}\right\} \psi_{f}$
$\underbrace{\left[\begin{array}{c}F_{\pi} \\ m_{\pi} \\ m_{\mathrm{K}} \\ m_{\mathrm{D}} \\ m_{\mathrm{B}}\end{array}\right]}_{\text {Experiment }} \underset{\mathrm{LCD}}{\mathcal{L}_{\mathrm{QCD}}\left[g_{0}, m_{f}\right]} \underbrace{\left[\begin{array}{c}\Lambda_{\mathrm{QCD}} \\ \frac{1}{2}\left(M_{\mathrm{u}}+M_{\mathrm{d}}\right) \\ M_{\mathrm{s}} \\ M_{\mathrm{c}} \\ M_{\mathrm{b}}\end{array}\right]}_{\mathrm{QCD}}+\underbrace{\left[\begin{array}{c}F_{\mathrm{D}} \\ F_{\mathrm{B}} \\ B_{\mathrm{B}} \\ \xi \\ \cdots\end{array}\right]}_{\text {parameters (RGIs) }}$

Lattice QCD

'Ab initio' approach to determine phenomenologically relevant key parameters

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{QCD}}\left[g_{0}, m_{f}\right]=-\frac{1}{2 g_{0}^{2}} \operatorname{Tr}\left\{F_{\mu \nu} F_{\mu \nu}\right\}+\sum_{f=\mathrm{u}, \mathrm{~d}, \mathrm{~s}, \ldots} \bar{\psi}_{f}\left\{\gamma_{\mu}\left(\partial_{\mu}+g_{0} A_{\mu}\right)+m_{f}\right\} \psi_{f} \\
& \underbrace{\left[\begin{array}{c}
F_{\pi} \\
m_{\pi} \\
m_{\mathrm{K}} \\
m_{\mathrm{D}} \\
m_{\mathrm{B}}
\end{array}\right]}_{\text {Experiment }}{ }_{\mathcal{L}_{\mathrm{QCD}}\left[g_{0}, m_{f}\right]}^{\Longrightarrow} \underbrace{\left[\begin{array}{c}
\Lambda_{\mathrm{QCD}} \\
\frac{1}{2}\left(M_{\mathrm{u}}+M_{\mathrm{d}}\right) \\
M_{\mathrm{s}} \\
M_{\mathrm{c}} \\
M_{\mathrm{b}}
\end{array}\right]}_{\text {QCD parameters (RGIs) }}+\underbrace{\left[\begin{array}{c}
F_{\mathrm{D}} \\
F_{\mathrm{B}} \\
B_{\mathrm{B}} \\
\xi \\
\cdots
\end{array}\right]}_{\text {Predictions }}
\end{aligned}
$$

$\xrightarrow{\mathcal{L}_{\mathrm{QCD}}\left[g_{0}, m_{f}\right]}$
means discretization with:

- Gauge invariance
- Locality
- Unitarity

$$
U_{\mu}(x)=\mathrm{e}^{i \mathrm{iag}_{0} A_{\mu}(x)} \psi(x)
$$

Issues/Obstacles:

- Renormalization
- Continuum limit (CL)
- ...
- $\mathrm{O}\left(1 / \sqrt{t_{\mathrm{CPU}}}\right)$ errors

Typical momentum scales in heavy-light and heavy-heavy mesons:
Heavy-light ($\mathrm{Q} \overline{\mathrm{q}}) \longrightarrow$ HQET

- Q almost at rest at bound state's center, surrounded by light DOFs
- Motion of the heavy quark is suppressed by $\Lambda_{\mathrm{QCD}} / m_{\mathrm{Q}}$

Typical momentum scales in heavy-light and heavy-heavy mesons:

Heavy-light ($\mathrm{Q} \overline{\mathrm{q}}) \longrightarrow$ HQET

- Q almost at rest at bound state's center, surrounded by light DOFs
- Motion of the heavy quark is suppressed by $\Lambda_{\mathrm{QCD}} / m_{\mathrm{Q}}$

Heavy-heavy $(\mathrm{Q} \overline{\mathrm{Q}}) \longrightarrow$ NRQCD

- Non-relativistic kinetic and the potential energy to be balanced
- Separate: $m_{Q},\langle p\rangle \simeq m_{Q} v$ and binding energy $\left\langle p^{2}\right\rangle / m_{Q} \simeq m_{Q} v^{2}$

Problems with lattice regularized HQET

In the past: Difficulties/Limitations on the
theoretical side
At each order in $\frac{1}{m}$, new parameters arise in the effective theory, which (due to mixings among operators of different dimensions) leave power divergences in the lattice spacing if only estimated perturbatively
\Rightarrow Continuum limit does not exist

technical side

Rapid growth of statistical errors as the time separation of B-meson correlation functions increases:

$$
\begin{aligned}
& S_{\mathrm{h}}^{\text {Eichten-Hill }}=a^{4} \Sigma_{x} \bar{\psi}_{h}(x) D_{0} \psi_{h}(x) \\
& \frac{\text { noise }}{\text { signal }} \propto \exp \left(x_{0} \Delta\right) \\
& \begin{array}{l}
\Delta=E_{\text {stat }}-m_{\pi} \\
E_{\text {stat }} \sim e_{1} \times g_{0}^{2} / a
\end{array}
\end{aligned}
$$

Problems with lattice regularized HQET

In the past: Difficulties/Limitations on the
theoretical side
At each order in $\frac{1}{m}$, new parameters arise in the effective theory, which (due to mixings among operators of different dimensions) leave power divergences in the lattice spacing if only estimated perturbatively
\Rightarrow Continuum limit does not exist

technical side

Rapid growth of statistical errors as the time separation of B-meson correlation functions increases:

$$
\begin{gathered}
S_{\mathrm{h}}^{\text {Eichten-Hill }}=a^{4} \sum_{x} \bar{\psi}_{\mathrm{h}}(x) D_{0} \psi_{\mathrm{h}}(x) \\
\frac{\text { noise }}{\text { signal }} \propto \exp \left(x_{0} \Delta\right) \quad \begin{array}{l}
\Delta=E_{\text {stat }}-m_{\pi} \\
E_{\text {stat }} \sim e_{1} \times g_{0}^{2} / a
\end{array}
\end{gathered}
$$

Progress by two recent developments:

Non-perturbative renormalization of HQET through its non-perturbative matching to $Q C D$ in finite volume [H. \& Sommer, 2004]

Alternative discretizations of HQET, leading to a substantial reduction of statistical fluctuations in correlators
[${ }_{\text {Ald }}^{\text {LIPAA }}$, Della Morte et al., 2003 \& 2005]

$$
\mathcal{L}_{\mathrm{QCD}}=-\frac{1}{2 g_{0}^{2}} \operatorname{Tr}\left\{F_{\mu \nu} F_{\mu \nu}\right\}+\sum_{f} \bar{\psi}_{f}\left\{\gamma_{\mu}\left(\partial_{\mu}+g_{0} A_{\mu}\right)+m_{f}\right\} \psi_{f}
$$

Consider:

Energies \& matrix elements of states containing a single b-quark at rest
HQET Lagrangian by formal $1 / m_{b}$-expansion of continuum QCD

$$
\begin{aligned}
\bar{\psi}_{\mathrm{b}}\left\{\gamma_{\mu} D_{\mu}+m_{\mathrm{b}}\right\} \psi_{\mathrm{b}} \quad \rightarrow \quad & \mathcal{L}_{\text {stat }}+\mathcal{L}^{(1)}+\ldots \\
& \mathcal{L}_{\text {stat }}(x)=\bar{\psi}_{\mathrm{h}}(x)\left\{D_{0}+\delta m\right\} \psi_{\mathrm{h}}(x)
\end{aligned}
$$

- 4-component effective heavy quark field ψ_{h} with constraint

$$
P_{+} \psi_{\mathrm{h}}=\psi_{\mathrm{h}} \quad \bar{\psi}_{\mathrm{h}} P_{+}=\bar{\psi}_{\mathrm{h}} \quad P_{+}=\frac{1}{2}\left(1+\gamma_{0}\right) \quad \Rightarrow \quad 2 \text { d.o.f. }
$$

- Composite fields involving b-quarks translate to the effective theory:

$$
A_{0}(x)=Z_{\mathrm{A}} \bar{\psi}_{1}(x) \gamma_{0} \gamma_{5} \psi_{\mathrm{b}}(x) \quad \rightarrow \quad A_{0}^{\text {stat }}=Z_{\mathrm{A}}^{\text {stat }} \bar{\psi}_{\mathrm{l}}(x) \gamma_{0} \gamma_{5} \psi_{\mathrm{h}}(x)
$$

$Z_{\mathrm{A}}, Z_{\mathrm{A}}^{\text {stat }}$: renormalization constants of the axial currents

- Expansion is accurate for heavy quark masses $m \equiv m_{\mathrm{h}} \gg \Lambda_{\mathrm{QCD}}$, yields valid description for low-lying energy levels \& matrix elements

Example

$$
\Phi^{\mathrm{QCD}} \equiv F_{\mathrm{B}} \sqrt{m_{\mathrm{B}}}=Z_{\mathrm{A}}\langle\mathrm{~B}| A_{0}|0\rangle
$$

- Scale independent due to the chiral symmetry of (massless) QCD
- In HQET: chiral symmetry absent $\Rightarrow Z_{A}^{\text {stat }}=Z_{A}^{\text {stat }}(\mu)$

Rather than $\Phi^{\text {stat }}(\mu) \equiv Z_{\mathrm{A}}^{\text {stat }}(\mu)\langle\mathrm{B}| A_{0}^{\text {stat }}|0\rangle$, focus on the μ \& scheme independent renormalization group invariant (RGI) matrix element

$$
\Phi_{\mathrm{RGI}}=\lim _{\mu \rightarrow \infty}\left[2 b_{0} \bar{g}^{2}(\mu)\right]^{-\gamma_{0} /\left(2 b_{0}\right)} \times \Phi^{\text {stat }}(\mu)
$$

Example

$$
\Phi^{\mathrm{QCD}} \equiv F_{\mathrm{B}} \sqrt{m_{\mathrm{B}}}=Z_{\mathrm{A}}\langle\mathrm{~B}| A_{0}|0\rangle
$$

- Scale independent due to the chiral symmetry of (massless) QCD
- In HQET: chiral symmetry absent $\Rightarrow Z_{A}^{\text {stat }}=Z_{A}^{\text {stat }}(\mu)$

Rather than $\Phi^{\text {stat }}(\mu) \equiv Z_{A}^{\text {stat }}(\mu)\langle\mathrm{B}| A_{0}^{\text {stat }}|0\rangle$, focus on the μ \& scheme independent renormalization group invariant (RGI) matrix element

$$
\Phi_{\mathrm{RGI}}=\lim _{\mu \rightarrow \infty}\left[2 b_{0} \bar{g}^{2}(\mu)\right]^{-\gamma_{0} /\left(2 b_{0}\right)} \times \Phi^{\text {stat }}(\mu)
$$

\Rightarrow Generic form of the HQET-expansion of the QCD matrix elements:

$$
\begin{aligned}
\Phi^{\mathrm{QCD}} & =C_{\mathrm{PS}}\left(M_{\mathrm{b}} / \Lambda_{\overline{\mathrm{MS}}}\right) \times \Phi_{\mathrm{RGI}}+\mathrm{O}\left(1 / M_{\mathrm{b}}\right) \\
M_{\mathrm{b}} & =\lim _{\mu \rightarrow \infty}\left[2 b_{0} \bar{g}^{2}(\mu)\right]^{-d_{0} /\left(2 b_{0}\right)} \times \bar{m}_{\mathrm{b}}(\mu) \\
\Lambda_{\overline{\mathrm{MS}}} & =\lim _{\mu \rightarrow \infty} \mu\left[b_{0} \bar{g}_{\mathrm{MS}}^{2}(\mu)\right]^{-b_{1} /\left(2 b_{0}^{2}\right)} \mathrm{e}^{-1 /\left(2 b_{0} \bar{g}_{\mathrm{MS}}^{2}(\mu)\right)}
\end{aligned}
$$

with $\beta(\bar{g})=\mu(\partial \bar{g} / \partial \mu)=-b_{0} \bar{g}^{3}+\mathrm{O}\left(\bar{g}^{5}\right)$ and associated anomalous dimensions $\tau(\bar{g})=\frac{\mu}{\bar{m}} \frac{\partial \bar{m}}{\partial \mu}=-d_{0} \bar{g}^{2}+\mathrm{O}\left(\bar{g}^{4}\right)$

$$
\gamma(\bar{g})=\frac{\mu}{Z_{A}^{\text {stat }}} \frac{\partial Z_{A}^{\text {stat }}}{\partial \mu}=-\gamma_{0} \bar{g}^{2}+\mathrm{O}\left(\bar{g}^{4}\right)
$$

What is the meaning of $C_{\mathrm{PS}}\left(M_{\mathrm{b}} / \Lambda_{\overline{\mathrm{MS}}}\right)$?

Conversion to the matching scheme

To extract QCD predictions from results obtained in the (static) effective theory, its RGIs must be related to QCD observables at finite quark mass
\Leftrightarrow Translation to another renormalization scheme:
The matching scheme - defined by the condition that for arbitrary renormalized matrix elements Φ in QCD and in the effective theory

$$
\Phi^{\mathrm{QCD}}=\Phi^{\left.\operatorname{HQET}^{\mathrm{QE}}(\mu)\right|_{\mu=m}+\mathrm{O}(1 / m), ~}
$$

(in PT, one typically identifies $m=m_{\mathrm{Q}}=$ pole mass or $m=\bar{m}_{*}=\overline{\mathrm{MS}}$ mass)

What is the meaning of $C_{\mathrm{PS}}\left(M_{\mathrm{b}} / \Lambda_{\overline{\mathrm{MS}}}\right)$?

Conversion to the matching scheme

To extract QCD predictions from results obtained in the (static) effective theory, its RGIs must be related to QCD observables at finite quark mass
\Leftrightarrow Translation to another renormalization scheme:
The matching scheme - defined by the condition that for arbitrary renormalized matrix elements Φ in QCD and in the effective theory

$$
\Phi^{\mathrm{QCD}}=\left.\Phi^{\mathrm{HQET}^{2}}(\mu)\right|_{\mu=m}+\mathrm{O}(1 / m)
$$

(in PT, one typically identifies $m=m_{\mathrm{Q}}=$ pole mass or $m=\bar{m}_{*}=\overline{\mathrm{MS}}$ mass)

In case of the static axial current:

$$
\Phi^{\mathrm{QCD}}=C_{\operatorname{match}}\left(m_{\mathrm{b}} / \mu\right) \times \Phi_{\overline{\mathrm{MS}}}(\mu)+\mathrm{O}\left(1 / m_{\mathrm{b}}\right)
$$

- $\Phi_{\overline{\mathrm{MS}}}(\mu)$: renormalized in HQET in the $\overline{\mathrm{MS}}$ scheme
- $C_{\text {match }}\left(m_{\mathrm{b}} / \mu\right)$: Matching coefficient depending on m_{b}, defined by $\bar{m}_{\overline{\mathrm{MS}}}\left(m_{\mathrm{b}}\right)=m_{\mathrm{b}}$
- Once $C_{\text {match }}$ is determined (usually in PT) such that (\star) holds for some particular current matrix element, it applies to all of them

Change to a more convenient argument of the conversion function via

$$
\frac{\Phi_{\mathrm{RGI}}}{\Phi_{\overline{\mathrm{MS}}}(\mu)}=\left[2 b_{0} \bar{g}^{2}(\mu)\right]^{-\gamma_{0} /\left(2 b_{0}\right)} \exp \left\{\int_{0}^{\bar{g}(\mu)} \mathrm{d} g\left[\frac{\gamma_{\overline{\mathrm{MS}}}(g)}{\beta_{\overline{\mathrm{MS}}}(g)}-\frac{\gamma_{0}}{b_{0} g}\right]\right\}\left[\bar{g}=\bar{g}_{\overline{\mathrm{MS}}}\right]
$$

and choosing the arbitrary renormalization point as $\mu=m_{\mathrm{b}}$

$$
\begin{aligned}
& \Rightarrow \quad C_{\mathrm{PS}}\left(M_{\mathrm{b}} / \Lambda_{\overline{\mathrm{MS}}}\right)=C_{\mathrm{match}}(1) \times \frac{\Phi_{\overline{\mathrm{MS}}}(\mu)}{\Phi_{\mathrm{RGI}}}= \\
& \quad\left[2 b_{0} \bar{g}^{2}\left(m_{\mathrm{b}}\right)\right]^{\gamma_{0} /\left(2 b_{0}\right)} \exp \left\{\int_{0}^{\bar{g}\left(m_{\mathrm{b}}\right)} \mathrm{d} g\left[\frac{\gamma^{\text {match }}(g)}{\beta_{\overline{\mathrm{MS}}}(g)}-\frac{\gamma_{0}}{b_{0} g}\right]\right\}
\end{aligned}
$$

Change to a more convenient argument of the conversion function via

$$
\frac{\Phi_{\mathrm{RGI}}}{\Phi_{\overline{\mathrm{MS}}}(\mu)}=\left[2 b_{0} \bar{g}^{2}(\mu)\right]^{-\gamma_{0} /\left(2 b_{0}\right)} \exp \left\{\int_{0}^{\bar{g}(\mu)} \mathrm{d} g\left[\frac{\gamma_{\overline{\mathrm{MS}}}(g)}{\beta_{\overline{\mathrm{MS}}}(g)}-\frac{\gamma_{0}}{b_{0} g}\right]\right\}\left[\bar{g}=\bar{g}_{\overline{\mathrm{MS}}}\right]
$$

and choosing the arbitrary renormalization point as $\mu=m_{\mathrm{b}}$

$$
\begin{aligned}
\Rightarrow \quad & C_{\mathrm{PS}}\left(M_{\mathrm{b}} / \Lambda_{\overline{\mathrm{MS}}}\right)=C_{\mathrm{match}}(1) \times \frac{\Phi_{\overline{\mathrm{MS}}}(\mu)}{\Phi_{\mathrm{RGI}}}= \\
& {\left[2 b_{0} \bar{g}^{2}\left(m_{\mathrm{b}}\right)\right]^{\gamma_{0} /\left(2 b_{0}\right)} \exp \left\{\int_{0}^{\bar{g}\left(m_{\mathrm{b}}\right)} \mathrm{d} g\left[\frac{\gamma^{\mathrm{match}}(g)}{\beta_{\overline{\mathrm{MS}}}(g)}-\frac{\gamma_{0}}{b_{0} g}\right]\right\} }
\end{aligned}
$$

- C_{PS} 'defines' the anomalous dimension $\gamma^{\text {match }}$ in the matching scheme:

$$
\gamma^{\text {match }}(\bar{g})=\gamma^{\overline{\mathrm{MS}}}(\bar{g})+\rho(\bar{g})
$$

with a contribution $\rho(\bar{g})$ from $C_{\text {match }}$

- advantages of the ratio of RGIs M / Λ :
- can be fixed in lattice calculations without perturbative uncertainties
- C_{PS} independent of the choice of scheme for the effective operators

Change to a more convenient argument of the conversion function via

$$
\frac{\Phi_{\mathrm{RGI}}}{\Phi_{\overline{\mathrm{MS}}}(\mu)}=\left[2 b_{0} \bar{g}^{2}(\mu)\right]^{-\gamma_{0} /\left(2 b_{0}\right)} \exp \left\{\int_{0}^{\bar{g}(\mu)} \mathrm{d} g\left[\frac{\gamma_{\overline{\mathrm{MS}}}(g)}{\beta_{\overline{\mathrm{MS}}}(g)}-\frac{\gamma_{0}}{b_{0} g}\right]\right\}\left[\bar{g}=\bar{g}_{\overline{\mathrm{MS}}}\right]
$$

and choosing the arbitrary renormalization point as $\mu=m_{\mathrm{b}}$

$$
\begin{aligned}
\Rightarrow \quad & C_{\mathrm{PS}}\left(M_{\mathrm{b}} / \Lambda_{\overline{\mathrm{MS}}}\right)=C_{\mathrm{match}}(1) \times \frac{\Phi_{\overline{\mathrm{MS}}}(\mu)}{\Phi_{\mathrm{RGI}}}= \\
& {\left[2 b_{0} \bar{g}^{2}\left(m_{\mathrm{b}}\right)\right]^{\gamma_{0} /\left(2 b_{0}\right)} \exp \left\{\int_{0}^{\bar{g}\left(m_{\mathrm{b}}\right)} \mathrm{d} g\left[\frac{\gamma^{\text {match }}(g)}{\beta_{\overline{\mathrm{MS}}}(g)}-\frac{\gamma_{0}}{b_{0} g}\right]\right\} }
\end{aligned}
$$

- C_{PS} 'defines' the anomalous dimension $\gamma^{\text {match }}$ in the matching scheme:

$$
\gamma^{\operatorname{match}}(\bar{g})=\gamma^{\overline{\mathrm{MS}}}(\bar{g})+\rho(\bar{g})
$$

with a contribution $\rho(\bar{g})$ from $C_{\text {match }}$

- advantages of the ratio of RGIs M / Λ :
- can be fixed in lattice calculations without perturbative uncertainties
- C_{PS} independent of the choice of scheme for the effective operators

\checkmark weak logarithmic mass dependence
\checkmark PT under control \Leftarrow 3-loop AD [Chetyrkin \& Grozin, 2003]
\checkmark remaining $\mathrm{O}\left(\bar{g}^{6}\left(m_{\mathrm{b}}\right)\right)$ errors small

Non-perturbative formulation of HQET

Let the effective theory be regularized on a space-time lattice
$S_{\text {HQET }}=a^{4} \sum_{x}\left\{\mathcal{L}_{\text {stat }}(x)+\sum_{v=1}^{n} \mathcal{L}^{(v)}(x)\right\} \quad \mathcal{L}^{(v)}(x)=\sum_{i} \omega_{i}^{(v)} \mathcal{L}_{i}^{(v)}(x)$
with static action $\mathcal{L}_{\text {stat }}(x)=\bar{\psi}_{\mathrm{h}}(x)\left[\nabla_{0}^{*}+\delta m\right] \psi_{\mathrm{h}}(x)$ and the $1 / m$-parts $\mathcal{L}_{1}^{(1)}=\bar{\psi}_{\mathrm{h}}\left(-\frac{1}{2} \boldsymbol{\sigma} \cdot \mathbf{B}\right) \psi_{\mathrm{h}} \rightarrow$ chromomagnetic interaction with the gluon field $\mathcal{L}_{2}^{(1)}=\bar{\psi}_{h}\left(-\frac{1}{2} \mathbf{D}^{2}\right) \psi_{\mathrm{h}} \quad \rightarrow$ kinetic energy from the heavy quark's residual motion δm and local composite fields $\mathcal{L}_{i}^{(v)}$ have mass dimensions 1 and $4+v$

Non-perturbative formulation of HQET

Let the effective theory be regularized on a space-time lattice
$S_{\text {HQET }}=a^{4} \sum_{x}\left\{\mathcal{L}_{\text {stat }}(x)+\sum_{v=1}^{n} \mathcal{L}^{(v)}(x)\right\} \quad \mathcal{L}^{(v)}(x)=\sum_{i} \omega_{i}^{(v)} \mathcal{L}_{i}^{(v)}(x)$
with static action $\mathcal{L}_{\text {stat }}(x)=\bar{\psi}_{\mathrm{h}}(x)\left[\nabla_{0}^{*}+\delta m\right] \psi_{\mathrm{h}}(x)$ and the $1 / m$-parts $\mathcal{L}_{1}^{(1)}=\bar{\psi}_{\mathrm{h}}\left(-\frac{1}{2} \boldsymbol{\sigma} \cdot \mathbf{B}\right) \psi_{\mathrm{h}} \rightarrow$ chromomagnetic interaction with the gluon field $\mathcal{L}_{2}^{(1)}=\bar{\psi}_{\mathrm{h}}\left(-\frac{1}{2} \mathbf{D}^{2}\right) \psi_{\mathrm{h}} \quad \rightarrow$ kinetic energy from the heavy quark's residual motion δm and local composite fields $\mathcal{L}_{i}^{(v)}$ have mass dimensions 1 and $4+v$ coefficients $\omega=\omega\left(g_{0}, m\right)$

- must be determined such that HQET matches QCD
- at the classical level this fixes

$$
\omega_{1}^{(1)}=\omega_{2}^{(1)}=1 / m+\mathrm{O}\left(g_{0}^{2}\right) \quad \delta m=0+\mathrm{O}\left(g_{0}^{2}\right)
$$

(Removal of $m \bar{\psi}_{h} \psi_{\mathrm{h}}$ from the action, corresponding to a universal energy shift, reflects the heavy-light dynamics' independence of the scale m at lowest order)

Insert: Derivation of the HQET Lagrangian

Start from the Euclidean Dirac-Lagrangian in the continuum

$$
\begin{aligned}
\mathcal{L} & =\bar{\psi}\left(D_{\mu} \gamma_{\mu}+m\right) \psi=\psi^{\dagger} \mathcal{D} \psi \\
\mathcal{D} & \equiv m \gamma_{0}+D_{0}+\gamma_{0} D_{k} \gamma_{k}
\end{aligned}
$$

and perform a field rotation (i.e. a Foldy-Wouthuysen-Tani transformation) to decouple 'large' and 'small' components:

$$
\begin{aligned}
& \psi \rightarrow \phi=\mathrm{e}^{S} \psi \quad \psi^{\dagger} \rightarrow \phi^{\dagger}=\psi^{\dagger} \mathrm{e}^{-S} \\
& \Rightarrow \quad \mathcal{L}=\phi^{\dagger} \mathcal{D}^{\prime} \phi \\
& \text { with } \quad \mathcal{D}^{\prime}=\mathrm{e}^{S} \mathcal{D e}^{-s} \\
& \text { and } \quad S \equiv \frac{1}{2 m} D_{k} \gamma_{k}=-S^{\dagger}=\mathrm{O}\left(\frac{1}{m}\right) \quad[\mathcal{D}=\mathrm{O}(m)]
\end{aligned}
$$

In this way the $D_{k} \gamma_{k}$-term is rotated away

Classical theory:

One has smooth fields and thus can count

$$
D_{\mu}=\mathrm{O}\left(\left[\frac{1}{m}\right]^{0}\right)
$$

so that it makes sense to expand in $1 / m$

$$
\begin{aligned}
\mathcal{D}^{\prime}= & \mathcal{D}+\frac{1}{2 m}\left[D_{k} \gamma_{k}, \mathcal{D}\right]+\frac{1}{8 m^{2}}\left[D_{/} \gamma_{l},\left[D_{k} \gamma_{k}, \mathcal{D}\right]\right]+\mathrm{O}\left(1 / m^{2}\right) \\
= & \mathcal{D}+\frac{1}{2 m}\left[D_{k} \gamma_{k}, \mathcal{D}\right]-\frac{1}{4 m}\left[D_{/} \gamma_{I}, \gamma_{0} D_{k} \gamma_{k}\right]+\mathrm{O}\left(1 / m^{2}\right) \\
= & \gamma_{0}\left\{\gamma_{0} D_{0}+m+\frac{1}{2 m}\left(-D_{k} D_{k}-\frac{1}{2 i} F_{k l} \sigma_{k l}\right)+\frac{1}{2 m} F_{k 0} \gamma_{0} \gamma_{k}\right\} \\
& +\mathrm{O}\left(1 / m^{2}\right) \\
\mathcal{L}= & \mathcal{L}_{\mathrm{h}}^{\text {stat }}+\mathcal{L}_{\mathrm{h}}^{\text {stat }}+\frac{1}{2 m}\left\{\mathcal{L}_{\mathrm{h}}^{(1)}+\mathcal{L}_{\overline{\mathrm{h}}}^{(1)}+\mathcal{L}_{\mathrm{hh}}^{(1)}\right\}+\mathrm{O}\left(1 / m^{2}\right)
\end{aligned}
$$

Here we have introduced

$$
\begin{aligned}
\mathcal{L}_{\mathrm{h}}^{\text {stat }} & =\bar{\psi}_{\mathrm{h}}\left(D_{0}+m\right) \psi_{\mathrm{h}} \\
\mathcal{L}_{\overline{\mathrm{h}}}^{\text {stat }} & =\bar{\psi}_{\overline{\mathrm{h}}}\left(D_{0}-m\right) \psi_{\overline{\mathrm{h}}} \\
\mathcal{L}_{\mathrm{h}}^{(1)} & =\bar{\psi}_{\mathrm{h}}\left(-D_{k} D_{k}-\frac{1}{2 i} F_{k l} \sigma_{k l}\right) \psi_{\mathrm{h}}=\bar{\psi}_{\mathrm{h}}\left(-\mathbf{D}^{2}-\mathbf{B \sigma}\right) \psi_{\mathrm{h}}
\end{aligned}
$$

with

$$
\begin{array}{rll}
P_{+} \psi_{\mathrm{h}}=\psi_{\mathrm{h}} & \bar{\psi}_{\mathrm{h}} P_{+}=\bar{\psi}_{\mathrm{h}} & P_{ \pm}=\frac{1 \pm \gamma_{0}}{2} \\
P_{-} \psi_{\overline{\mathrm{h}}}=\psi_{\overline{\mathrm{h}}} & \bar{\psi}_{\overline{\mathrm{h}}} P_{-}=\bar{\psi}_{\overline{\mathrm{h}}} & \\
\sigma_{\mu v}=\frac{i}{2}\left[\gamma_{\mu}, \gamma_{\nu}\right] & F_{k l}=\left[D_{k}, D_{l}\right] &
\end{array}
$$

- $\mathcal{L}_{\mathrm{h} \overline{\mathrm{h}}}^{(1)}$-terms may be dropped in \mathcal{L} at the order considered
- The expressions are discretized in a straightforward way:
$D_{0} \rightarrow \nabla_{0}^{*}:$ backward lattice derivative $\quad D_{k} D_{k} \rightarrow \nabla_{k}^{*} \nabla_{k} \quad F_{k l} \rightarrow \widehat{F}_{i j}$
- The prefactors of the various operators are to be determined by a non-trivial matching of HQET and QCD in the quantum theory

Eichten-Hill action for static quarks on the lattice:

$$
\begin{aligned}
S_{\mathrm{h}}\left[U, \bar{\psi}_{\mathrm{h}}, \psi_{\mathrm{h}}\right] & =a^{4} \frac{1}{1+a \delta m} \sum_{x} \bar{\psi}_{\mathrm{h}}(x)\left(\nabla_{0}^{*}+\delta m\right) \psi_{\mathrm{h}}(x) \\
\nabla_{0}^{*} \psi_{\mathrm{h}}(x) & =\frac{1}{a}\left[\psi_{\mathrm{h}}(x)-U^{\dagger}(x-a \hat{0}, 0) \psi_{\mathrm{h}}(x-a \hat{0})\right]
\end{aligned}
$$

Eichten-Hill action for static quarks on the lattice:

$$
\begin{aligned}
S_{\mathrm{h}}\left[U, \bar{\psi}_{\mathrm{h}}, \psi_{\mathrm{h}}\right] & =a^{4} \frac{1}{1+a \delta m} \sum_{x} \bar{\psi}_{\mathrm{h}}(x)\left(\nabla_{0}^{*}+\delta m\right) \psi_{\mathrm{h}}(x) \\
\nabla_{0}^{*} \psi_{\mathrm{h}}(x) & =\frac{1}{a}\left[\psi_{\mathrm{h}}(x)-U^{\dagger}(x-a \hat{0}, 0) \psi_{\mathrm{h}}(x-a \hat{0})\right]
\end{aligned}
$$

- Static quarks propagate only forward in time \Rightarrow Associated quark propagator reads

$$
\begin{aligned}
S_{\mathrm{h}}(x, y)= & U(x-a \hat{0}, 0)^{-1} U(x-2 a \hat{0}, 0)^{-1} \cdots U(y, 0)^{-1} \\
& \times \theta\left(x_{0}-y_{0}\right) \delta(\mathbf{x}-\mathbf{y})(1+a \delta m)^{-\left(x_{0}-y_{0}\right) / a} P_{+}
\end{aligned}
$$

(timelike Wilson line, δm cancels divergence in static quark's self-energy)

Eichten-Hill action for static quarks on the lattice:

$$
\begin{aligned}
S_{\mathrm{h}}\left[U, \bar{\psi}_{\mathrm{h}}, \psi_{\mathrm{h}}\right] & =a^{4} \frac{1}{1+a \delta m} \sum_{x} \bar{\psi}_{\mathrm{h}}(x)\left(\nabla_{0}^{*}+\delta m\right) \psi_{\mathrm{h}}(x) \\
\nabla_{0}^{*} \psi_{\mathrm{h}}(x) & =\frac{1}{a}\left[\psi_{\mathrm{h}}(x)-U^{\dagger}(x-a \hat{0}, 0) \psi_{\mathrm{h}}(x-a \hat{0})\right]
\end{aligned}
$$

- Static quarks propagate only forward in time
\Rightarrow Associated quark propagator reads

$$
\begin{aligned}
S_{\mathrm{h}}(x, y)= & U(x-a \hat{0}, 0)^{-1} U(x-2 a \hat{0}, 0)^{-1} \cdots U(y, 0)^{-1} \\
& \times \theta\left(x_{0}-y_{0}\right) \delta(\mathbf{x}-\mathbf{y})(1+a \delta m)^{-\left(x_{0}-y_{0}\right) / a} P_{+}
\end{aligned}
$$

(timelike Wilson line, δm cancels divergence in static quark's self-energy)

- O(a) improvement:

Preserving on the lattice the symmetries of the static theory

- heavy quark spin-symmetry,
- local conservation of heavy quark flavour number
- plus gauge invariance, parity and cubic symmetry
guarantees that both universality class and $\mathrm{O}(\mathrm{a})$ improvement are unchanged w.r.t. the Eichten-Hill action, i.e. the static-light action is already improved if the light quark sector is
[Kurth \& Sommer, 2001]

Correlation functions of composite fields

... are of interest for applications involving transition matrix elements

Example

Expansion of the (time component of the) axial current in HQET:

$$
\begin{aligned}
A_{0}^{\mathrm{HQET}}(x) & =\sum_{v=0}^{n} \mathcal{A}^{(v)}(x) & & \\
\mathcal{A}^{(0)}(x) & =\alpha_{0}^{(0)} A_{0}^{\text {stat }}(x) & & A_{0}^{\text {stat }}(x)=\bar{\psi}_{1}(x) \gamma_{0} \gamma_{5} \psi_{\mathrm{h}}(x) \\
\mathcal{A}^{(v)}(x) & =\sum_{i} \alpha_{i}^{(v)} \mathcal{A}_{i}^{(v)}(x) & & v>0
\end{aligned}
$$

where ψ_{1} denotes a light quark field and $\mathcal{A}_{i}^{(v)}$ is of mass dimension $3+v$

Correlation functions of composite fields ..

... are of interest for applications involving transition matrix elements

Example

Expansion of the (time component of the) axial current in HQET:

$$
\begin{aligned}
A_{0}^{\mathrm{HQET}}(x) & =\sum_{v=0}^{n} \mathcal{A}^{(v)}(x) & & \\
\mathcal{A}^{(0)}(x) & =\alpha_{0}^{(0)} A_{0}^{\text {stat }}(x) & & A_{0}^{\text {stat }}(x)=\bar{\psi}_{1}(x) \gamma_{0} \gamma_{5} \psi_{\mathrm{h}}(x) \\
\mathcal{A}^{(v)}(x) & =\sum_{i} \alpha_{i}^{(v)} \mathcal{A}_{i}^{(v)}(x) & & v>0
\end{aligned}
$$

where ψ_{1} denotes a light quark field and $\mathcal{A}_{i}^{(v)}$ is of mass dimension $3+v$
Then, for the correlator [with $\left(\bar{\psi}_{i} \Gamma \psi_{j}\right)^{\dagger} \equiv \bar{\psi}_{j} \gamma_{0} \Gamma^{\dagger} \gamma_{0} \psi_{i}$]

$$
C_{\mathrm{AA}}^{\mathrm{HQET}}\left(x_{0}\right)=a^{3} \sum_{\mathbf{x}}\left\langle A_{0}^{\mathrm{HQET}}(x)\left(A_{0}^{\mathrm{HQET}}\right)^{\dagger}(0)\right\rangle
$$

the leading and subleading terms at the classical level are given by

$$
\alpha_{0}^{(0)}=1 \quad \mathcal{A}_{1}^{(1)}=\bar{\psi}_{1} \gamma_{j} \gamma_{5} \overleftarrow{D}_{j} \psi_{\mathrm{h}} \quad \alpha_{1}^{(1)}=1 / m
$$

Expectation values

At the quantum level:
Expectation values are defined via the path integral representation

$$
\langle O\rangle=\frac{1}{z} \int \mathcal{D}[\varphi] O[\varphi] \mathrm{e}^{-\left(S_{\mathrm{rel}}+S_{\mathrm{HQET}}\right)} \quad z=\int \mathcal{D}[\varphi] \mathrm{e}^{-\left(S_{\mathrm{rel}}+S_{\mathrm{HQET}}\right)}
$$

over all fields $\{\varphi\}$ with the standard measure $\mathcal{D}[\varphi]$

Expectation values

At the quantum level:
Expectation values are defined via the path integral representation

$$
\langle O\rangle=\frac{1}{z} \int \mathcal{D}[\varphi] O[\varphi] \mathrm{e}^{-\left(S_{\mathrm{rel}}+S_{\mathrm{HQET}}\right)} \quad z=\int \mathcal{D}[\varphi] \mathrm{e}^{-\left(S_{\mathrm{rel}}+S_{\mathrm{HQET}}\right)}
$$

over all fields $\{\varphi\}$ with the standard measure $\mathcal{D}[\varphi]$
Important element in the definition of the effective field theory
It is understood that the integrand of the path integral is expanded in a power series in $1 / m$ with power counting according to

$$
\omega_{i}^{(v)}=\mathrm{O}\left(1 / m^{v}\right) \quad \alpha_{i}^{(v)}=\mathrm{O}\left(1 / m^{v}\right)
$$

\Rightarrow Replace

$$
\begin{aligned}
& \exp \{- \\
& \left.\quad\left(S_{\text {rel }}+S_{\text {HQET }}\right)\right\}= \\
& \quad \exp \left\{-\left(S_{\text {rel }}+a^{4} \sum_{x} \mathcal{L}_{\text {stat }}(x)\right)\right\} \\
& \quad \times\left\{1-a^{4} \sum_{x} \mathcal{L}^{(1)}(x)+\frac{1}{2}\left[a^{4} \sum_{x} \mathcal{L}^{(1)}(x)\right]^{2}-a^{4} \sum_{x} \mathcal{L}^{(2)}(x)+\ldots\right\}
\end{aligned}
$$

$\Rightarrow 1 / m$-terms appear only as insertions of local operators $\mathcal{O}_{i}^{(\mathcal{v})}(x)$ and $\mathcal{A}_{i}^{(v)}(x)$ into correlators, while the true PI average is taken w.r.t. the action in the static approximation for the heavy quark

$$
S=S_{\text {rel }}+a^{4} \Sigma_{x} \mathcal{L}_{\text {stat }}(x)
$$

$\Rightarrow 1 / m$-terms appear only as insertions of local operators $\mathcal{O}_{i}^{(v)}(x)$ and $\mathcal{A}_{i}^{(v)}(x)$ into correlators, while the true PI average is taken w.r.t. the action in the static approximation for the heavy quark

$$
S=S_{\text {rel }}+a^{4} \Sigma_{x} \mathcal{L}_{\text {stat }}(x)
$$

Discussion of the renormalization properties of lattice HQET

Power counting arguments:

- Static effective theory expected to be renormalizable, requiring a finite number of parameters to be fixed to obtain a continuum limit (Note: With one of the $1 / m$-terms kept in the exponent, as in NRQCD, renormalizability would be lost!)
- Consequences for renormalization of EVs $\langle O\rangle$ after inserting the expanded form of $\exp \left\{-\left(S_{\text {rel }}+S_{\text {HQET }}\right)\right\}$:
\checkmark Problem of renormalizing correlation functions of local composite operators in the static effective theory
\Rightarrow Conclusion:
Upon inclusion of all local operators with proper symmetries and dimensions up to that of the highest-dimensional one ($v \leqslant n$), their coefficients may be chosen so that all EVs have a continuum limit
\Rightarrow HQET truncated at any finite order in $1 / m$ is renormalizable
Crucial for the lattice theory, because this means that the CL exists and is independent of the details of the lattice formulation (universality)
\Rightarrow HQET truncated at any finite order in $1 / m$ is renormalizable
Crucial for the lattice theory, because this means that the CL exists and is independent of the details of the lattice formulation (universality)

Formally:
The effective field theory is now defined in terms of the parameter set
$\mathcal{C}_{\mathrm{HQET}} \equiv\left\{c_{k}\right\}=\mathcal{C}_{N_{\mathrm{f}}-1} \cup\{\delta m\} \cup\left\{\omega_{i}^{(v)}\right\} \cup\left\{\alpha_{j}^{(v)}\right\} \cup \ldots \quad c_{1} \equiv g_{0}^{2}$
which for $k>1$ must be adjusted as function of g_{0}^{2} to get a decent CL (i.e. renormalizations of composite fields are among $\mathcal{C}_{\mathrm{HQET}}$, e.g. $\alpha_{0}^{(0)} \equiv Z_{\mathrm{A}}^{\text {stat }}$)

Crucial for the lattice theory, because this means that the CL exists and is independent of the details of the lattice formulation (universality)

Formally:
The effective field theory is now defined in terms of the parameter set
$\mathcal{C}_{\mathrm{HQET}} \equiv\left\{c_{k}\right\}=\mathcal{C}_{N_{\mathrm{f}}-1} \cup\{\delta m\} \cup\left\{\omega_{i}^{(v)}\right\} \cup\left\{\alpha_{j}^{(v)}\right\} \cup \ldots \quad c_{1} \equiv g_{0}^{2}$
which for $k>1$ must be adjusted as function of g_{0}^{2} to get a decent CL (i.e. renormalizations of composite fields are among $\mathcal{C}_{\mathrm{HQET}}$, e.g. $\alpha_{0}^{(0)} \equiv Z_{A}^{\text {stat }}$)

- Since the terms in $S_{\text {HQET }}$ are organized just by their mass dimension, the existence of a CL (non-perturbative renormalizability) is equivalent to expect that composite operators mix only with same- and lower-dimensional ones
- Generally, as the $1 / m$ - and a-expansion aren't independent but regarded as one expansion in the dimension of $\mathcal{L}_{i}^{(v)}, \mathcal{A}_{i}^{(v)}$, count $a=\mathrm{O}(1 / m)$ and start with all $\mathcal{O}_{i}^{(v)}$ of given dimension, restricted only by lattice symmetries
- In particular: $S_{\text {rel }}$ has to be $\mathrm{O}(a)$ improved to go to order $1 / m$

Caveat: Operator mixing induces power divergences

Mixings are allowed between operators of different dimensions, e.g.

$$
\mathcal{O}_{\mathrm{R}}^{\mathrm{d}=5}=\sum_{k} z_{k} \mathcal{O}_{k}^{\mathrm{d}=5}+\sum_{k} c_{k} \mathcal{O}_{k}^{\mathrm{d}=4} \quad c_{k}=a^{-1} \times\left\{c_{k}^{(0)}+c_{k}^{(1)} g_{0}^{2}+\ldots\right\}
$$

Caveat: Operator mixing induces power divergences

Mixings are allowed between operators of different dimensions, e.g.
$\mathcal{O}_{R}^{\mathrm{d}=5}=\sum_{k} z_{k} \mathcal{O}_{k}^{\mathrm{d}=5}+\sum_{k} c_{k} \mathcal{O}_{k}^{\mathrm{d}=4} \quad c_{k}=a^{-1} \times\left\{c_{k}^{(0)}+c_{k}^{(1)} g_{0}^{2}+\ldots\right\}$
Perturbative precision insufficient to determine the coefficients $\left\{c_{k}\right\}$
\Rightarrow Power-law divergences, remainders $\sim a^{-p}$, i.e. no continuum limit
example: at the static level a linearly divergent, additive mass counterterm

$$
\delta m=\left(c_{1} g_{0}^{2}+\ldots\right) / a
$$

originates from the mixing of $\bar{\psi}_{h} D_{0} \psi_{h}$ with $\bar{\psi}_{h} \psi_{h}$

Caveat: Operator mixing induces power divergences

Mixings are allowed between operators of different dimensions, e.g.
$\mathcal{O}_{R}^{\mathrm{d}=5}=\sum_{k} z_{k} \mathcal{O}_{k}^{\mathrm{d}=5}+\sum_{k} c_{k} \mathcal{O}_{k}^{\mathrm{d}=4} \quad c_{k}=a^{-1} \times\left\{c_{k}^{(0)}+c_{k}^{(1)} g_{0}^{2}+\ldots\right\}$
Perturbative precision insufficient to determine the coefficients $\left\{c_{k}\right\}$
\Rightarrow Power-law divergences, remainders $\sim a^{-p}$, i.e. no continuum limit
example: at the static level a linearly divergent, additive mass counterterm

$$
\delta m=\left(c_{1} g_{0}^{2}+\ldots\right) / a
$$

originates from the mixing of $\bar{\psi}_{h} D_{0} \psi_{h}$ with $\bar{\psi}_{h} \psi_{h}$
in general: since the lattice spacing decreases as

$$
a_{1} \sim \exp \left\{-1 /\left(2 b_{0} g_{0}^{2}\right)\right\} \quad \text { for small bare gauge coupling } g_{0}
$$

a truncation of the series in an only perturbative computation leaves incompletely cancelled/undetermined terms that diverge as $a \rightarrow 0$

Caveat: Operator mixing induces power divergences

Mixings are allowed between operators of different dimensions, e.g.
$\mathcal{O}_{R}^{\mathrm{d}=5}=\sum_{k} z_{k} \mathcal{O}_{k}^{\mathrm{d}=5}+\sum_{k} c_{k} \mathcal{O}_{k}^{\mathrm{d}=4} \quad c_{k}=a^{-1} \times\left\{c_{k}^{(0)}+c_{k}^{(1)} g_{0}^{2}+\ldots\right\}$
Perturbative precision insufficient to determine the coefficients $\left\{c_{k}\right\}$
\Rightarrow Power-law divergences, remainders $\sim a^{-p}$, i.e. no continuum limit
example: at the static level a linearly divergent, additive mass counterterm

$$
\delta m=\left(c_{1} g_{0}^{2}+\ldots\right) / a
$$

originates from the mixing of $\bar{\psi}_{h} D_{0} \psi_{h}$ with $\bar{\psi}_{h} \psi_{h}$
in general: since the lattice spacing decreases as

$$
a_{1} \sim \exp \left\{-1 /\left(2 b_{0} g_{0}^{2}\right)\right\} \quad \text { for small bare gauge coupling } g_{0}
$$

a truncation of the series in an only perturbative computation leaves incompletely cancelled/undetermined terms that diverge as $a \rightarrow 0$
pattern: $\quad \Delta c_{k} \sim g_{0}^{2(1+1)} a^{-p} \sim a^{-p}[\ln (a \wedge)]^{-(1+1)} \xrightarrow{a \rightarrow 0} \infty$

Caveat: Operator mixing induces power divergences

Mixings are allowed between operators of different dimensions, e.g.
$\mathcal{O}_{R}^{\mathrm{d}=5}=\sum_{k} z_{k} \mathcal{O}_{k}^{\mathrm{d}=5}+\sum_{k} c_{k} \mathcal{O}_{k}^{\mathrm{d}=4} \quad c_{k}=a^{-1} \times\left\{c_{k}^{(0)}+c_{k}^{(1)} g_{0}^{2}+\ldots\right\}$
Perturbative precision insufficient to determine the coefficients $\left\{c_{k}\right\}$
\Rightarrow Power-law divergences, remainders $\sim a^{-p}$, i.e. no continuum limit
example: at the static level a linearly divergent, additive mass counterterm

$$
\delta m=\left(c_{1} g_{0}^{2}+\ldots\right) / a
$$

originates from the mixing of $\bar{\psi}_{h} D_{0} \psi_{h}$ with $\bar{\psi}_{h} \psi_{h}$
in general: since the lattice spacing decreases as

$$
a_{1} \sim \exp \left\{-1 /\left(2 b_{0} g_{0}^{2}\right)\right\} \quad \text { for small bare gauge coupling } g_{0}
$$

a truncation of the series in an only perturbative computation leaves incompletely cancelled/undetermined terms that diverge as $a \rightarrow 0$
pattern: $\quad \Delta c_{k} \sim g_{0}^{2(1+1)} a^{-p} \sim a^{-p}[\ln (a \wedge)]^{-(1+1)} \xrightarrow{a \rightarrow 0} \infty$

Caveat: Operator mixing induces power divergences

Mixings are allowed between operators of different dimensions, e.g.
$\mathcal{O}_{R}^{\mathrm{d}=5}=\sum_{k} z_{k} \mathcal{O}_{k}^{\mathrm{d}=5}+\sum_{k} c_{k} \mathcal{O}_{k}^{\mathrm{d}=4} \quad c_{k}=a^{-1} \times\left\{c_{k}^{(0)}+c_{k}^{(1)} g_{0}^{2}+\ldots\right\}$
Perturbative precision insufficient to determine the coefficients $\left\{c_{k}\right\}$
\Rightarrow Power-law divergences, remainders $\sim a^{-p}$, i.e. no continuum limit
example: at the static level a linearly divergent, additive mass counterterm

$$
\delta m=\left(c_{1} g_{0}^{2}+\ldots\right) / a
$$

originates from the mixing of $\bar{\psi}_{h} D_{0} \psi_{h}$ with $\bar{\psi}_{h} \psi_{h}$
in general: since the lattice spacing decreases as

$$
a_{1} \sim \exp \left\{-1 /\left(2 b_{0} g_{0}^{2}\right)\right\} \quad \text { for small bare gauge coupling } g_{0}
$$

a truncation of the series in an only perturbative computation leaves incompletely cancelled/undetermined terms that diverge as $a \rightarrow 0$
pattern: $\quad \Delta c_{k} \sim g_{0}^{2(1+1)} a^{-p} \sim a^{-p}[\ln (a \wedge)]^{-(1+1)} \xrightarrow{a \rightarrow 0} \infty$
\Rightarrow Non-perturbative method needed to determine (at least some) $\left\{c_{k}\right\}$

Matching of HQET and QCD

Implication: Non-perturbative renormalization of the theory required
From the discussion so far we infer:
HQET is an approximation to QCD when the coefficients $\left\{c_{k}\right\}$ are chosen correctly such that

$$
\begin{aligned}
\Phi^{\mathrm{HQET}}(M)= & \Phi^{\mathrm{QCD}}(M)+\mathrm{O}\left(1 /\left[r_{0} M\right]^{n+1}\right) \\
M= & \mathrm{RGI} \text { (heavy) quark mass to be free of } \\
& \text { any renormalization scheme dependence }
\end{aligned}
$$

Matching of HQET and QCD

Implication: Non-perturbative renormalization of the theory required
From the discussion so far we infer:
HQET is an approximation to QCD when the coefficients $\left\{c_{k}\right\}$ are chosen correctly such that

$$
\Phi^{\mathrm{HQET}}(M)=\Phi^{\mathrm{QCD}}(M)+\mathrm{O}\left(1 /\left[r_{0} M\right]^{n+1}\right)
$$

$M=\mathrm{RGI}$ (heavy) quark mass to be free of

 any renormalization scheme dependence
Example

for a quantity Φ^{QCD} : Correlation function of the heavy-light axial current
$C_{\mathrm{AA}}\left(x_{0}\right)=\left.Z_{\mathrm{A}}^{2} a^{3} \sum_{\mathrm{x}}\left\langle A_{0}(x)\left(A_{0}\right)^{\dagger}(0)\right\rangle \quad A_{\mu} \equiv A_{\mu}\right|^{\mathrm{QCD}}=\bar{\psi}_{1} \gamma_{\mu} \gamma_{5} \psi_{\mathrm{b}}$
(Z_{A} ensures natural normalization of A_{μ} consistent with current algebra)
Then: $\Phi^{\mathrm{HQET}}=\mathrm{e}^{-m x_{0}} C_{\text {AA }}^{\mathrm{HQET}}\left(x_{0}\right)$ in the region $1 / x_{0} \ll M$

Obvious strategy:

Determine the $\left\{c_{k}, k=1, \ldots, N_{n}\right\}$ by imposing matching conditions

$$
\Phi_{k}^{\mathrm{HQET}}(M)=\Phi_{k}^{\mathrm{QCD}}(M) \quad k=1, \ldots, N_{n} \quad(\star)
$$

for this equivalence between the effective theory and QCD to hold

Obvious strategy:
Determine the $\left\{c_{k}, k=1, \ldots, N_{n}\right\}$ by imposing matching conditions

$$
\Phi_{k}^{\mathrm{HQET}}(M)=\Phi_{k}^{\mathrm{QCD}}(M) \quad k=1, \ldots, N_{n} \quad(\star)
$$

for this equivalence between the effective theory and QCD to hold
\Rightarrow These conditions define the set $\left\{c_{k}\right\}$ for any value of the lattice spacing (or bare coupling)

- Observables used originally to fix the parameters of QCD (e.g. via requiring hadron masses to agree with experiment) may be amongst the Φ_{k}^{QCD}
- To preserve the predictability of $\mathrm{HQET}, \Phi_{k}^{\mathrm{QCD}}$ should not be experimentally accessible observables but certain quantities calculable in the continuum limit of lattice QCD

Obvious strategy:
Determine the $\left\{c_{k}, k=1, \ldots, N_{n}\right\}$ by imposing matching conditions

$$
\Phi_{k}^{\mathrm{HQET}}(M)=\Phi_{k}^{\mathrm{QCD}}(M) \quad k=1, \ldots, N_{n} \quad(\star)
$$

for this equivalence between the effective theory and QCD to hold
\Rightarrow These conditions define the set $\left\{c_{k}\right\}$ for any value of the lattice spacing (or bare coupling)

- Observables used originally to fix the parameters of QCD (e.g. via requiring hadron masses to agree with experiment) may be amongst the Φ_{k}^{QCD}
- To preserve the predictability of $\mathrm{HQET}, \Phi_{k}^{\mathrm{QCD}}$ should not be experimentally accessible observables but certain quantities calculable in the continuum limit of lattice QCD
\Rightarrow However:
Demands to treat the heavy quark as relativistic particle on the lattice, though small enough a to do this are very difficult to reach
\Rightarrow Impose the matching conditions in small volume

Non-perturbative HQET ...

... and the basic idea of exploiting finite-volume physics

Goal: non-perturbative matching of HQET \& QCD

QCD
HQET

matching condition

$$
\Phi^{\mathrm{QCD}}=\Phi^{\mathrm{HQET}}
$$

for observables Φ

(e.g. matrix elements)

Non-perturbative HQET ...

... and the basic idea of exploiting finite-volume physics

Goal: non-perturbative matching of HQET \& QCD
Objection: how do you simulate the b-quark as a relativistic fermion?

QCD
HQET

matching condition

$$
\Phi^{\mathrm{QCD}}=\Phi^{\mathrm{HQET}}
$$

for observables Φ

(e.g. matrix elements)

Non-perturbative HQET ...

... and the basic idea of exploiting finite-volume physics

Goal: non-perturbative matching of HQET \& QCD
Objection: how do you simulate the b-quark as a relativistic fermion?
\Rightarrow Trick: start with QCD in small volume, $L \equiv L_{0} \simeq 0.2 \mathrm{fm}$
QCD
HQET

matching condition

$$
\Phi^{\mathrm{QCD}}=\Phi^{\mathrm{HQET}}
$$

for observables Φ

(e.g. matrix elements)

Fix parameters of the effective theory through its relation to QCD observables in small volume
\checkmark Legitimate:
The underlying Lagrangian does not know about the finite volume!
\checkmark Fix parameters of the effective theory through its relation to QCD observables in small volume
\checkmark Legitimate:
The underlying Lagrangian does not know about the finite volume!

Further remarks

- Observables Φ are assumed to be renormalized
- New Φ_{k} have to be added when increasing the order n in the expansion, while the parameters $\left\{c_{i}, i \leqslant N_{n-1}\right\}$ of the lower-order $\mathcal{L}_{\text {HQET }}$ might change due to operator mixing
- Most convenient to take the continuum limit of Φ_{k}^{QCD} before imposing the matching conditions
- Interpreting some of the conditions as improvement conditions, Symanzik $O(a)$ improvement is accounted for automatically

$$
\text { errors }=\mathrm{O}\left([1 / m]^{n+1}\right)=\mathrm{O}\left(M^{-(n+1)}[a M]^{k}\right) \quad k=0,1, \ldots, n+1
$$

E.g. treating the theory including the next-to-leading operators
$\rightarrow(1 / M)^{0}$-terms with $\mathrm{O}\left(a^{2}\right)$ errors
\rightarrow linear 1/M-corrections with $\mathrm{O}($ a $)$ uncertainties

Matching in finite volume and finite-size scaling

Assuming both QCD \& HQET to be applicable in finite volume and the parameters in $\mathcal{L}_{\text {QCD/HQET }}$ to be independent of it, we evaluate (\star) as

$$
\Phi_{k}^{\mathrm{HQET}}(L, M)=\Phi_{k}^{\mathrm{QCD}}(L, M) \quad k=1, \ldots, N_{n}
$$

- Allows much smaller a on the r.h.s. to eventually approach the CL
- Typical choice: $L=L_{0} \simeq 0.2-0.4 \mathrm{fm}$
- HQET parameters determined at small spacings $a=0.01-0.4 \mathrm{fm}$ so that large volumes, needed to extract the physical mass spectrum or matrix elements, require very large lattices of $L / a>50$ \rightarrow How can we bridge the gap to practicable lattice spacings?

Matching in finite volume and finite-size scaling

Assuming both QCD \& HQET to be applicable in finite volume and the parameters in $\mathcal{L}_{\text {QCD/HQET }}$ to be independent of it, we evaluate (\star) as

$$
\Phi_{k}^{\mathrm{HQET}}(L, M)=\Phi_{k}^{\mathrm{QCD}}(L, M) \quad k=1, \ldots, N_{n}
$$

- Allows much smaller a on the r.h.s. to eventually approach the CL
- Typical choice: $L=L_{0} \simeq 0.2-0.4 \mathrm{fm}$
- HQET parameters determined at small spacings $a=0.01-0.4 \mathrm{fm}$ so that large volumes, needed to extract the physical mass spectrum or matrix elements, require very large lattices of $L / a>50$ \rightarrow How can we bridge the gap to practicable lattice spacings?

A well-defined procedure: Finite-size scaling

Define step scaling functions σ_{k} by

$$
\Phi_{k}^{\mathrm{HQET}}(s L, M)=\sigma_{k}\left(\left\{\Phi_{j}^{\mathrm{HQET}}(L, M), j=1, \ldots, N_{n}\right\}\right) \quad k=1, \ldots, N_{n}
$$

- σ_{k} describe the change of the complete set $\left\{\Phi_{k}^{\mathrm{HQET}}\right\}$ under $L \rightarrow s L$
- Ends up with a's appropriate for infinite volume computations ($L_{K}=s^{K} L_{0} \simeq 1 \mathrm{fm}$ where typically $s=2$ and $k=2,3$)

QCD Schrödinger functional (SF)

A finite-volume renormalization scheme

Definition [Lüscher et al.]

- SF \equiv QCD partition function on a Euclidean $T \times L^{3}$ cylinder:

$$
\int_{T \times L^{3}} \mathcal{D}[U, \psi, \bar{\psi}] \mathrm{e}^{-S[U, \psi, \bar{\psi}]}=\mathrm{e}^{-\Gamma}
$$

- Gauge \& quark fields satisfy Dirichlet BCs in time and are periodic in space, e.g.

$$
\left.U(x, k)\right|_{x_{0}=0}=\left.\mathrm{e}^{a C_{k}(\mathbf{x})} \quad U(x, k)\right|_{x_{0}=T}=\mathrm{e}^{a C_{k}^{\prime}(\mathbf{x})}
$$

(Lattice) Correlation functions are constructed according to
$f_{\mathrm{A}}\left(x_{0}\right)=-\frac{1}{2}\left\langle A_{0}(x) \mathcal{O}\right\rangle \quad \mathcal{O}=\sum_{\mathbf{y}, \mathbf{z}} \bar{\zeta}(\mathbf{y}) \gamma_{5} \zeta(\mathbf{z}):(\mathrm{PS})$ Boundary source
Similar: $f_{\mathrm{P}}, k_{\mathrm{V}}, \ldots$, and $f_{1}=-\frac{1}{2}\left\langle\mathcal{O}^{\prime} \mathcal{O}\right\rangle=$ boundary-to-boundary correlator

Recursive finite-size scaling

- Connects small and large volumes (resp. low-energy scales to perturbative ones $\sim 1 / L_{0}$)
- Continuum limit can be taken
- Fully non-perturbative

Recursive finite-size scaling
$\Phi^{\mathrm{HQET}}\left(L_{0}\right)$

- Connects small and large volumes (resp. low-energy scales to perturbative ones $\sim 1 / L_{0}$)
- Continuum limit can be taken
- Fully non-perturbative

Benefits

- Identifies $\mu=1 / L$
- L^{-1} runs, separated from a^{-1}
- Spans large range in energy $\mu=1 / L$
\Rightarrow Framework to solve scale dependent renorm. problems

Lecture 2

Applications

Non-perturbative tests of HQET

[H., Jüttner, Sommer \& Wennekers, 2004]
Motivation:
Though HQET is commonly accepted as effective theory of QCD, explicit demonstrations of this are rare or based on phenomenological analyses

Requirement for a pure, non-perturbative theory test

QCD including a heavy enough quark must be simulated on the lattice at lattice spacings small enough to be able to take the continuum limit
\Rightarrow Perform such tests in a finite volume

Non-perturbative tests of HQET

[H., Jüttner, Sommer \& Wennekers, 2004]
Motivation:
Though HQET is commonly accepted as effective theory of QCD, explicit demonstrations of this are rare or based on phenomenological analyses

Requirement for a pure, non-perturbative theory test

QCD including a heavy enough quark must be simulated on the lattice at lattice spacings small enough to be able to take the continuum limit
\Rightarrow Perform such tests in a finite volume

Realization:

- Put the theory in a Schrödinger functional box with moderate $T=L$ such that $a m_{\mathrm{b}} \ll 1$
- Equivalent boundary conditions can be imposed on the HQET side
- Build correlators of boundary quark fields ζ and composite fields

$$
\begin{aligned}
& f_{\mathrm{A}}\left(x_{0}\right)=-\frac{a^{6}}{2} \sum_{\mathbf{y}, \mathbf{z}}\left\langle\left(A_{\mathrm{I}}\right)_{0}(x) \bar{\zeta}_{\mathrm{b}}(\mathbf{y}) \gamma_{5} \zeta_{1}(\mathbf{z})\right\rangle \\
& \left(A_{\mathrm{I}}\right)_{0}(x)=A_{0}(x)+a c_{\mathrm{A}} \frac{1}{2}\left(\partial_{\mu}+\partial_{\mu}^{*}\right) P(x)
\end{aligned}
$$

$$
x_{0}=L
$$

Form a proper ratio where the boundary renormalization factors drop out:

$$
\begin{aligned}
Y_{\mathrm{PS}}(L, M) \equiv & z_{\mathrm{A}} \frac{f_{\mathrm{A}}(L / 2)}{\sqrt{f_{1}}}=\frac{\langle\Omega(L)| \mathbb{A}_{0}|B(L)\rangle}{\| \Omega(L)\rangle\| \||B(L)\rangle \|} \\
& |B(L)\rangle=\mathrm{e}^{-L \mathbb{H} / 2}\left|\varphi_{\mathrm{B}}(L)\right\rangle \quad|\Omega(L)\rangle=\mathrm{e}^{-L \mathbb{H} / 2}\left|\varphi_{0}(L)\right\rangle
\end{aligned}
$$

$\left|\varphi_{0}(L)\right\rangle,\left|\varphi_{\mathrm{B}}(L)\right\rangle:$ SF (vacuum and pseudoscalar) boundary states $|\Omega(L)\rangle,|B(L)\rangle$: states with vacuum and B-meson quantum numbers

- Time evolution ensures dominance by contributions with $\Delta E \lesssim 2 / L$
- Conclusion: HQET is applicable if $1 / L \ll M$ (and $\Lambda \ll M$)
\Rightarrow One expects (for fixed ΛL) the large-mass asymptotics of Y_{PS} to obey

$$
Y_{\mathrm{PS}}(L, M) \stackrel{M \rightarrow \infty}{\sim} C_{\mathrm{PS}}(M / \Lambda) \times X_{\mathrm{RGI}}(L)+\mathrm{O}(1 / z) \quad z=M L
$$

Form a proper ratio where the boundary renormalization factors drop out:

$$
\begin{aligned}
Y_{\mathrm{PS}}(L, M) \equiv & z_{\mathrm{A}} \frac{f_{\mathrm{A}}(L / 2)}{\sqrt{f_{1}}}=\frac{\langle\Omega(L)| \mathbb{A}_{0}|B(L)\rangle}{\| \Omega(L)\rangle\| \||B(L)\rangle \|} \\
& |B(L)\rangle=\mathrm{e}^{-L \mathbb{H} / 2}\left|\varphi_{\mathrm{B}}(L)\right\rangle \quad|\Omega(L)\rangle=\mathrm{e}^{-L \mathbb{H} / 2}\left|\varphi_{0}(L)\right\rangle
\end{aligned}
$$

$\left|\varphi_{0}(L)\right\rangle,\left|\varphi_{\mathrm{B}}(L)\right\rangle:$ SF (vacuum and pseudoscalar) boundary states $|\Omega(L)\rangle,|B(L)\rangle$: states with vacuum and B-meson quantum numbers

- Time evolution ensures dominance by contributions with $\Delta E \lesssim 2 / L$
- Conclusion: HQET is applicable if $1 / L \ll M$ (and $\Lambda \ll M$)
\Rightarrow One expects (for fixed $\wedge L$) the large-mass asymptotics of Y_{PS} to obey

$$
Y_{\mathrm{PS}}(L, M) \stackrel{M \rightarrow \infty}{\sim} C_{\mathrm{PS}}(M / \Lambda) \times X_{\mathrm{RGI}}(L)+\mathrm{O}(1 / z) \quad z=M L
$$

$X_{\mathrm{RGI}}=$ static-limit analogue of Y_{PS}

- $X_{\mathrm{RGI}}(L)=Z_{\mathrm{RGI}} X(L) \propto \frac{\Phi_{\mathrm{RGI}}}{\Phi_{\mathrm{SF}}(\mu=1 / L)}$
- demands a lattice computation in static approximation ($L \simeq 0.2 \mathrm{fm}$) and to extrapolate to the continuum

Quenched study of the large $-z$ behaviour of Y_{PS} in small-volume QCD:

$$
\mathrm{Y}_{\mathrm{PS}} / \mathrm{C}_{\mathrm{PS}}
$$

- The finite-mass observable turns smoothly into the HQET prediction (Note: C_{PS} reduces the mass dependence of $Y_{\mathrm{PS}}(L, M)$ by a factor >2)
- More such successful test (e.g. for the spin splitting) are available, outcome: magnitude of z^{-n}-coefficients reasonably small, $\sim \mathrm{O}(1)$
- Power-corrections larger than perturbative ones at $z^{-1}=0.1-0.2$, but a theoretically consistent evaluation of the former requires a fully non-perturbative formulation of HQET including its matching to QCD

Non-perturbative matching in a concrete example

Computation of M_{b} in lowest-order of HQET (static approximation) [H. \& Sommer, 2004]
Recall:

- Matching conditions $\Phi_{k}^{\mathrm{HQET}}(L, M)=\Phi_{k}^{\mathrm{QCD}}(L, M)$ in $L \simeq 0.2 \mathrm{fm}$
- to fix the QCD parameters \& subtract power divergences in HQET

Non-perturbative matching in a concrete example

Computation of M_{b} in lowest-order of HQET (static approximation) [H. \& Sommer, 2004]

Recall:

- Matching conditions $\Phi_{k}^{\mathrm{HQET}}(L, M)=\Phi_{k}^{\mathrm{QCD}}(L, M)$ in $L \simeq 0.2 \mathrm{fm}$
- to fix the QCD parameters \& subtract power divergences in HQET

Realization to determine the mass of the b-quark

$\left.\begin{array}{l}\Gamma(L, M) \\ \Gamma_{\text {stat }}(L)\end{array}\right\}=\left\{\begin{array}{l}\text { B-meson mass in a finite volume of extent } L^{4} \\ \text { energy of a state with B-meson quantum numbers in } L^{4}\end{array}\right.$
Now implicitly replace

$$
m_{\text {bare }}=m+\frac{1}{a} \ln (1+a \delta m) \quad \text { in } \quad m_{\mathrm{B}}=E_{\text {stat }}+m_{\text {bare }}
$$

via the set of conditions

$$
\begin{aligned}
\Phi_{1}^{\mathrm{HQET}} & =\Phi_{1}^{\mathrm{QCD}} \equiv \bar{g}^{2}\left(L_{0}\right)=\text { constant } \\
\Phi_{2}^{\mathrm{HQET}} & =\Phi_{2}^{\mathrm{QCD}} \equiv m_{\mathrm{l}}=0 \\
\Gamma_{\text {stat }}\left(L_{0}\right)+m_{\text {bare }} \equiv \Phi_{3}^{\mathrm{HQET}} & =\Phi_{3}^{\mathrm{QCD}} \equiv \Gamma\left(L_{0}, M_{\mathrm{b}}\right)
\end{aligned}
$$

As anticipated before:

Use L-dependent energies from SF-correlators in the B-meson channel

As anticipated before:

Use L-dependent energies from SF-correlators in the B-meson channel

\Rightarrow Matching condition by equating in small volume with linear extent L_{0} :

$$
\Gamma_{\text {stat }}\left(L_{0}\right)+m_{\text {bare }}=\Gamma\left(L_{0}, M_{\mathrm{b}}\right)
$$

As anticipated before:
Use L-dependent energies from SF-correlators in the B-meson channel
$C\left(x_{0}, M\right): \bar{\zeta}_{l_{2}} \longrightarrow A_{0}$

$$
\begin{aligned}
& \quad \rightarrow \Gamma(L, M) \equiv-\left.\frac{\mathrm{d}}{\mathrm{~d} x_{0}} \ln \left[C\left(x_{0}, M\right)\right]\right|_{x_{0}=\frac{⿺}{2}} \\
& x_{0}=L \\
& \quad \rightarrow \Gamma_{\text {stat }}(L) \equiv-\left.\frac{\mathrm{d}}{\mathrm{~d} x_{0}} \ln \left[C_{\text {stat }}\left(x_{0}\right)\right]\right|_{x_{0}=\frac{L}{2}} \\
& x_{0}=L
\end{aligned}
$$

$x_{0}=0$

$x_{0}=0$
\Rightarrow Matching condition by equating in small volume with linear extent L_{0} :

$$
\Gamma_{\text {stat }}\left(L_{0}\right)+m_{\text {bare }}=\Gamma\left(L_{0}, M_{\mathrm{b}}\right)
$$

As $C\left(x_{0}\right) \stackrel{x_{0} \rightarrow \infty}{\sim} \mathrm{e}^{-m_{\mathrm{B}} x_{0}}$ and $C_{\text {stat }}\left(x_{0}\right) \stackrel{x_{0} \rightarrow \infty}{\sim} \mathrm{e}^{-E_{\text {stat }} x_{0}}$ in the large- L limit, we have to connect this condition (by finite-size scaling) to

$$
E_{\text {stat }}+m_{\text {bare }}=m_{\mathrm{B}}
$$

To bridge between the matching in small volume and a physical situation (i.e. $L \geqslant 1.5 \mathrm{fm} \& a \gtrsim 0.05 \mathrm{fm}$ to accommodate a B-meson), adopt a few recursive finite-size scaling steps in an intermediate SF scheme:
experiment

$$
m_{\mathrm{B}}=5.4 \mathrm{GeV}
$$

lattice with $a m_{\mathrm{b}} \ll 1$

- $\Gamma, \Gamma_{\text {stat }}$: suitable quantities for matching
- Introduce a step scaling function $\sigma_{\mathrm{m}}(u) \equiv 2 L\left[\Gamma_{\text {stat }}(2 L)-\Gamma_{\text {stat }}(L)\right]$ to evolve $L_{0} \rightarrow L_{2}=2^{2} L_{0} \simeq 1 \mathrm{fm}$
- For $L \simeq 2 \mathrm{fm}$ @ same resolution: calculate physical observables
\Rightarrow Equation to solve for the b -quark mass

$$
\begin{aligned}
m_{\mathrm{B}}= & \underbrace{E_{\text {stat }}-\Gamma_{\text {stat }}\left(L_{2}\right)}_{a \rightarrow 0 \text { in HQET }} \\
& +\underbrace{\Gamma_{\text {stat }}\left(L_{2}\right)-\Gamma_{\text {stat }}\left(L_{0}\right)}_{a \rightarrow 0 \text { in HQET }} \\
& +\underbrace{\Gamma \rightarrow 0 \text { in QCD }\left(L_{0}^{4}\right)}
\end{aligned}
$$

- Linearly divergent static quark's selfenergy δm cancels in differences!
- $\Gamma(L, M)$ is defined in small-volume QCD with a relativistic b-quark:

$$
z \equiv L_{0} M \gg 1 \quad L_{0} \simeq 0.2 \mathrm{fm}
$$

$\Gamma(L, M)$ carries the entire quark mass dependence
\Rightarrow Equation to solve for the b -quark mass

$$
m_{\mathrm{B}}=\underbrace{E_{\text {stat }}-\Gamma_{\text {stat }}\left(L_{2}\right)}_{a \rightarrow 0 \text { in HQET }}
$$

$$
+\underbrace{\Gamma_{\text {stat }}\left(L_{2}\right)-\Gamma_{\text {stat }}\left(L_{0}\right)}_{a \rightarrow 0 \text { in HQET }}
$$

$$
+\underbrace{\Gamma\left(L_{0}, M_{\mathrm{b}}\right)}
$$

$$
a \rightarrow 0 \text { in QCD }\left(L_{0}^{4}\right)
$$

- Linearly divergent static quark's selfenergy δm cancels in differences!
- $\Gamma(L, M)$ is defined in small-volume QCD with a relativistic b-quark:

$$
z \equiv L_{0} M \gg 1 \quad L_{0} \simeq 0.2 \mathrm{fm}
$$

$\Gamma(L, M)$ carries the entire quark mass dependence

In practice: choose fixed SF coupling $\bar{g}^{2}\left(L_{0} / 2\right)$ with $L_{0}=L_{\max } / 2=0.36 r_{0}$ $\Rightarrow\left(L / a, \beta, K_{1}\right)$ from previous work

Desired quark mass values $z=L_{0} M$ traded for κ_{h} used in the simulations:
$z=L_{0} \frac{M}{\bar{m}_{\mathrm{h}}\left(\mu_{0}\right)} Z_{\mathrm{m}} m_{\mathrm{q}, \mathrm{h}}\left(1+b_{\mathrm{m}} a m_{\mathrm{q}, \mathrm{h}}\right)$
[H. \& Wennekers, 2004]
$L_{0} \times\left[\Gamma_{\text {stat }}\left(L_{2}\right)-\Gamma_{\text {stat }}\left(L_{0}\right)\right]$

- The SSF connects the small 'matching' volume $L_{0} \simeq 0.2 \mathrm{fm}$ to $L_{2} \simeq 1 \mathrm{fm}$
\Rightarrow Contact with physical quantities:
$E_{\text {stat }}, m_{\mathrm{B}}$ in large volume

$L_{0} \times\left[\Gamma_{\text {stat }}\left(L_{2}\right)-\Gamma_{\text {stat }}\left(L_{0}\right)\right]$
- The SSF connects the small 'matching' volume $L_{0} \simeq 0.2 \mathrm{fm}$ to $L_{2} \simeq 1 \mathrm{fm}$
\Rightarrow Contact with physical quantities:
$E_{\text {stat }}, m_{\mathrm{B}}$ in large volume

$L_{0} \Delta E \equiv L_{0} \times\left[E_{\text {stat }}-\Gamma_{\text {stat }}\left(L_{2}\right)\right]$
- Left: Wilson fermions, $E_{\text {stat }}$ from the Fermilab group [Duncan et al., PRD51(1995)5101]
- Right: [non-] perturbatively $\mathrm{O}(\mathrm{a})$ improved (+ enhanced signal/noise-ratios by change of discretization of S_{HQET})

The RGI b-quark mass M_{b} is finally obtained from intercept of

$$
\omega(z, u) \equiv \lim _{a \rightarrow 0} L_{0} \Gamma \quad \text { with } \quad \omega_{\text {stat }} \equiv L_{0} m_{\mathrm{B}}-\left\{\frac{1}{2} \sigma_{\mathrm{m}}\left(u_{0}\right)+\frac{1}{4} \sigma_{\mathrm{m}}\left(u_{1}\right)\right\}-L_{0} \Delta E
$$

- $\Gamma=\Gamma_{\mathrm{av}} \equiv \frac{1}{4} \Gamma_{\mathrm{PS}}+\frac{3}{4} \Gamma_{\mathrm{V}}$: spin-averaged combination to minimize the size of $1 / M$-effects
- Continuum limit in all steps
- Non-perturbative renormalization

The RGI b-quark mass M_{b} is finally obtained from intercept of

$$
\omega(z, u) \equiv \lim _{a \rightarrow 0} L_{0} \Gamma \quad \text { with } \quad \omega_{\text {stat }} \equiv L_{0} m_{\mathrm{B}}-\left\{\frac{1}{2} \sigma_{\mathrm{m}}\left(u_{0}\right)+\frac{1}{4} \sigma_{\mathrm{m}}\left(u_{1}\right)\right\}-L_{0} \Delta E
$$

- $\Gamma=\Gamma_{\mathrm{av}} \equiv \frac{1}{4} \Gamma_{\mathrm{PS}}+\frac{3}{4} \Gamma_{\mathrm{V}}$: spin-averaged combination to minimize the size of $1 / M$-effects
- Continuum limit in all steps
- Non-perturbative renormalization

Result [H. \& Sommer, 2004]

$$
r_{0} M_{\mathrm{b}}=16.12(29) \quad \rightarrow \quad \bar{m}_{\mathrm{b}}^{\overline{\mathrm{MS}}}\left(\bar{m}_{\mathrm{b}}^{\overline{\mathrm{MS}}}\right)=4.12(8) \mathrm{GeV}
$$

Uncertainties and expected improvements:
\checkmark Valid up to $\mathrm{O}\left(\frac{\Lambda}{L_{0} M_{\mathrm{b}}}\right) \sim \mathrm{O}\left(\frac{\Lambda^{2}}{M_{\mathrm{b}}}\right)$ corrections, quenched approximation
\checkmark Computation of $a E_{\text {stat }}$ including the improvements just mentioned will yield a continuum limit of $L_{0} \Delta E$ with a much smaller error
[A ${ }_{\text {IPHA }}$, to come soon]

Towards a precision determination of $F_{\mathrm{B}_{\mathrm{s}}}$

Two-step strategy

(1) Calculation of $F_{\mathrm{B}_{\mathrm{s}}}$ in lowest order of HQET (= static approximation)

$$
F_{\mathrm{PS}} \sqrt{m_{\mathrm{PS}}}=C_{\mathrm{PS}}\left(M / \Lambda_{\overline{\mathrm{MS}}}\right) \times \Phi_{\mathrm{RGI}}+\mathrm{O}(1 / M)
$$

$\Phi_{\mathrm{RGI}}=\mathrm{RGI}$ matrix element of the static axial current
$\Phi_{\mathrm{RGI}}=Z_{\mathrm{RGI}}\langle\mathrm{PS}| A_{0}^{\text {stat }}|0\rangle \quad A_{0}^{\text {stat }}=\bar{\psi}_{\mathrm{s}} \gamma_{0} \gamma_{5} \psi_{\mathrm{b}}^{\text {stat }} \quad$ for $\quad \mathrm{PS}=\mathrm{B}$
$\left[\Phi_{\text {RGI }}\left(x_{0}\right) \propto Z_{\text {RGI }} \times \frac{f_{\mathrm{A}}^{\text {stat }}\left(x_{0}\right)}{\sqrt{f_{1}}} \mathrm{e}^{\left(x_{0}-T / 2\right) E_{\text {stat }}\left(x_{0}\right)} \quad\right.$ in the SF $]$
(2) Combine with results for $F_{\mathrm{PS}}\left(m_{\mathrm{PS}}\right)$ around the charm quark region by (linear) interpolation in $1 / m_{P S}$

Towards a precision determination of $F_{\mathrm{B}_{\mathrm{s}}}$

Two-step strategy

(1) Calculation of $F_{\mathrm{B}_{\mathrm{s}}}$ in lowest order of HQET (= static approximation)

$$
\begin{aligned}
& \quad F_{\mathrm{PS}} \sqrt{m_{\mathrm{PS}}}=C_{\mathrm{PS}}\left(M / \Lambda_{\overline{\mathrm{MS}}}\right) \times \Phi_{\mathrm{RGI}}+\mathrm{O}(1 / M) \\
& \Phi_{\mathrm{RGI}}=\mathrm{RGI} \text { matrix element of the static axial current } \\
& \Phi_{\mathrm{RGI}}=Z_{\mathrm{RGI}}\langle\mathrm{PS}| A_{0}^{\text {stat }}|0\rangle \quad A_{0}^{\text {stat }}=\bar{\psi}_{\mathrm{s}} \gamma_{0} \gamma_{5} \psi_{\mathrm{b}}^{\text {stat }} \text { for } \quad \mathrm{PS}=\mathrm{B} \\
& {\left[\Phi_{\mathrm{RGI}}\left(x_{0}\right) \propto Z_{\mathrm{RGI}} \times \frac{f_{\mathrm{A}}^{\text {stat }}\left(x_{0}\right)}{\sqrt{f_{1}}} \mathrm{e}^{\left(x_{0}-T / 2\right) E_{\mathrm{stat}}\left(x_{0}\right)} \text { in the } \mathrm{SF}\right]}
\end{aligned}
$$

(2) Combine with results for $F_{\mathrm{PS}}\left(m_{\mathrm{PS}}\right)$ around the charm quark region by (linear) interpolation in $1 / m_{\mathrm{PS}}$

- Non-perturbative renormalization: $Z_{\text {RGI }}$ known [H., Kurth \& Sommer, 2003]
- Calculation employs further (mainly new) ingredients, namely ...
- Linear a-effects removed
- Linear a-effects removed
- Modified (static) action with reduced statistical errors by change of parallel transporters in covariant derivative:
$D_{0} \psi_{\mathrm{h}}(x)=a^{-1}\left[\psi_{\mathrm{h}}(x)-W^{\dagger}(x-a \hat{0}, 0) \psi_{\mathrm{h}}(x-a \hat{0})\right]$
$\checkmark W(x, 0)=$ function of gauge fields in the neighbourhood of $x, x+a \hat{0}$
\checkmark Quite the same small lattice artifacts

Best version: 'HYP-smearing'
[Hasenfratz \& Knechtli, 2001]

- Linear a-effects removed
- Modified (static) action with reduced statistical errors by change of parallel transporters in covariant derivative:
$D_{0} \psi_{\mathrm{h}}(x)=a^{-1}\left[\psi_{\mathrm{h}}(x)-W^{\dagger}(x-a \hat{0}, 0) \psi_{\mathrm{h}}(x-a \hat{0})\right]$
$\checkmark W(x, 0)=$ function of gauge fields in the neighbourhood of $x, x+a \hat{0}$
Quite the same small lattice artifacts

Best version: ‘HYP-smearing’
[Hasenfratz \& Knechtli, 2001]

- Wave functions at boundaries of the SF-cylinder to suppress excited B-meson state contributions to correlators
- Linear a-effects removed
- Modified (static) action with reduced statistical errors by change of parallel transporters in covariant derivative:
$D_{0} \psi_{\mathrm{h}}(x)=a^{-1}\left[\psi_{\mathrm{h}}(x)-W^{\dagger}(x-a \hat{0}, 0) \psi_{\mathrm{h}}(x-a \hat{0})\right]$
$\checkmark W(x, 0)=$ function of gauge fields in the neighbourhood of $x, x+a 0 \hat{}$
Quite the same small lattice artifacts

Best version: 'HYP-smearing' [Hasenfratz \& Knechtli, 2001]

- Wave functions at boundaries of the SF-cylinder to suppress excited B-meson state contributions to correlators

$0 \quad 0.10 .20 .3$ a / r 。

Interpolation between leading-order HQET and $F_{\mathrm{D}_{\mathrm{s}}}$

Extrapolation of $r_{0}^{3 / 2} F_{\mathrm{PS}} \sqrt{m_{\mathrm{PS}}} / C_{\mathrm{PS}}$ from the charm region to the static estimate $r_{0}^{3 / 2} \Phi_{\mathrm{RGI}}$ using results on $\left.F_{\mathrm{PS}}\left(m_{\mathrm{PS}}\right)\right|_{m \simeq m_{\mathrm{c}}}$ [Rolf \& Jütner, 2003]

- Linear interpolation in $1 /\left(m_{\mathrm{PS}} r_{0}\right)$:
- motivated by HQET
- justified by the data
- mass dependent discretization errors near m_{c}
- $C_{\mathrm{PS}}\left(M_{\mathrm{b}} / \Lambda_{\overline{\mathrm{MS}}}\right)$ translates to finite b-quark mass

Interpolation between leading-order HQET and $F_{\mathrm{D}_{\mathrm{s}}}$

Extrapolation of $r_{0}^{3 / 2} F_{\mathrm{PS}} \sqrt{m_{\mathrm{PS}}} / C_{\mathrm{PS}}$ from the charm region to the static estimate $r_{0}^{3 / 2} \Phi_{\mathrm{RGI}}$ using results on $\left.F_{\mathrm{PS}}\left(m_{\mathrm{PS}}\right)\right|_{m \simeq m_{\mathrm{c}}}$ [Rolf \& Jütner, 2003]

- Linear interpolation in $1 /\left(m_{\mathrm{PS}} r_{0}\right)$:
- motivated by HQET
- justified by the data
- mass dependent discretization errors near m_{c}
- $C_{\mathrm{PS}}\left(M_{\mathrm{b}} / \Lambda_{\overline{\mathrm{MS}}}\right)$ translates to finite b-quark mass

Preliminary result [${ }^{\text {FIPPAA }} 2003$]

$$
\Lambda_{\overline{\mathrm{MS}}}=238(19) \mathrm{MeV}, r_{0}=0.5 \mathrm{fm} \quad \rightarrow \quad F_{\mathrm{B}_{\mathrm{s}}}=205(12) \mathrm{MeV}
$$

\checkmark Includes all errors except for quenching (scale ambiguity is $\simeq 12 \%$)
\checkmark Extrapolation without the static constraint looks similar but depends significantly on functional form assumed \Rightarrow interpolation much safer

Alternative to determine the B-meson decay constant

Further application of the non-perturbative matching strategy

To lowest order in $1 / m$ we have
$\mathcal{M}\left(g_{0}\right) \equiv\langle\mathrm{B}(\mathbf{p}=\mathbf{0})| A_{0}^{\text {stat }}(0)|0\rangle \quad F_{\mathrm{B}} \sqrt{m_{\mathrm{b}}}=\lim _{a \rightarrow 0} Z_{\mathrm{A}}^{\text {stat }}\left(g_{0}, a M_{\mathrm{b}}\right) \mathcal{M}\left(g_{0}\right)$

- $Z_{\mathrm{A}}^{\text {stat }}\left(g_{0}, a M_{\mathrm{b}}\right)$ computed in quenched approximation via a matching through the RGI operator with finite-size scaling techniques ($N_{\mathrm{f}}=2$ also in progress \rightarrow P. Fritzsch's talk)
- This method is not easily extended to include $1 / m$-corrections

Alternative to determine the B-meson decay constant

Further application of the non-perturbative matching strategy

To lowest order in $1 / m$ we have
$\mathcal{M}\left(g_{0}\right) \equiv\langle\mathrm{B}(\mathbf{p}=\mathbf{0})| A_{0}^{\text {stat }}(0)|0\rangle \quad F_{\mathrm{B}} \sqrt{m_{\mathrm{b}}}=\lim _{\mathrm{a} \rightarrow 0} Z_{\mathrm{A}}^{\text {stat }}\left(g_{0}, a M_{\mathrm{b}}\right) \mathcal{M}\left(g_{0}\right)$

- $Z_{\mathrm{A}}^{\text {stat }}\left(g_{0}, a M_{\mathrm{b}}\right)$ computed in quenched approximation via a matching through the RGI operator with finite-size scaling techniques ($N_{\mathrm{f}}=2$ also in progress \rightarrow P. Fritzsch's talk)
- This method is not easily extended to include $1 / m$-corrections

In the spirit of our non-perturbative matching of HQET and QCD in finite volume, the master formula valid up to corrections of $\mathrm{O}(1 / \mathrm{m})$ is

$$
\begin{aligned}
F_{\mathrm{B}} \sqrt{m_{\mathrm{b}}}= & \frac{\left.F_{\mathrm{B}} \sqrt{m_{\mathrm{b}}}\right|^{\mathrm{HQET}}}{\Phi^{\mathrm{HQET}}\left(L_{2}, M_{\mathrm{b}}\right)} \\
& \times \frac{\Phi^{\mathrm{HQET}}\left(L_{2}, M_{\mathrm{b}}\right)}{\Phi^{\mathrm{HQET}}\left(L_{1}, M_{\mathrm{b}}\right)} \times \frac{\Phi^{\mathrm{HQET}}\left(L_{1}, M_{\mathrm{b}}\right)}{\Phi^{\mathrm{HQET}}\left(L_{0}, M_{\mathrm{b}}\right)} \times \Phi^{\mathrm{QCD}}\left(L_{0}, M_{\mathrm{b}}\right)
\end{aligned}
$$

- applying to multiplicative, scale dependent renormalizations and
- provided that the b-quark mass is already known

Ingredients:

- Matching equation to be imposed in the small volume

$$
\Phi^{\mathrm{HQET}}\left(L_{0}, M_{\mathrm{b}}\right)=\Phi^{\mathrm{QCD}}\left(L_{0}, M_{\mathrm{b}}\right) \quad \text { with } \quad \bar{g}^{2}\left(L_{0}\right)=u_{0}=\text { fixed }
$$

- Finite-size scaling in terms of step scaling functions built as

$$
\left.\Phi^{\mathrm{HQET}}\left(2 L, M_{\mathrm{b}}\right)\right|_{a=0}=\sigma_{\mathrm{X}}\left(\bar{g}^{2}(L)\right) \times\left.\Phi^{\mathrm{HQET}}\left(L, M_{\mathrm{b}}\right)\right|_{a=0}
$$

- Then the previous formula finally combines to

$$
\begin{aligned}
& F_{\mathrm{B}} \sqrt{m_{\mathrm{b}}}=\rho\left(u_{2}\right) \times \sigma_{\mathrm{X}}\left(u_{1}\right) \times \sigma_{\mathrm{X}}\left(u_{0}\right) \times \Phi^{\mathrm{QCD}}\left(L_{0}, M_{\mathrm{b}}\right) \\
& \left.\rho(u) \equiv \lim _{a / L \rightarrow 0} \frac{\mathcal{M}\left(g_{0}\right)}{X\left(g_{0}, L / a\right)}\right|_{\bar{g}^{2}(L)=u} \quad X\left(g_{0}, L / a\right) \equiv \frac{f_{\mathrm{A}}^{\text {stat }}(L / 2)}{\sqrt{f_{1}^{\text {stat }}}}
\end{aligned}
$$

Ingredients:

- Matching equation to be imposed in the small volume

$$
\Phi^{\mathrm{HQET}}\left(L_{0}, M_{\mathrm{b}}\right)=\Phi^{\mathrm{QCD}}\left(L_{0}, M_{\mathrm{b}}\right) \quad \text { with } \quad \bar{g}^{2}\left(L_{0}\right)=u_{0}=\text { fixed }
$$

- Finite-size scaling in terms of step scaling functions built as

$$
\left.\Phi^{\mathrm{HQET}}\left(2 L, M_{\mathrm{b}}\right)\right|_{a=0}=\sigma_{\mathrm{X}}\left(\bar{g}^{2}(L)\right) \times\left.\Phi^{\mathrm{HQET}}\left(L, M_{\mathrm{b}}\right)\right|_{a=0}
$$

- Then the previous formula finally combines to

$$
\begin{aligned}
F_{\mathrm{B}} \sqrt{m_{\mathrm{b}}} & =\rho\left(u_{2}\right) \times \sigma_{\mathrm{X}}\left(u_{1}\right) \times \sigma_{\mathrm{X}}\left(u_{0}\right) \times \Phi^{\mathrm{QCD}}\left(L_{0}, M_{\mathrm{b}}\right) \\
\rho(u) & \left.\equiv \lim _{a / L \rightarrow 0} \frac{\mathcal{M}\left(g_{0}\right)}{X\left(g_{0}, L / a\right)}\right|_{\bar{g}^{2}(L)=u} \quad X\left(g_{0}, L / a\right) \equiv \frac{\operatorname{s}_{\mathrm{A}}^{\text {stat }}(L / 2)}{\sqrt{f_{1}^{\text {stat }}}}
\end{aligned}
$$

Key difference to obtaining RGIs \& conversion to the matching scheme

- is not the absence of perturbative errors in $C_{\mathrm{PS}}\left(M_{\mathrm{b}} / \Lambda_{\overline{\mathrm{MS}}}\right)$
- but the tempting possibility to include $1 / m$-corrections
- New quality of the computations employing lattice HQET:
\checkmark Non-perturbative renormalization
\checkmark Continuum limit at large quark masses (small-volume setup !)
- Discretizations for static quarks entailing exponentially improved statistical precision
- Physics results are still quenched, but an extension of the methods to dynamical fermions is straightforward ('only' the usual problems with light quarks to be solved)
- Even more interesting:

Systematic improvement by implementing the effective theory beyond the leading order in $1 / m$ to reach an acceptable precision
\checkmark First tests and ideas seem to be promising
\checkmark To do this consistently, conversion functions such as C_{PS} have to be known non-perturbatively

Towards an inclusion of $1 / m-$ corrections

The $1 / m$-expansion of the correlator f_{A} receives new contributions:

$$
f_{\mathrm{A}} \propto f_{\mathrm{A}}^{\text {stat }}\left\{1+\frac{\alpha^{(1)} \delta f_{\mathrm{A}}^{\text {stat }}}{\alpha^{(0)} f_{\mathrm{A}}^{\text {stat }}}+\omega_{\text {kin }} \frac{f_{\mathrm{A}}^{\text {kin }}}{f_{\mathrm{A}}^{\text {stat }}}+\omega_{\text {spin }} \frac{f_{\mathrm{A}}^{\text {spin }}}{f_{\mathrm{A}}^{\text {stat }}}\right\}
$$

with bulk insertions
$X^{\text {kin }}=\bar{\psi}_{\mathrm{h}} \mathbf{D}^{2} \psi_{\mathrm{h}} \quad X^{\text {spin }}=\bar{\psi}_{\mathrm{h}} \sigma \mathbf{B} \psi_{\mathrm{h}}$
in
$f_{\mathrm{A}}^{\mathrm{kin} / \mathrm{spin}}\left(x_{0}\right)=-\frac{1}{2}\left\langle\left(A_{\mathrm{I}}^{\text {stat }}\right)_{0}(x) \sum_{u} X^{\mathrm{kin} / \mathrm{spin}}(u) \mathcal{O}\right\rangle$
first numerical exploration encouraging [Dürr et al., 2004]

How can one match the $\omega_{\text {kin }}$ - term in a computation of M_{b} ?
Proposal: use a combination of energies

$$
\begin{aligned}
\Xi(L, M) & =L\left[\Gamma_{\mathrm{av}}(L / 2, M)-\Gamma_{\mathrm{av}}(L / 4, M)\right] \\
& =\Xi_{\text {stat }}(L)+\frac{1}{2 z} \Xi_{\text {kin }}(L)+\mathrm{O}\left(1 / z^{2}\right)
\end{aligned}
$$

- $\Xi_{\text {kin }}$ encodes matrix elements of $\bar{\psi}_{\mathrm{h}} \mathbf{D}^{2} \psi_{\mathrm{h}}$
- Reparametrization invariance restricts $\Xi_{\text {kin }}$ to
 be free of logarithmic modifications

