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LECTURE 1

Non-perturbative formulation of HQET



B-physics from the lattice ...

... and the need for recoursing to an effective theory

Lattice QCD calculations with b-quarks
@ valuably contribute to precision CKM-physics (unitarity triangle)
@ provide an ‘ab initio’ approach to determine experimentally
inaccessible key parameters such as

@ the b-quark mass, M,
@ B-meson decay constants, e.qg.

(Bs(p) [ [Wsyuysy1(0)[0) = ipuF.
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Challenge of a realistic treatment of lattice B-systems:

@ The b-quark is too heavy < highly localized

@ Very fine lattice resolutions (not m;* ~ (4 GeV)~* < a ~ 0.07 fm)
@ in (at the same time) physically large volumes required

= Direct numerical simulation still beyond today’s computing resources



B-physics from the lattice ...

... and the need for recoursing to an effective theory
Lattice QCD calculations with b-quarks
@ valuably contribute to precision CKM-physics (unitarity triangle)

@ provide an ‘ab initio’ approach to determine experimentally
inaccessible key parameters such as

@ the b-quark mass, M,
@ B-meson decay constants, e.qg.

(Bs(p) [ [Wsyuysy1(0)[0) = ipuF.
Challenge of a realistic treatment of lattice B-systems:

@ The b-quark is too heavy < highly localized

@ Very fine lattice resolutions (not m;* ~ (4 GeV)~* < a ~ 0.07 fm)
@ in (at the same time) physically large volumes required

= Direct numerical simulation still beyond today’s computing resources

Viable framework for heavy quarks in the lattice regularization:
Effective theories — NRQCD
HQET (even took its origin for the lattice [Eichten, 1988])



Lattice QCD

‘Ab initio’ approach to determine phenomenologically relevant key parameters
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Lattice QCD

‘Ab initio’ approach to determine phenomenologically relevant key parameters

Lqcep (9o, mf] = 2g Tr {FuvEuvy + Z ll)f {vu (0 + goAy) + mefy

f=u,d,s,.
Fr Aqcp Fp
My c [g0mr] %(Mu+Md) Fs
mg QCD:>0’ ' Mg + By
mp MC E,
mg My, ...
—_— —_— —
Experiment QCD parameters (RGIs) Predictions
— eiagoAy (x)
Lqep [9o,mf] A U“(XJ e =T 11)(X)
— o Issues/Obstacles:
means discretization with: L o
_ _ e Renormalization
@ Gauge invariance - i « Continuum limit (CL)
@ Locality g o ..
@ Unitarity I e O (1/y/icpy) errors




Typical momentum scales in heavy-light and heavy-heavy mesons:
Heavy-light (Qq) — HQET

—1
Aqep

@ (@ almost at rest at bound state’s
center, surrounded by light DOFs

@ Motion of the heavy quark is
suppressed by Aqcep/mq




Typical momentum scales in heavy-light and heavy-heavy mesons:

Heavy-light (Qq) — HQET Heavy-heavy (QQ) — NRQCD
1 —
Aqep (mgv)~*
| I
- mQ — mQ
o ¢ 5
— Q — Q Q
q. 9
L 1|
—— -—
a a
L L
@ Q almost at rest at bound state’s @ Non-relativistic kinetic and the
center, surrounded by light DOFs potential energy to be balanced
@ Motion of the heavy quark is @ Separate: mq, (p) ~ mqgV and

suppressed by Aqcp/Mq binding energy (p?) /mq =~ mqVv?



Problems with lattice regularized HQET

In the past: Difficulties/Limitations on the

theoretical side

At each order in % new parameters
arise in the effective theory, which
(due to mixings among operators of
different dimensions) leave power
divergences in the lattice spacing if
only estimated perturbatively

= Continuum limit does not exist

technical side

Rapid growth of statistical errors as
the time separation of B-meson
correlation functions increases:

S}]:]ichtcanill — a4ZX Eh (X)Do'll)h(x)

noise A =Egat —M
o< exp(XoA st o
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signal
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technical side

Rapid growth of statistical errors as
the time separation of B-meson
correlation functions increases:
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Progress by two recent developments:

Non-perturbative renormalization of
HQET through its non-perturbative
matching to QCD in finite volume
[H. & Sommer, 2004]

Alternative discretizations of HQET,
leading to a substantial reduction of
statistical fluctuations in correlators

[ PLEHA | Della Morte et al., 2003 & 2005]




HQET

An asymptotic expansion of QCD

1 _
LQCD = _2_92 Tr {FpNva} + le)f {Yp (ap. + gOAp) + mf}ll)f
0 f

Consider:
Energies & matrix elements of states containing a single b-quark at rest

HQET Lagrangian by formal 1/my,—expansion of continuum QCD

Eb {'YuDu + mp iy — Lstar + L(l) + ...
Litat (x) =y, (x) {Do + dm} 1y (x)

@ 4—component effective heavy quark field 1y, with constraint
Pibn=vn Py =0, Py=3(1+v) = 2dof

@ Composite fields involving b-quarks translate to the effective theory:
Ao(x) = Za(X)yoysp(x)  —  AF* = ZT* P (x)yoysin(X)
ZA, ng'ﬂIt : renormalization constants of the axial currents

@ Expansion is accurate for heavy quark masses m = my, > Aqcp,
yields valid description for low-lying energy levels & matrix elements



Example
DD = Fp/mg =ZA(B|Ay|0)
@ Scale independent due to the chiral symmetry of (massless) QCD

@ In HQET: chiral symmetry absent = Z3'*' = Z3"" ()

Rather than @s%t () = Z3*(u)(B| A8 |0), focus on the 11 & scheme
independent renormalization group invariant (RGI) matrix element

(DRGI = JInoo [ZbOQZ(H]] —Yo/(2bo) (Dstat( )




Example
DD = Fp/mg =ZA(B|Ay|0)

@ Scale independent due to the chiral symmetry of (massless) QCD
@ In HQET: chiral symmetry absent = Z3'*' = Z3"" ()
Rather than @s%t () = Z3*(u)(B| A8 |0), focus on the 11 & scheme

independent renormalization group invariant (RGI) matrix element

Dpar = lim [2bog2 ()] Y/ x @stat ()

Hw—00

= Generic form of the HQET-expansion of the QCD matrix elements:

QP = Cpg (M /Asis) X @rar + O (1/My)
My = lim [2b6g2(w) ] " x ()
Asts = Jim (oo ()] ™/ o /et
with B(g) = p(9g/9p) = —beg*+O(g°) and associated anomalous dimensions
o(g) = & 5 =~ 0@ ¥M8) = g T = —vid? + 03"



What is the meaning of Cps(My,/Ayg) ?

Conversion to the matching scheme

To extract QCD predictions from results obtained in the (static) effective
theory, its RGls must be related to QCD observables at finite quark mass

< Translation to another renormalization scheme:
The matching scheme — defined by the condition that for arbitrary
renormalized matrix elements @ in QCD and in the effective theory

@QCD _ GJHQET(HHU?m + O(1/m)

(in PT, one typically identifies m = mg = pole mass or m = M, = MS mass)



What is the meaning of Cpg(M;,/Ayg) ?

Conversion to the matching scheme

To extract QCD predictions from results obtained in the (static) effective
theory, its RGls must be related to QCD observables at finite quark mass

< Translation to another renormalization scheme:
The matching scheme — defined by the condition that for arbitrary
renormalized matrix elements @ in QCD and in the effective theory

(DQ(""D _ (DHQET( u) | - + 9) (l/m)
(in PT, one typically identifies m = mg = pole mass or m = M, = MS mass)
In case of the static axial current:
q)Q(I) — Cnmt('h(mb/}l) X (DW(H) + ()(l/mb) (*)
@ Oyg(p): renormalized in HQET in the MS scheme

o Cmatch(mb/u) :
Matching coefficient depending on my,, defined by myg(my,) = my,

@ Once Cya¢cn is determined (usually in PT) such that (x) holds for
some particular current matrix element, it applies to all of them




Change to a more convenient argument of the conversion function via

Drar

glw) S
(DMS(H)Z[ZonZ(u)]W(Zb‘”exp{J dg {VMS(Q) ﬁ}} 3 = Gis!

0 Brs(g)  bog
and choosing the arbitrary renormalization point as © = my,

(Di
= Cps(Mp/Ajs) = Cmaten(1) X %(M
RGI

g(my) match

_ /(2b) Y (@)  7vo
2bog?(my,) | "° exp J dg {7— —}
250 )] 0 Bs(9) bog



Change to a more convenient argument of the conversion function via

Drar _o —vo/(2bo) alr) P/m(g) Yo } _
= |2b d L — O
D) 12000 ()] exp{L 9| Bsle) Bog [ 9= !

and choosing the arbitrary renormalization point as © = my,

(Di
= Cps (M, /Asts) = Cmaten(1) X Pus(r)

Drar
g(my) match
= /(2bo) Y (@) Yo
2bog*(mp) ] exp J dg {7_ _}
[200 »)] 0 Brs(9) bog

@ Cpg ‘defines’ the anomalous dimension
y™ateh in the matching scheme:

ymateh(g) = yM5(g) + p(§)
with a contribution p(g) from Catch
@ advantages of the ratio of RGIls M /A :

e can be fixed in lattice calculations
without perturbative uncertainties
e Cpg independent of the choice of
scheme for the effective operators



Change to a more convenient argument of the conversion function via

DRrar _2/ \1—Yo/(2bo) i) P/m(g) Yo } _
_ORGL__ oy d _ 0 — G
D) 12000 ()] exp{L 9| Bsle) Bog [ 9= !

and choosing the arbitrary renormalization point as © = my,

(Di
= Cps(Mp/Ajs) = Cmaten(1) X %(M
RGI

g(my) match
e[ 505

0 Brs(9) bog

i _ ) Cale/M)
@ Cpg ‘defines’ the anomalous dimension Laf
y™ateh in the matching scheme:

Y™t (g) = yM(@) + (@)
with a contribution p(g) from Cpaten

@ advantages of the ratio of RGIs M /A : T

L P R |
0 0.05 0.1 Ag/M
e can be fixed in lattice calculations S LIS SIS (LS R
without perturbative uncertainties v PT under control < 3-loop AD
e Cpg independent of the choice of [Chetyrkin & Grozin, 2003]

scheme for the effective operators v remaining O(g®(my,)) errors small



Non-perturbative formulation of HQET

Let the effective theory be regularized on a space-time lattice
n
SHQET - a4 Z {Lstat(x) + Z L(V] (X)} L[V) (X) — Z wi(vjﬁ“i(vj (X)
X A7l :

with static action Lgat(X) = Py, (X) [VE+6m]n(x) and the 1/m —parts
L(llj = Eh ( = % o - B)ﬂ)h — chromomagnetic interaction with the gluon field

1 —
L(z ) = vy, < = % D2>1|)h — kinetic energy from the heavy quark’s residual motion

dm and local composite fields Li(v) have mass dimensions 1 and 4 + v



Non-perturbative formulation of HQET

Let the effective theory be regularized on a space-time lattice
n
SHQET - a4 Z {Lstat(x) + Z L(V] (X)} L[V) (X) — Z wi(vjﬁ“i(vj (X)
X A7l :

with static action Lgat(X) = Py, (X) [VE+6m]n(x) and the 1/m —parts
L(llj = Eh ( = % o - B)ﬂ)h — chromomagnetic interaction with the gluon field

1 —
L(z ) = vy, < = % D2>1|)h — kinetic energy from the heavy quark’s residual motion

dm and local composite fields Li(v) have mass dimensions 1 and 4 + v

coefficients w = w(gg, M)
@ must be determined such that HQET matches QCD
@ at the classical level this fixes
oM =w’ = 1/m+0(@@) m=0+0(x®))

(Removal of m1p,1;, from the action, corresponding to a universal energy shift,
reflects the heavy-light dynamics’ independence of the scale m at lowest order)



Insert: Derivation of the HQET Lagrangian

Start from the Euclidean Dirac-Lagrangian in the continuum

L = E(Du'Yu‘Fm)q) = IPTDll)
D = myo+ Do+ voDrYk

and perform a field rotation (i.e. a Foldy-Wouthuysen-Tani transformation)
to decouple ‘large’ and ‘small’ components:

VY — d=e3P Pi — ¢f =le s
= L=o¢tDe
with D' = SDe S

and S

%DKYK_—ST —O<%) [D:O(m)}

In this way the Dyyx—term is rotated away



Classical theory:
One has smooth fields and thus can count

0, =0 ([2])

so that it makes sense to expand in 1/m

DI

1 1
D+ o [Dxyk, D]+ am? [Div1, Diyk, DI + O (1/m?)

1 1
D+ —I[D D]——I[D D 1/m?
+ o [Bkvic D1 = 2= (D1, vo kYel + O (1/m?)

1 1 1
Yo {YoDo +m+ >m (—Dka — —Fu Gk|> + —FkoYon}

2i 2m
+0 (1/m?)

3 S 1
L:};}tat + L%tat + % {Lill) —I'Ll('ll) _|_,£,1(j—1)} + O (1/m2)



Here we have introduced

Ly = Gy (Do +mly

L = Pg(Do — )by

ot = 3, (—Dka — %Fm le> Yn = Py (-D* —Bo) Py

with
Pibn =¥y bLPy =y, Pt = #
P15 =5 VP =15
GM:%[YWY«/] Fu = [Dk, D]

-] LSH) —terms may be dropped in £ at the order considered

@ The expressions are discretized in a straightforward way:

Do — Vg : backward lattice derivative ~ DDy — ViV  Fg — Fy

@ The prefactors of the various operators are to be determined by a
non-trivial matching of HQET and QCD in the quantum theory



Eichten-Hill action for static quarks on the lattice:

_ 1 _
SulU, ¥y, W] 4m ;wh(x) (V5 4 6m) Py (x)

)

Vo b (x) [Wr(x) —UT(x — a0, 0)y(x —al) |
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Q|



Eichten-Hill action for static quarks on the lattice:

SulU, Py, ¥n)

)

T agm ) (Y + 8

Vo bn(x)

|-

[Pn(x) — UT(x — a0, 0}y, (x —al) |

@ Static quarks propagate only forward in time
= Associated quark propagator reads

Sh(xvy)

U(x —a0,0) *U(x —2a0,0)"t --- U(y,0)*
X 8(Xo — Yo)d(x —y)(1+adm) eve)/ap,

(timelike Wilson line, dm cancels divergence in static quark’s self-energy)



Eichten-Hill action for static quarks on the lattice:

SulU, Py, ¥n)

)

T agm ) (Y + 8

Vo bn(x)

Il
|

[Pn(x) — UT(x — a0, 0}y, (x —al) |
@ Static quarks propagate only forward in time
= Associated quark propagator reads
Su(x,y) U(x —a0,0) *U(x —2a0,0)"t --- U(y,0)*
X 8(Xo — Yo)8(x —y)(1+adm)~ov)/ap,

(timelike Wilson line, dm cancels divergence in static quark’s self-energy)

@ O(a) improvement:

Preserving on the lattice the symmetries of the static theory

@ heavy quark spin-symmetry,

@ local conservation of heavy quark flavour number

o plus gauge invariance, parity and cubic symmetry
guarantees that both universality class and O(a) improvement are
unchanged w.r.t. the Eichten-Hill action, i.e. the static-light action is
already improved if the light quark sector is
[Kurth & Sommer, 2001]



Correlation functions of composite fields ...

... are of interest for applications involving transition matrix elements

Example
Expansion of the (time component of the) axial current in HQET:
n
AT = ) AV
v=0
AP) = g A (x) AS(x) = By (X )Yoysbn(x)
AV = TaMAY ) vso

where 1; denotes a light quark field and Ai(“’) is of mass dimension 3 4 v




Correlation functions of composite fields ...

.. are of interest for applications involving transition matrix elements

Example
Expansion of the (time component of the) axial current in HQET:

AT = ) AV

v=0
AP (x) = ol Agtt(x) A () = Wy (X )yoysin (X)
AMx) = YA x) v>o

where 1; denotes a light quark field and Ai(v) is of mass dimension 3 4 v

Then, for the correlator [with (b;TY;)" = ﬁijFTyowi]

CHQET _ 33 Z < HQET HQET)T(O)>

the leading and subleading terms at the classical level are given by

0 1 o 5= 1
"=1 AY =PyvsDibn ot =1/m



Expectation values

At the quantum level:
Expectation values are defined via the path integral representation

<O> _ % J-D[(pJ O[(pJ ()*(Srol“rSIIQET] % = J D[@J (}*(Sml“rSIIQET)

over all fields {¢} with the standard measure D[]



Expectation values

At the quantum level:
Expectation values are defined via the path integral representation

1

0)=5 JD[(PJ Dplle=teremml 7

J‘ D[({)J (}*(Srol“rSIIQET)

over all fields {¢} with the standard measure D[]

Important element in the definition of the effective field theory

It is understood that the integrand of the path integral is expanded in a
power series in 1/m with power counting according to

o™ =0(1/m") o™ =0(1/mY)
= Replace
exp{—(Sre1 + Suqer)} =

exp {*(Sm +a'y  Lotar (X))}
x{1-a'y, W00 + 4L, LM 00 —at L, L2 (x) + ..}




= 1/m—terms appear only as insertions of local operators Oi(v) (x)
and Ai(v) (x) into correlators, while the true Pl average is taken
w.r.t. the action in the static approximation for the heavy quark

S = Spa +a*Y_, Latat(X)



= 1/m—terms appear only as insertions of local operators Oi(v) (x)

and Ai(v) (x) into correlators, while the true Pl average is taken
w.r.t. the action in the static approximation for the heavy quark

S = Spa +a*Y_, Latat(X)

Discussion of the renormalization properties of lattice HQET
Power counting arguments:

@ Static effective theory expected to be renormalizable, requiring a
finite number of parameters to be fixed to obtain a continuum limit
(Note: With one of the 1/m —terms kept in the exponent, as in NRQCD,
renormalizability would be lost!)

@ Consequences for renormalization of EVs (O) after inserting the
expanded form of exp{—(Sye1 + SuqrT)}:

v" Problem of renormalizing correlation functions of local
composite operators in the static effective theory

= Conclusion:
Upon inclusion of all local operators with proper symmetries and
dimensions up to that of the highest-dimensional one (v < n), their
coefficients may be chosen so that all EVs have a continuum limit




= HQET truncated at any finite order in 1/m is renormalizable

Crucial for the lattice theory, because this means that the CL exists and is
independent of the details of the lattice formulation (universality)
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(i.e. renormalizations of composite fields are among CuqgeT , €.9. oc[()o] = z3tat)



= HQET truncated at any finite order in 1/m is renormalizable

Crucial for the lattice theory, because this means that the CL exists and is
independent of the details of the lattice formulation (universality)

Formally:
The effective field theory is now defined in terms of the parameter set

Crqer = {&} = Cn—1 U {m} U {w!™} U {ocjm} U... c=g?

which for k > 1 must be adjusted as function of g3 to get a decent CL
(i.e. renormalizations of composite fields are among CuqgeT , €.9. oc[()m = z3tat)

@ Since the terms in Syqrr are organized just by their mass dimension, the
existence of a CL (non-perturbative renormalizability) is equivalent to expect
that composite operators mix only with same- and lower-dimensional ones

@ Generally, as the 1/m — and a—expansion aren’t independent but regarded
as one expansion in the dimension of Li(v) , Ai(v) ,count a=0O(1/m) and
start with all Oi“’) of given dimension, restricted only by lattice symmetries

@ In particular: S..; has to be O(a) improved to go to order 1/m



Caveat: Operator mixing induces power divergences

Mixings are allowed between operators of different dimensions, e.g.

O = Tz 00 + Do 0 ac=atx {¢” +olef + ..}
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Caveat: Operator mixing induces power divergences

Mixings are allowed between operators of different dimensions, e.g.
= = = = 0 1
O =Y, 20 + Y, 608~ =atx{c”+cMg2 + ...}

Perturbative precision insufficient to determine the coefficients {cy }
=- Power-law divergences, remainders ~ aP, i.e. no continuum limit
example: at the static level a linearly divergent, additive mass counterterm
&m = (c1g5 +...)/a
originates from the mixing of 1, Doy, with Py,
in general: since the lattice spacing decreases as
a,~ exp{—1/(2bogs)} for small bare gauge coupling go

a truncation of the series in an only perturbative computation leaves
incompletely cancelled/undetermined terms that diverge as a — 0

pattern:  Ace ~ g2 aP ~ aPin(aA)"(+Y 0

= Non-perturbative method needed to determine (at least some) {cy}



Matching of HQET and QCD

Implication: Non-perturbative renormalization of the theory required

From the discussion so far we infer:
HQET is an approximation to QCD when the coefficients {cx} are chosen

correctly such that

OHQET(\)  — CDQCD(M)JFO(l/[rOI\/I]”“)

RGI (heavy) quark mass to be free of
any renormalization scheme dependence

M




Matching of HQET and QCD

Implication: Non-perturbative renormalization of the theory required

From the discussion so far we infer:
HQET is an approximation to QCD when the coefficients {c} are chosen
correctly such that

QHRET (M) — (DQCD(M)+O(1/“OM]n+1)

M

RGI (heavy) quark mass to be free of
any renormalization scheme dependence

Example
for a quantity ®RCP: Correlation function of the heavy-light axial current

‘ QCD

CAA(XOJ - Z;szaszx <AO(X)(AO)“‘(O)> Au = Au - $1YLL’Y51I)b

(Za ensures natural normalization of A,, consistent with current algebra)

Then: ®HQET — ¢~moCHOFT (4) in the region 1/x < M




Obvious strategy:

Determine the {cx,k = 1,...,N,} by imposing matching conditions
O (M) = 02°P (M) k=1,...,N, (%)

for this equivalence between the effective theory and QCD to hold



Obvious strategy:

Determine the {cx, k =1,..., N, } by imposing matching conditions
O T (M) = 02P (M) k=1,...,N, (%)
for this equivalence between the effective theory and QCD to hold

= These conditions define the set {c\} for any value of the lattice
spacing (or bare coupling)

@ Observables used originally to fix the parameters of QCD
(e.g. via requiring hadron masses to agree with experiment)
may be amongst the (DSCD

@ To preserve the predictability of HQET, d)SCD should not be
experimentally accessible observables but certain quantities
calculable in the continuum limit of lattice QCD



Obvious strategy:

Determine the {cx,k =1,...,N,} by imposing matching conditions
0, PT(M) = 9P (M) k=1,...,Np (%)
for this equivalence between the effective theory and QCD to hold

= These conditions define the set {c\} for any value of the lattice
spacing (or bare coupling)

@ Observables used originally to fix the parameters of QCD
(e.g. via requiring hadron masses to agree with experiment)
may be amongst the (DkQCD

@ To preserve the predictability of HQET, (DSCD should not be
experimentally accessible observables but certain quantities
calculable in the continuum limit of lattice QCD

= However:
Demands to treat the heavy quark as relativistic particle on the
lattice, though small enough a to do this are very difficult to reach

= Impose the matching conditions in small volume



Non-perturbative HQET ...

... and the basic idea of exploiting finite-volume physics

Goal: non-perturbative matching of HQET & QCD

QCD HQET

matching condition

‘ OQCD _ @HQET ‘

for observables @

> (e.g. matrix elements) v




Non-perturbative HQET ...

... and the basic idea of exploiting finite-volume physics

Goal: non-perturbative matching of HQET & QCD

Objection: how do you simulate the b-quark as a relativistic fermion ?

QCD HQET

matching condition

‘ OQCD _ @HQET ‘

for observables @

> (e.g. matrix elements) v




Non-perturbative HQET ...

... and the basic idea of exploiting finite-volume physics

Goal: non-perturbative matching of HQET & QCD
Objection: how do you simulate the b-quark as a relativistic fermion ?

= Trick: start with QCD in small volume, L = Ly ~ 0.2 fm

QCD HQET

matching condition

‘ OQCD _ @HQET ‘

for observables @

> (e.g. matrix elements) v




v~ Fix parameters of the effective theory through its relation to QCD
observables in small volume

v' Legitimate:
The underlying Lagrangian does not know about the finite volume!



v Fix parameters of the effective theory through its relation to QCD
observables in small volume

v/ Legitimate:
The underlying Lagrangian does not know about the finite volume!
Further remarks
@ Observables @ are assumed to be renormalized

@ New @y have to be added when increasing the order n in the
expansion, while the parameters {c;,i < N,_1} of the lower-order
Luqer might change due to operator mixing

@ Most convenient to take the continuum limit of CDSCD before
imposing the matching conditions

@ Interpreting some of the conditions as improvement conditions,
Symanzik O(a) improvement is accounted for automatically

errors = O ([1/m]"™) =0 (M~ """ [aM]¥) k=0,1,...,n+1

E.g. treating the theory including the next-to-leading operators
— (1/M)°—terms with O(a?) errors
— linear 1/M —corrections with O(a) uncertainties




Matching in finite volume and finite-size scaling

Assuming both QCD & HQET to be applicable in finite volume and the
parameters in Lqep/uqer to be independent of it, we evaluate (x) as

O (L, M) = d2P (L, M) k=1,..., Np,
@ Allows much smaller a on the r.h.s. to eventually approach the CL
@ Typical choice: L =Ly ~0.2—0.4fm

@ HQET parameters determined at small spacings a = 0.01 — 0.4 fm
so that large volumes, needed to extract the physical mass
spectrum or matrix elements, require very large lattices of L/a > 50
— How can we bridge the gap to practicable lattice spacings ?



Matching in finite volume and finite-size scaling

Assuming both QCD & HQET to be applicable in finite volume and the
parameters in Lqep/uqer to be independent of it, we evaluate (x) as

O (L, M) = d2P (L, M) k=1,...,Np
@ Allows much smaller a on the r.h.s. to eventually approach the CL
@ Typical choice: L =Ly ~0.2—0.4fm

@ HQET parameters determined at small spacings a = 0.01 — 0.4 fm
so that large volumes, needed to extract the physical mass
spectrum or matrix elements, require very large lattices of L/a > 50
— How can we bridge the gap to practicable lattice spacings ?

A well-defined procedure: Finite-size scaling
Define step scaling functions oy by

DOHET (5| M) = g, ({CDHQET(L M), | Nn }> k=1,....Nn

@ oy describe the change of the complete set {(DEQET} underL — sL

@ Ends up with a’s appropriate for infinite volume computations
(Lg = sKLy ~ 1fm where typically s =2 and k = 2,3)




QCD Schradinger functional (SF)

A finite-volume renormalization scheme

Definition [Luscher et al.]

L : ~C
@ SF = QCD patrtition function on a T
Euclidean T x L3 cylinder:
| D Gersuwd _oor e T
TxL3
0
@ Gauge & quark fields satisfy Dirichlet BCs ~ c
in time and are periodic in space, e.g. —
U (X, K)o = €20 U (X, K)[xyut = 3% X space

(Lattice) Correlation functions are constructed according to

falxo) = *% (Ao(x)O) 0= Z U(y)ys (z) : (PS) Boundary source

Similar: fp, kv, ..., and f; = —% (0’0) = boundary-to-boundary correlator



Recursive finite-size scaling
QHQET (L o)
ﬁ —

/

q)HQhT(SLO)

@ Connects small and large volumes
(resp. low-energy scales to perturbative ones ~ 1/Lg)

@ Continuum limit can be taken
@ Fully non-perturbative




Recursive finite-size scaling
(DIIQET(LO)
T i

OHQET (gL )

@ Connects small and large volumes
(resp. low-energy scales to perturbative ones ~ 1/Lg)

@ Continuum limit can be taken
@ Fully non-perturbative

Benefits

Identifies p = 1/L
L~ runs, separated
froma—?!

Spans large range
in energy u=1/L

Framework to solve
scale dependent
renorm. problems

SF scheme, N,=2
3-loop

I
10 100 1000

[ ALBHA 2004]




LECTURE 2

Applications



Non-perturbative tests of HQET

Motivation:
Though HQET is commonly accepted as effective theory of QCD, explicit
demonstrations of this are rare or based on phenomenological analyses

Requirement for a pure, non-perturbative theory test

QCPD including a heavy enough quark must be simulated on the lattice at
lattice spacings small enough to be able to take the continuum limit

= Perform such tests in a finite volume



Non-perturbative tests of HQET

Motivation:
Though HQET is commonly accepted as effective theory of QCD, explicit
demonstrations of this are rare or based on phenomenological analyses

Requirement for a pure, non-perturbative theory test

QCPD including a heavy enough quark must be simulated on the lattice at
lattice spacings small enough to be able to take the continuum limit

= Perform such tests in a finite volume

Realization:

@ Put the theory in a Schrodinger functional box with moderate T = L
such thatam, <« 1

@ Equivalent boundary conditions can be imposed on the HQET side
@ Build correlators of boundary quark fields ¢ and composite fields

f**Z (Ar)o y)vs@i(2)) G

(Ar)o(x ):Ao( x)+acat(d, + 3P (x)

(Ar)o

zo =10 zo=1L



Form a proper ratio where the boundary renormalization factors drop out:

_ /2 (Q(L)]AlB(L))
Yes(LM) = Za =7 = @y eLyl

B(L)) =e 2 |pp(L)) QL)) =e "2 |g@qo(L))

l@o(L)), l@p(L)): SF (vacuum and pseudoscalar) boundary states
|Q(L)), |B(L)): states with vacuum and B-meson quantum numbers

@ Time evolution ensures dominance by contributions with AE < 2/L
@ Conclusion: HQET is applicable if 1/L < M (and A < M)

= One expects (for fixed AL) the large-mass asymptotics of Ypg to obey

Yps(L,M) 2% Cps (M/A) x Xgar(L) + O(1/z) z=ML



Form a proper ratio where the boundary renormalization factors drop out:

| o Gl/2) _ (O] AelB(L)
Yes(EMIT= 24 = T ONNIEmY

B(L) =e " 2|ep(L))  1Q(L) = e "?|@ol(L))
l@o(L)), l@p(L)): SF (vacuum and pseudoscalar) boundary states
|Q(L)), |B(L)): states with vacuum and B-meson quantum numbers
@ Time evolution ensures dominance by contributions with AE < 2/L
@ Conclusion: HQET is applicable if 1/L < M (and A < M)

= One expects (for fixed AL) the large-mass asymptotics of Ypg to obey

Yps(L,M) 2% Cps (M/A) x Xgar(L) + O(1/z) z=ML

Xra1 = static-limit analogue of Ypg
X,

RCI

—1.278 |- .

e Xgrai(l) = Zrar X (L) o< %

—1.28 —
e demands a lattice computation in B l» ]
static approximation (L ~ 0.2 fm) TR .
and to extrapolate to the continuum ~ -1ze: |- 1

T N R N
0 0.002 0.004 0.006 (a/L)?




PS

-1.4

—-1.5

-16

Quenched study of the large —z behaviour of Ypg in small-volume QCD:

The finite-mass observable turns smoothly into the HQET prediction
(Note: Cpg reduces the mass dependence of Ypgs(L, M) by a factor > 2)

More such successful test (e.g. for the spin splitting) are available,
outcome: magnitude of z~"— coefficients reasonably small, ~ O(1)

Power-corrections larger than perturbative ones at z—* = 0.1 — 0.2,
but a theoretically consistent evaluation of the former requires a fully
non-perturbative formulation of HQET including its matching to QCD

YPS/CFS
\ \ \ ‘ \ \

F¢—8 35— 3% S ¢ 4 =1 | e3-loop ¥ i
r Z=80 1 | = 2—loop ¥ o
I ] | o Xy (static) ] il
[ ] -
L+ —s 535 5 g r S el
L o 12| QL g}/ii -
r }\m % . ] L P 27 |
L H\@ z=9.0 $ Fooe B
L K i r ¥ o linear (1/2<0.2) |
[ : ; ] -13 | iy i
i § 7z=13.5 ] L —-—-—- quadratlic i

- . I B ! - - N

0.002 0.004 0.008 (a/L)? 0 0.1 0.2 03 1/z



Non-perturbative matching in a concrete example

Computation of My, in lowest-order of HQET (static approximation)

Recall:
@ Matching conditions (DEQET(L, M) = CDSCD(L, M) in L~0.2fm
@ to fix the QCD parameters & subtract power divergences in HQET



Non-perturbative matching in a concrete example

Computation of My, in lowest-order of HQET (static approximation)

Recall:
@ Matching conditions (DEQET(L, M) = CDSCD(L, M) in L ~0.2fm
@ to fix the QCD parameters & subtract power divergences in HQET

Realization to determine the mass of the b-quark

I'(L,M) __ | B-meson mass in a finite volume of extent L4
Ttat (L) energy of a state with B-meson quantum numbers in L*
Now implicitly replace
Mpare = M + % ln(l + aém) in MB = Egtat + Mpare

via the set of conditions
HQET
(Dl

(DIZrIQET

= O%P = §2(Ly) = constant
OIP = m = o0

rs‘rn‘r(LO)‘I“ml)m'(‘, = (DéIQICT = (D:?CD = F(LO,Mb)




As anticipated before:

Use L—dependent energies from SF-correlators in the B-meson channel

Q,
ChoM): 7 >° A

Xo = 0
¢
: Astat
Cstat(xo) . Z 0
h
Xo = 0

Xo =1L

— INLM) =— @

X In[C(x0, M)]

d

a (L) = _d_ In [Cstat(xo)]

Xo

Xo=

Xo

NI-

L
2



As anticipated before:
Use L—dependent energies from SF-correlators in the B-meson channel

Q,
Clxo M) : >DA° N r(L,M)z—diXOm[C(xO,M)]

NI-

Xo=

Xo =0 Xo =1L
Q
Astat d
Cstat(XO) : Z }j 0 = stat(l—) = _a In [Cstat(XO)] oL
h 0 0=73
Xo =0 Xo =1L

=- Matching condition by equating in small volume with linear extent Ly :

rstat(LOJ + Mpare = F(Lo, Mb)



As anticipated before:
Use L—dependent energies from SF-correlators in the B-meson channel

Q,
ClhoM): 7 >DA° = F(L,M)E—diXOIn[C(XO,M)]

NI-

Xo=

Xo =0 Xo =1L
Q
Astat d
Cstat(xo) : Z }j 0 = Stat(l—) = _a In [Cstat(XO)] oL
h 0 0=3
Xo =0 Xo =1L

=- Matching condition by equating in small volume with linear extent Ly :

rstat('—O) + Mpare = F(Lo, Mb)

Xo Xo—

As C(Xo) <% e~msXo gngd Cstat(Xo) <% ¢~Esat%o in the large—L limit,
we have to connect this condition (by finite-size scaling) to

Estat + Mpare = MB



To bridge between the matching in small volume and a physical situation
(i.,e.L>1.5fm & a = 0.05 fm to accommodate a B-meson), adopt a few
recursive finite-size scaling steps in an intermediate SF scheme:

| lattice with amy, < 1 |

mp = 5.4 GeV (Lo, M)

STRATEGYI

Gm(ul] 0-m(uO)

Gtat(Lo) = Tstat(be) = Titat(Lo)

@ [, I, : suitable quantities for matching

@ Introduce a step scaling function oy, (u) = 2L [Tyt (2L) — Tstat (L) ]
to evolve Lg — Ly, = 2%Lg ~ 1fm

@ For L ~ 2fm @ same resolution: calculate physical observables



= Equation to solve for the b-quark mass
mp = Estat - rstat(LZ)
~———/—
a — 0in HQET

+ rstat(LZ) - rstat(LO)
a— 0in HQET

+ I'(Lo, My,)
—_———

a — 0in QCD (L3)

@ Linearly divergent static quark’s self-
energy o6m cancels in differences!

@ I'(L, M) is defined in small-volume
QCD with a relativistic b-quark:

z=LM>1 Lo~02fm

I'(L, M) carries the entire quark
mass dependence




= Equation to solve for the b-quark mass

M = Egat — rstat (LZ)
—_—————

a — 0in HQET

+ rstat(LZ) - stat(LO)
a— 0in HQET

4 I'(Lo, My,)
—_———

a — 0in QCD (L3)

@ Linearly divergent static quark’s self-
energy dm cancels in differences!

@ T'(L, M) is defined in small-volume
QCD with a relativistic b-quark:

z=LM>1 Lo~02fm

I'(L, M) carries the entire quark
mass dependence

o~
=)
TTTTT T[T [ (T[T T [T T T T

0.006 (a/L)?
In practice: choose fixed SF coupling
9%(Lo/2) with Ly = Linax/2 = 0.36r,
= (L/a, B, ;) from previous work
Desired quark mass values z = LoM
traded for |<h used in the simulations:
zZ=Ly="— mh o 7 Z mMgn (1 + bnamgy)

[H. & Wennekers, 2004]



LO X [rstat(LZ) - rstat(LOH

e The SSF connects the small
‘matching’ volume Lo ~ 0.2 fm
to Ly ~ 1fm

= Contact with physical quantities:

Estat » Mp in large volume

2.(u,a/L)

0.4

-0.2

0.2

L = |
ol e e e




LO X [rstat(LZ) - stat(LOH

The SSF connects the small
‘matching’ volume Ly ~ 0.2 fm
to Ly ~ 1fm

Zn(ua/L)

Contact with physical quantities:
Egtat » Mg in large volume

LoAE =lo x [Estat — rstaL(LZ)]
L,AE
0.5

e Left: Wilson fermions,
Estat from the Fermilab group
[Duncan et al., PRD51(1995)5101]

Right: [non-] perturbatively
O(a) improved (+ enhanced
signal/noise-ratios by change
of discretization of SuqrT)

0.4

04T s '
[ " u=3.480 :

0.2 |- u=2.770 ]
I s ]

L - o 5 4

| '/Q/ » u=2.448¢ |
oz / ;
1 M L 1 PRI

0 0.01 0.02 0.03

(a/L)?
T[T rrog LI L
L a=0.1fm 4k a=0.1fm |
- Wilson : 4 improved @ A
i PR AP PO I | ol RN PRI
0 0.10.20.3 0 0.02 0.04
a/r, (a/ry)?




The RGI b-quark mass My, is finally obtained from intercept of

w(z,u) = lim Lol with  wsiay = Loms — {30m(Uo) + 2om(u1)} — LoAE

C T I T TT I T TT I T TT I T ]

@M=", = 1Tps+ 31y: S 7

spin-averaged combination to L wg, ]

minimize the size of 1/M —effects 45 _'

@ Continuum limit in all steps N i

@ Non-perturbative renormalization 4 I“(U'Z) | | | .
1 ) T - 1 Ll ) T | L1 1

5 55 g g5 z=LM



The RGI b-quark mass My, is finally obtained from intercept of

(,U(Z, U) = aliLnO I—0]—‘ with Wstat = LomB o {%O-m(uo) + %Gm(ul)} * I—OAE

@M=", = tTps+21y: S .
spin-averaged combination to L wg, ]
minimize the size of 1/M —effects 45 _'

@ Continuum limit in all steps N i

@ Non-perturbative renormalization 4 r I“(“'Z) | | TEE

1 ) T - 1 1 ) T | L1 1

5 55 B °6 6.5 2=LM

Result [H. & Sommer, 2004] J

M, = 16.12(29) — MM (MMS) = 4.12(8) GeV

Uncertainties and expected improvements:

v Valid up to O Mb) O(,{A‘—s) corrections, quenched approximation

v. Computation of aEg,¢ including the improvements just mentioned
will yield a continuum limit of LoAE with a much smaller error



Towards a precision determination of Fg_

Two-step strategy
© Calculation of Fg_ in lowest order of HQET (= static approximation)
Fpsv/Mps = Cps (M/Agg) X @rar + O (1/M)
Orar = RGI matrix element of the static axial current

Qrar = Zrar(PSIAG™10)  AF™ = yoyshpy™ for PS=B

tat
w e(Xo*T/Z)Estat(XU) in the SF

Vi

@ Combine with results for Fpg(mpg) around the charm quark region
by (linear) interpolation in 1/mpg

Orai(Xo) o< Zrar x




Towards a precision determination of Fg_

Two-step strategy
© Calculation of Fg_ in lowest order of HQET (= static approximation)
Fpsv/Mps = Cps (M/Agg) X @rar + O (1/M)
Orar = RGI matrix element of the static axial current

Drar = Zrar(PS|AT™[0) A =byyoysp™ for PS=B

tat
m e(Xo*T/Z)Estac(XO) in the SF

Vi

@ Combine with results for Fpg(mpg) around the charm quark region
by (linear) interpolation in 1/mpg

Orai(Xo) o< Zrar x

» Non-perturbative renormalization: Zrgp known [H., Kurth & Sommer, 2003]
» Calculation employs further (mainly new) ingredients, namely ...



@ Linear a—effects removed



@ Linear a—effects removed

@ Modified (static) action with reduced
statistical errors by change of parallel
transporters in covariant derivative:

D()lbh(x) - ail[u)h(x) 7WT(X - a(A),Ojlj)h(x - aﬁ)]

V" W (x, 0) = function of gauge fields in
the neighbourhood of x, x + a0
V' Quite the same small lattice artifacts

e e
Rys | I E
L o
0.1 o a2’
E o FEWCE
W
o P
0.01 L i
L d J
TE .OO'.ABABEEEH
E ee00t0n
C EENEWW
[o8®
0,001 O i
o 05 1 15

2 x, [fm]
Best version: ‘HYP-smearing’
[Hasenfratz & Knechtli, 2001]



@ Linear a—effects removed

@ Modified (static) action with reduced
statistical errors by change of parallel
transporters in covariant derivative:

Doy (x) = a L[y (x) — WT(x —al, 0)y (x —ald) ]

v W (x, 0) = function of gauge fields in
the neighbourhood of x,x + a0
V' Quite the same small lattice artifacts

R R R
Rys £ o 3

0.1

0.01 ¢

0.001 I L L
0 05 1 15 2 x, [fm]

Best version: ‘HYP-smearing’
[Hasenfratz & Knechtli, 2001]

@ Wauve functions at boundaries of the
SF-cylinder to suppress excited B-meson
state contributions to correlators



@ Linear a—effects removed

@ Modified (static) action with reduced
statistical errors by change of parallel
transporters in covariant derivative:

Do (x) = a *[Pn(x) —WT(x —a0,0)wn(x —ad)]

v W (x, 0) = function of gauge fields in
the neighbourhood of x,x + a0
V' Quite the same small lattice artifacts

R, T
0.1
E 3/2
L I‘0/ q)RGl
001 | 3
0,00ln L vl 25
0 05 1 15 2 x, [fm]
Best version: ‘HYP-smearing’ 5
[Hasenfratz & Knechtli, 2001]
1.5

@ Wauve functions at boundaries of the
SF-cylinder to suppress excited B-meson
state contributions to correlators

2r L L L L I L
aHttEg
T {H E
: b } ]
£ 2 [
E2 ; ]
05 ¢ £=6.0 },
. . 3=6.2
o Lo I I Ll Ll
0 1 2 3 4 5
%o/Ty
IIIIIIIII!IIIIIII I L I L I T
I~ Wilson I~ improved
B B a=0.1fm |
o [T
IIIIIIIIIIIIIIIII IIIIIIIIiI
0 0.10.20.3 0 0.02 0.04
a/r, (a/ry)?



Interpolation between leading-order HQET and Fp,

Extrapolation of rg/ZFPS\/mps/CPS from the charm region to the static
estimate r§/2q>w using results on Fps(mps) } [Rolf & Jiittner, 2003]

m2>~m

@ Linear interpolation in 1/(mpgro) : L S A L
» motivated by HQET g 1.8 } rd/2 dgiat = 1.74(13) ,:
» justified by the data S ]
. . g1r ]
@ mass dependent discretization o0 ]
errors near me N M &x B
. el n
@ Cps(My/Agg) translates to finite ¥ B, ]
IR I SO R PR B

b-quark mass ! 5 o oz 5

1/rg Mg



Interpolation between leading-order HQET and Fp,

Extrapolation of rg/ZFPS\/mps/CPS from the charm region to the static
estimate r§/2q>w using results on Fps(mps) } [Rolf & Jiittner, 2003]

m2>~m

@ Linear interpolation in 1/(mpgro) : L S A L
» motivated by HQET w 1.8 rd/2 gat = 1.74(13) .
» justified by the data SO ]
. . g1r ]
@ mass dependent discretization o0 ]
errors near me N M &x B
So [ 3 ]
.. 12 - .
@ Cps(My/Agg) translates to finite ¥ B, ]
IR I SO R PR B

b-quark mass ! 5 o oz 5

1/rg mpg
Preliminary result [ 7244 2003] \

Asrs = 238(19)MeV , 1o =05fm — Fp, = 205(12) MeV

v~ Includes all errors except for quenching (scale ambiguity is ~ 12%)

v Extrapolation without the static constraint looks similar but depends
significantly on functional form assumed =- interpolation much safer



Alternative to determine the B-meson decay constant

Further application of the non-perturbative matching strategy

To lowest order in 1/m we have
M(go) = (B(p = 0)|AF*(0)|0)  Fpymp, = ;iLnOZZm(go,aMb)M(go)

@ Z3"*(go, aMy,) computed in quenched approximation via a matching
through the RGI operator with finite-size scaling techniques
(N¢ = 2 also in progress — P. Fritzsch’s talk)

@ This method is not easily extended to include 1/m —corrections



Alternative to determine the B-meson decay constant

Further application of the non-perturbative matching strategy

To lowest order in 1/m we have
M(go) = (B(p = 0)|AF*(0)|0)  Fpymp, = ;iLnOZZm(go,aMb)M(go)

@ Z3"™*(gg, aMy,) computed in quenched approximation via a matching
through the RGI operator with finite-size scaling techniques
(N¢ = 2 also in progress — P. Fritzsch’s talk)

@ This method is not easily extended to include 1/m —corrections

In the spirit of our non-perturbative matching of HQET and QCD in finite
volume, the master formula valid up to corrections of O(1/m) is

B Fr /s | HQET
Bviib = QHQET (L, My,)
OHQET(1, M)  @OHRET(L;, M)

QCD
* QHQET(L;, My,) QHQET (Lo, My,) X 0= Lo, M)

@ applying to multiplicative, scale dependent renormalizations and

@ provided that the b-quark mass is already known



Ingredients:

@ Matching equation to be imposed in the small volume

OHET () M) = DUP (L, My,)  with §2(Lo) = ug = fixed

@ Finite-size scaling in terms of step scaling functions built as

QUET (2L, My) |, _, = ox (G°(L)) x @TFT(L, M) |

a=0

@ Then the previous formula finally combines to

FB\/mib = p(Uz) X Gx(ul) X GX(UO) X CDQCD(L(), Mb)
p(u) = lim M X(go,L/a) = w

a/L—0 X (9o, L/a) | 52(1)y Vet



Ingredients:

@ Matching equation to be imposed in the small volume

OHET () M) = DUP (L, My,)  with §2(Lo) = ug = fixed

@ Finite-size scaling in terms of step scaling functions built as

QUET (2L, My) |, _, = ox (G°(L)) x @TFT(L, M) |

a=0

@ Then the previous formula finally combines to

Feyvmp, = p(uz) x ox(up) x ox(ug) x ®P(Lg, My,)
. M(go) 32t (L/2)
u = lim ——— X(go,L/a) = A ———
p( ) a/L—0 X(go,L/a) g2(L)=u (go / ) fotat

Key difference to obtaining RGls & conversion to the matching scheme

@ is not the absence of perturbative errors in Cps (My,/Agg)

@ but the tempting possibility to include 1/m —corrections




» New quality of the computations employing lattice HQET:

v" Non-perturbative renormalization
v/ Continuum limit at large quark masses (small-volume setup!)

» Discretizations for static quarks entailing exponentially improved
statistical precision

» Physics results are still quenched, but an extension of the methods
to dynamical fermions is straightforward
(‘only’ the usual problems with light quarks to be solved)

» Even more interesting:
Systematic improvement by implementing the effective theory
beyond the leading order in 1/m to reach an acceptable precision

v’ First tests and ideas seem to be promising
v" To do this consistently, conversion functions such as Cpg have
to be known non-perturbatively



Towards an inclusion of 1/m —corrections

The 1/m—expansion of the correlator fo receives new contributions:
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1) f§tat fkm

+ Wkin Toap f%mt

h UBlI)h

)0)

Proposal: use a combination of energies
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