Flavour Physics and

CP Violation

Robert Fleischer CERN, Department of Physics, Theory Unit

Helmholtz International Summer School "Heavy Quark Physics" Dubna, Russia, 6–16 June 2005

The Central Targets ...

•
$$V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0$$
: \Rightarrow UT

$$\overline{\rho} \equiv \left(1 - \lambda^2/2\right) \rho, \quad \overline{\eta} \equiv \left(1 - \lambda^2/2\right) \eta$$

•
$$V_{ud}^* V_{td} + V_{us}^* V_{ts} + V_{ub}^* V_{tb} = 0$$
:

Back to the Key Problem ...

Hadronic matrix elements
$$\langle \overline{f}|Q_k^j(\mu)|\overline{B}
angle$$

- Amplitude relations allow us in fortunate cases to eliminate the hadronic matrix elements (\rightarrow typically strategies to determine γ):
 - <u>Exact relations</u>: class of pure "tree" decays (e.g. $B \rightarrow DK$).
 - <u>Approximate relations</u>, which follow from the *flavour symmetries* of strong interactions, i.e. SU(2) isospin or $SU(3)_{\rm F}$:

$$B \to \pi \pi$$
, $B \to \pi K$, $B_{(s)} \to KK$.

• Decays of neutral B_d and B_s mesons:

Interference effects through $B_q^0 - \overline{B_q^0}$ mixing

- "Mixing-induced" CP violation ...

Lecture II

- Exploring CP Violation through Amplitude Relations:
 - Example: $B^{\pm} \to K^{\pm}D$, $B_c^{\pm} \to D_s^{\pm}D$
- Exploring CP Violation through Neutral *B* Decays:
 - Time Evolution of Neutral ${\cal B}$ Decays
 - *B*-Factory Benchmark modes: $B_d \rightarrow J/\psi K_{\rm S}$, $B_d \rightarrow \pi^+\pi^-$
- The "El Dorado" for Hadron Colliders:

$$B_s$$
 System

- Basic Features
- Benchmark Decays:
 - * $B_s \to J/\psi\phi$ * $B_s \to D_s^{\pm} K^{\mp}$ (complements $B_d \to D^{\pm} \pi^{\mp}$) * $B_s \to K^+ K^-$ (complements $B_d \to \pi^+ \pi^-$)

The Classical Triangle Approach [Gronau & Wyler ('91)]

• $\underline{B^+ \to K^+ \overline{D^0}}$: \rightarrow "colour-allowed" decay

• $\underline{B^+ \to K^+ D^0}$: \to "colour-suppressed" decay

• $\underline{B^+ \to K^+ D^0_+}$: $\to \underbrace{\text{CP eigenstate } D^0_+}_{\downarrow = 0 \downarrow \downarrow = 1} \Rightarrow \underline{\text{interference effects!}}$ $|D^0_+\rangle = \frac{1}{\sqrt{2}} [|\overline{D^0}\rangle + |D^0\rangle]$

• We then arrive at the following amplitude triangles:

 \Rightarrow theoretically *clean* determination of γ !

• Triangles are unfortunately very squashed:

$$\left|\frac{A(B^+ \to K^+ D^0)}{A(B^+ \to K^+ \overline{D^0})}\right| \approx \frac{1}{\lambda} \frac{|V_{ub}|}{|V_{cb}|} \times \frac{a_2}{a_1} \approx 0.4 \times 0.3 = \mathcal{O}(0.1)$$

 \Rightarrow approach is very difficult in practice!

• Another – more subtle – problem:

$$\mathsf{BR}(B^+ \to K^+ D^0)$$

- $D^0 \rightarrow K^- \ell^+ \nu_\ell$ would be ideal to measure this tiny branching ratio: however, huge background from semileptonic B decays \Rightarrow
- Have to use Cabibbo-allowed hadronic $D^0 \rightarrow f_{\rm NE}$ decays:

$$B^+ \to K^+ D^0 [\to f_{\rm NE} = \pi^+ K^-, \rho^+ K^-, \dots].$$

- Unfortunately, another decay path into the *same* final state through

$$B^+ \to K^+ \overline{D^0} [\to f_{\rm NE}],$$

where $BR(B^+ \to K^+\overline{D^0})$ is $\mathcal{O}(10^2)$ larger than $BR(B^+ \to K^+D^0)$, while $\overline{D^0} \to f_{\rm NE}$ is DCS, i.e. $\mathcal{O}(10^{-2})$ smaller than $D^0 \to f_{\rm NE}$:

 $\Rightarrow \quad \text{interference effects of } \mathcal{O}(1)!$

– If two different final states are measured, γ can be extracted \ldots

[Atwood, Dunietz & Soni (1997)]

There is another species

of charged $B\,$ mesons:

Preliminaries

• Discovered by CDF through $B_c^+ \rightarrow J/\psi \,\ell^+ \nu_\ell$: [CDF, *PRL* **81** (1998) 2432]

 $M_{B_c} = (6.40 \pm 0.39 \pm 0.13) \text{GeV}$ $\tau_{B_c} = (0.46^{+0.18}_{-0.16} \pm 0.03) \text{ps.}$

• D0 observed recently $B_c^+ \rightarrow J/\psi \, \mu^+ X$: [D0 Note 4539-CONF (Aug 2004)]

$$M_{B_c} = (5.95^{+0.14}_{-0.13} \pm 0.34) \text{GeV}$$

 $\tau_{B_c} = (0.448^{+0.123}_{-0.096} \pm 0.121) \text{ps.}$

• Now also evidence for $B_c^+ \rightarrow J/\psi \pi^+$ at CDF: [CDF Note 7438 (Feb 2005)]

 $\Rightarrow M_{B_c} = (6.2870 \pm 0.0048 \pm 0.0011) \text{GeV}.$

• Run-II of the Tevatron will provide further insights into B_c physics, and a huge number of B_c mesons will be produced at LHCb:

Can insights into CP violation be obtained from B_c -meson decays?

The Triangle Approach in the B_c -Meson System

• B_c counterparts of $B_u^{\pm} \to K^{\pm}D$:

$$B_c^{\pm} \rightarrow D_s^{\pm} D$$
: \Rightarrow also a determination of γ !

[M. Masetti (1992)]

• For the extraction of γ , the following amplitude relations are used:

$$\sqrt{2}A(B_c^+ \to D_s^+ D_+^0) = A(B_c^+ \to D_s^+ D^0) + A(B_c^+ \to D_s^+ \overline{D^0})$$
$$\sqrt{2}A(B_c^- \to D_s^- D_+^0) = A(B_c^- \to D_s^- \overline{D^0}) + A(B_c^- \to D_s^- D^0)$$

$$A(B_c^+ \to D_s^+ \overline{D^0}) = A(B_c^- \to D_s^- D^0)$$
$$A(B_c^+ \to D_s^+ D^0) = A(B_c^- \to D_s^- \overline{D^0}) \times e^{2i\gamma}$$

• The situation appears completely analogous to the $B^{\pm} \rightarrow K^{\pm}D$ case ...

 $- B_c^+ \rightarrow D_s^+ \overline{D^0}$: \rightarrow "colour-suppressed" decay

 $- \underline{B_c^+ \to D_s^+ D^0}: \longrightarrow "colour-allowed" decay$

- Consequently, in the $B_c^{\pm} \rightarrow D_s^{\pm}D$ system, the amplitude associated with the *small* CKM element V_{ub} is *not* colour-suppressed, whereas the larger CKM element V_{cb} enters with a colour-suppression factor:

$$\Rightarrow \quad \left| \frac{A(B_c^+ \to D_s^+ D^0)}{A(B_c^+ \to D_s^+ \overline{D^0})} \right| \approx \frac{1}{\lambda} \frac{|V_{ub}|}{|V_{cb}|} \times \frac{a_1}{a_2} \approx 0.4 \times 3 = \mathcal{O}(1)$$

 \Rightarrow | *non-squashed* triangles, i.e. *ideal* theoretical realization:

[R.F. & Wyler (2000)]

Status of the Relevant Branching Ratios

- Non-leptonic decays: \Rightarrow large hadronic uncertainties!
 - Factorization (!?), certain form factors have to be used ...
- First estimates of BRs: Liu & Chao (1997); Colangelo & De Fazio (2000); ...
- Most recent analysis, using a *relativistic quark model*:
 - Predicts branching ratios for $B^+ \to \overline{D^0} e^+ \nu_e$, $B^+ \to K^+ \overline{D^0}$ and $B^+ \to D_s^+ \overline{D^0}$ in good accordance with experiment!
 - Application of the model to calculate the B_c branching ratios: \Rightarrow

$$B_c^+ \to D_s^+ \overline{D^0} : 1.74 \times 10^{-6}, \quad B_c^+ \to D_s^+ D^0 : 2.48 \times 10^{-6}$$

 $B_c^+ \to D^+ \overline{D^0} : 3.24 \times 10^{-5}, \quad B_c^+ \to D^+ D^0 : 1.11 \times 10^{-7}.$

[Ivanov, Körner & Pakhomova, Phys. Lett. B555 (2003) 189]

- Semileptonic B_c decays were recently addressed \rightarrow nice testing ground! [Ivanov, Körner & Santorelli, hep-ph/0501051]

Other Interesting Aspects of B_c Mesons

- Lowest lying bound state of two heavy quarks, \overline{b} and c: \Rightarrow
 - QCD dynamics of the B_c^+ mesons is similar to quarkonium systems, such as $\overline{b}b$ and $\overline{c}c$, which are approximately non-relativistic.
 - Important difference: B_c contains open flavour

stable under strong interactions!

- Quarkonium-like B_c mesons provide an important laboratory to explore the interplay of strong and weak interactions:
 - Heavy-Quark Expansions (HQE)
 - Non-Relativistic QCD (NRQCD)
 - Factorization, ...

Can be tested in a setting complementary to weak hadron decays!

 $ightarrow B_c$ lifetime & inclusive decays, leptonic and semileptonic decays, ...

[For more details, see *B Decays at the LHC*, hep-ph/0003238]

Exploring CP Violation through Neutral B Decays

A Closer Look at $B^0_q - \overline{B^0_q}$ Mixing $(q \in \{d, s\})$

• Lowest-order SM contributions: ^u

• <u>Time evolution:</u> $|\psi_q(t)\rangle = a(t)$

$$|\psi_q(t)\rangle = a(t)|B_q^0\rangle + b(t)|\overline{B_q^0}\rangle$$

$$i\frac{\partial}{\partial t}\left(\begin{array}{c}a(t)\\b(t)\end{array}\right) = \left[\left(\begin{array}{cc}M_0^{(q)}&M_{12}^{(q)}\\M_{12}^{(q)*}&M_0^{(q)}\end{array}\right) - \frac{i}{2}\left(\begin{array}{c}\Gamma_0^{(q)}&\Gamma_{12}^{(q)}\\\Gamma_{12}^{(q)*}&\Gamma_0^{(q)}\end{array}\right)\right]\cdot\left(\begin{array}{c}a(t)\\b(t)\end{array}\right)$$

• Mass eigenstates with masses $M_{\rm H}^{(q)}$, $M_{\rm L}^{(q)}$ and decay widths $\Gamma_{\rm H}^{(q)}$, $\Gamma_{\rm L}^{(q)}$:

$$\Delta M_q \equiv M_{\rm H}^{(q)} - M_{\rm L}^{(q)}, \quad \Delta \Gamma_q \equiv \Gamma_{\rm H}^{(q)} - \Gamma_{\rm L}^{(q)}, \quad \Gamma_q \equiv \frac{1}{2} \left[\Gamma_{\rm H}^{(q)} + \Gamma_{\rm L}^{(q)} \right]$$

Decay Rates of Neutral B_q Mesons

• Time evolution due to $B_q^0 - \overline{B_q^0}$ mixing: \Rightarrow

$$\Gamma(\overset{(-)}{B_{q}^{0}}(t) \to f) = \left[\left| g_{\mp}^{(q)}(t) \right|^{2} + \left| \boldsymbol{\xi}_{f}^{(q)} \right|^{2} \left| g_{\pm}^{(q)}(t) \right|^{2} - 2 \operatorname{Re} \left\{ \boldsymbol{\xi}_{f}^{(q)} g_{\pm}^{(q)}(t) g_{\mp}^{(q)}(t)^{*} \right\} \right] \Gamma_{f}$$

- The time dependence enters through the following functions:

$$g_{+}^{(q)}(t) g_{-}^{(q)}(t)^{*} = \frac{1}{4} \left[e^{-\Gamma_{\rm L}^{(q)}t} - e^{-\Gamma_{\rm H}^{(q)}t} - 2 \, i \, e^{-\Gamma_{q}t} \sin(\Delta M_{q}t) \right]$$
$$\left| g_{\mp}^{(q)}(t) \right|^{2} = \frac{1}{4} \left[e^{-\Gamma_{\rm L}^{(q)}t} + e^{-\Gamma_{\rm H}^{(q)}t} \mp 2 \, e^{-\Gamma_{q}t} \cos(\Delta M_{q}t) \right]$$

- The overall normalization Γ_f denotes the "unevolved" $B_q^0 \to f$ rate.

• Substitutions for the $\overset{(-)}{B_q^0}(t) \to \overline{f}$ rates: $\Gamma_f \to \Gamma_{\overline{f}}, \quad \xi_f^{(q)} \to \xi_{\overline{f}}^{(q)}$.

• The quantities $\xi_f^{(q)}$ and $\xi_{\overline{f}}^{(q)}$ describe interference effects:

• $\Theta_{M_{12}}^{(q)}$ is the CP-violating weak $B_q^0 - \overline{B_q^0}$ mixing phase:

$$M_{12} = e^{i\Theta_{M_{12}}^{(q)}} |M_{12}| \qquad \qquad \overleftarrow{b} \quad \overrightarrow{W} \quad \overrightarrow{q} \\ q \quad \overrightarrow{W} \quad \overleftarrow{b} \\ q \quad \overrightarrow{W} \quad \overleftarrow{b} \\ q \quad \overrightarrow{W} \quad \overrightarrow{b}$$

$$\Theta_{M_{12}}^{(q)} - \pi \sim 2 \arg(V_{tq}^* V_{tb}) \equiv \phi_q = \begin{cases} +2\beta & (B_d \text{ system}) \\ -2\delta\gamma & (B_s \text{ system}) \end{cases}$$

• Note that $\xi_f^{(q)}$ and $\xi_{\overline{f}}^{(q)}$ are <u>convention-independent</u> quantities!

CP Violation in Neutral B_q Decays

- Particularly simple: $B_q \to f$ with $(\mathcal{CP})|f\rangle = \pm |f\rangle$.
- Time-dependent CP asymmetry:

$$\frac{\Gamma(B_q^0(t) \to f) - \Gamma(\overline{B_q^0}(t) \to \overline{f})}{\Gamma(B_q^0(t) \to f) + \Gamma(\overline{B_q^0}(t) \to \overline{f})} = \left[\frac{\mathcal{A}_{\rm CP}^{\rm dir}\cos(\Delta M_q t) + \mathcal{A}_{\rm CP}^{\rm mix}\sin(\Delta M_q t)}{\cosh(\Delta\Gamma_q t/2) - \mathcal{A}_{\Delta\Gamma}\sinh(\Delta\Gamma_q t/2)}\right]$$

• $\Delta \Gamma_q \equiv \Gamma_{\rm H}^{(q)} - \Gamma_{\rm L}^{(q)}$ provides another observable:

$$\mathcal{A}_{\Delta\Gamma} \equiv \frac{2 \operatorname{Re} \boldsymbol{\xi}_{f}^{(q)}}{1 + |\boldsymbol{\xi}_{f}^{(q)}|^{2}} \quad \rightarrow \quad [\mathcal{A}_{\mathsf{CP}}^{\mathsf{dir}}]^{2} + [\mathcal{A}_{\mathsf{CP}}^{\mathsf{mix}}]^{2} + [\mathcal{A}_{\Delta\Gamma}]^{2} = 1$$

• In general, contributions from two CKM amplitudes:

$$\xi_{f}^{(q)} = \mp e^{-i\phi_{q}} \left[\frac{e^{+i\varphi_{1}}|A_{1}|e^{i\delta_{1}} + e^{+i\varphi_{2}}|A_{2}|e^{i\delta_{2}}}{e^{-i\varphi_{1}}|A_{1}|e^{i\delta_{1}} + e^{-i\varphi_{2}}|A_{2}|e^{i\delta_{2}}} \right] \quad \Rightarrow$$

calculation of $\xi_f^{(q)}$ is affected by hadronic uncertainties!

• However, if one CKM amplitude plays the dominant rôle:

$$\xi_f^{(q)} = \mp e^{-i\phi_q} \left[\frac{e^{+i\phi_f/2} |M_f| e^{i\delta_f}}{e^{-i\phi_f/2} |M_f| e^{i\delta_f}} \right] = \mp e^{-i(\phi_q - \phi_f)} \quad \Rightarrow$$

hadronic matrix element $|M_f|e^{i\delta_f}$ cancels!

- *No* direct CP violation, but *still* mixing-induced CP violation:

$$\mathcal{A}_{CP}^{mix}(B_q \to f) = \pm \sin(\phi_q - \phi_f) \equiv \pm \sin \phi$$

$B\operatorname{\mathsf{-Factory}}$

Benchmark

Modes

... in view of BaBar and Belle data!

Exploring CP Violation

Through

 $B_d \to J/\psi K_{\rm S}$

The "Golden" B-Decay Mode ...

$$A(\overline{B_d^0} \to J/\psi K_{\rm S}) = \lambda_c^{(s)} (A_{\rm T}^c + A_{\rm P}^c) + \lambda_u^{(s)} A_{\rm P}^u + \lambda_t^{(s)} A_{\rm P}^t$$

• Unitarity of the CKM matrix: $\lambda_t^{(s)} = -\lambda_c^{(s)} - \lambda_u^{(s)} \Rightarrow$

 $A(\overline{B_d^0} \to J/\psi K_{\rm S}) \propto \left[1 + \lambda^2 a e^{i\vartheta} e^{-i\gamma}\right] \quad ae^{i\vartheta} = \left(\frac{R_b}{1 - \lambda^2}\right) \left[\frac{A_{\rm P}^u - A_{\rm P}^t}{A_{\rm T}^c + A_{\rm P}^c - A_{\rm P}^t}\right]$

• Calculation of
$$\xi_{\psi K_{\rm S}}^{(d)}$$
: $\xi_{\psi K_{\rm S}}^{(d)} = +e^{-i\phi_d} \left[\frac{1+\lambda^2 a e^{i\vartheta} e^{-i\gamma}}{1+\lambda^2 a e^{i\vartheta} e^{+i\gamma}} \right]$

• Since the essentially "unknown" hadronic parameter $ae^{i\vartheta}$ enters $\xi_{\psi K_{\rm S}}^{(d)}$ in a doubly Cabibbo-suppressed way, we obtain to a very good approximation:

$$\xi_{\psi K_{\rm S}}^{(d)} = e^{-i\phi_d} \Rightarrow \begin{bmatrix} \mathcal{A}_{\rm CP}^{\rm dir}(B_d \to J/\psi K_{\rm S}) &= 0\\ \mathcal{A}_{\rm CP}^{\rm mix}(B_d \to J/\psi K_{\rm S}) &= -\sin\phi_d \stackrel{\rm SM}{=} -\sin 2\beta \end{bmatrix}$$

[Bigi, Carter and Sanda (1980–1981)]

 \rightarrow 1st observation of CP violation *outside* the K system [BaBar & Belle ('01)]

• <u>Current status</u>: $\rightarrow no$ signs for direct CP violation, and

$$\sin 2\beta = \left\{ \begin{array}{cc} 0.722 \pm 0.040 \pm 0.023 & \text{(BaBar)} \\ 0.728 \pm 0.056 \pm 0.023 & \text{(Belle)} \end{array} \right\} \Rightarrow \boxed{\sin 2\beta = 0.725 \pm 0.037}$$
world average

- Theoretical (hadronic) uncertainties ≤ 0.01 .
- Can be controlled through $B_s \rightarrow J/\psi K_{\rm S}$: \rightarrow LHC [R.F. ('99)]
- *Excellent* agreement with the "CKM fits" of the SM! [NP: see Lecture III]

Exploring CP Violation

Through

$$B_d \to \pi^+ \pi^-$$

The Decay $B_d o \pi^+\pi^-$

• Decay into a CP eigenstate: eigenvalue +1.

• Structure of the decay amplitude:

$$A(B_d^0 \to \pi^+\pi^-) = \frac{\lambda_u^{(d)}}{(A_T^u + A_P^u)} + \frac{\lambda_c^{(d)}}{(A_P^c + \lambda_t^{(d)})} A_P^t$$

• Unitarity of the CKM matrix: $\lambda_t^{(d)} = -\lambda_u^{(d)} - \lambda_c^{(d)} \Rightarrow$

$$A(B_d^0 \to \pi^+ \pi^-) \propto \left[e^{i\gamma} - de^{i\theta} \right] \quad de^{i\theta} = \frac{1}{R_b} \left[\frac{A_{\rm P}^c - A_{\rm P}^t}{A_{\rm T}^u + A_{\rm P}^u - A_{\rm P}^t} \right]$$

• Consequently, we obtain:

$$\xi^{(d)}_{\pi^+\pi^-} = -e^{-i\phi_d} \left[\frac{e^{-i\gamma} - de^{i\theta}}{e^{+i\gamma} - de^{i\theta}} \right]$$

– In contrast to $B_d \rightarrow J/\psi K_s$, $de^{i\theta}$ is *not* doubly Cabibbo-suppressed:

$$\Rightarrow$$
 "penguin problem" in $B_d \rightarrow \pi^+ \pi^-$!

- If (!) we had negligible penguin contributions (d = 0):

$$\xi_{\pi^+\pi^-}^{(d)} \longrightarrow -e^{-i(\phi_d + 2\gamma)} \stackrel{\text{SM}}{=} -e^{-i(2\beta + 2\gamma)}$$

$$\Rightarrow \begin{cases} \mathcal{A}_{\mathsf{CP}}^{\mathsf{mix}}(B_d \to \pi^+ \pi^-) = +\sin(\underbrace{2\beta + 2\gamma}_{2\pi - 2\alpha}) = -\sin 2\alpha \\ \mathcal{A}_{\mathsf{CP}}^{\mathsf{dir}}(B_d \to \pi^+ \pi^-) = 0 \end{cases}$$

- Comments on the parametrization of the CP-violating observables:
 - ϕ_d and γ enter directly and not α .
 - Since ϕ_d can be fixed through $B_d \to J/\psi K_S$, we may use the CPviolating observables of $B_d \to \pi^+\pi^-$ to probe the UT angle γ .
 - This is advantageous in order to deal with penguins and NP.

• Experimental status of the CP-violating observables:

$$\mathcal{A}_{\rm CP}^{\rm dir}(B_d \to \pi^+ \pi^-) = \begin{cases} -0.09 \pm 0.15 \pm 0.04 & \text{(BaBar '04)} \\ -0.56 \pm 0.12 \pm 0.06 & \text{(Belle '05)} \end{cases}$$

$$\mathcal{A}_{\rm CP}^{\rm mix}(B_d \to \pi^+\pi^-) = \begin{cases} +0.30 \pm 0.17 \pm 0.03 & \text{(BaBar '04)} \\ +0.67 \pm 0.16 \pm 0.06 & \text{(Belle '05)} \end{cases}$$

• The large direct CP violation in $B_d \rightarrow \pi^+\pi^-$, which is indicated by the Belle data, requires large penguins and large CP-conserving phases):¹

 \Rightarrow | penguins *cannot* be neglected | \Rightarrow use data to control them...

- Several strategies were proposed, including the following ones:
 - Isospin analysis of the $B \rightarrow \pi\pi$ system: [Gronau & London (1990)]

* Essentially *clean*, but difficult to implement in practice.

- Complement $B_d \rightarrow \pi^+\pi^-$ with $B_s \rightarrow K^+K^-$: [R.F. (1999)]

* U-spin strategy, ideally suited for LHCb \rightarrow | B_s decays

¹This feature is consistent with the direct CP violation observed in $B_d \to \pi^{\mp} K^{\pm}$; see Lecture III.

- At the $e^+e^- B$ factories operating $\mathfrak{O} \Upsilon(4S)$, no B_s mesons are accessible!
- However, plenty of B_s mesons are produced at hadron colliders ...

Basic Features of the B_s System

– Important aspect of lattice studies: uncertainties of ξ ...

[Kronfeld & Ryan (2000); Battaglia et al. (2000); Hashimoto (2004)]

• Decay width difference $\Delta \Gamma_s$:

- $\Delta\Gamma_s/\Gamma_s = \mathcal{O}(10\%)$, while $\Delta\Gamma_d/\Gamma_d$ is negligible!

– Interesting studies with "untagged" B_s -decay rates:

$$\langle \Gamma(B_q(t) \to f) \rangle \equiv \Gamma(B_q^0(t) \to f) + \Gamma(\overline{B_q^0}(t) \to f).$$

[Dunietz (1995); R.F. & Dunietz (1996-97)]

- *First* Tevatron-II results using $B_s \rightarrow J/\psi\phi$: [Dighe, Dunietz & R.F. ('99)]

$$\frac{\Delta\Gamma_s}{\Gamma_s} = \begin{cases} 0.65^{+0.25}_{-0.33} \pm 0.01 & (\text{CDF})\\ 0.21^{+0.33}_{-0.45} & (\text{D0}) \end{cases}$$

Benchmark

Decays of

 B_s Mesons

CP Violation in $B_s ightarrow J/\psi \phi$

$$\Rightarrow$$
 B_s counterpart of the "golden" decay $B_d \rightarrow J/\psi K_S$

• The amplitude structure is therefore analogous to $B_d \rightarrow J/\psi K_{\rm S}$:

$$A(B_s \to J/\psi \phi) \propto \left[1 + \lambda^2 a' e^{i\vartheta'} e^{i\gamma}\right], \quad a' e^{i\vartheta'} = \frac{\text{``Penguin''}}{\text{``Tree''}} \bigg|_{B_s \to \psi\phi} = \mathcal{O}(0.2) = \mathcal{O}(\overline{\lambda})$$

• However, there is an important difference:

Final state is an admixture of different CP eigenstates $|\Rightarrow$

• Using the angular distribution of the $J/\psi[\rightarrow \ell^+\ell^-]\phi[\rightarrow K^+K^-]$ decay products, the different CP eigenstates can be disentangled: \rightarrow

– Direct CP-violating effects:
$$0 + \mathcal{O}(\overline{\lambda}^3)$$

– Mixing-induced CP-violating effects: \Rightarrow determination of

$$\sin \phi_s + \mathcal{O}(\overline{\lambda}^3) = \sin \phi_s + \mathcal{O}(10^{-3})$$

[Dighe, Dunietz & R.F. (1999)]

- <u>Standard Model</u>: $\phi_s = -2\delta\gamma = -2\lambda^2\eta = \mathcal{O}(10^{-2}) \Rightarrow$
 - Extraction of $\delta\gamma$ affected by hadronic uncertainties of $\mathcal{O}(10\%)$.
 - Can be controlled through $B_d \rightarrow J/\psi \rho^0$ [R.F. (1999)]
- Big Hope:

Experiments will find a *sizeable* value of $\sin \phi_s$

... would give us an *immediate* signal for CP-violating NP!

[Nir & Silverman (1990); ...; Dunietz, R.F. & Nierste (2001)]

CP Violation in $B_s o D_s^\pm K^\mp$ and $B_d o D^\pm \pi^\mp$

• $\underline{q=s}: D_s \in \{D_s^+, D_s^{*+}, ...\}, u_s \in \{K^+, K^{*+}, ...\}$

 \rightarrow hadronic parameter $x_s e^{i\delta_s} \propto R_b \Rightarrow large$ interference effects!

• $\underline{q=d}$: $D_d \in \{D^+, D^{*+}, ...\}, u_d \in \{\pi^+, \rho^+, ...\}$:

 \rightarrow hadronic parameter $x_d e^{i\delta_d} \propto -\lambda^2 R_b \Rightarrow tiny$ interference effects!

• The observables provided by the $\cos(\Delta M_q t)$ and $\sin(\Delta M_q t)$ terms of the time-dependent rates allow a *clean* determination of $\phi_q + \gamma$.

[Dunietz & Sachs (1988); Aleksan, Dunietz & Kayser (1992); Dunietz (1998); ...]

- Since ϕ_q can be determined separately, γ can be extracted ...
- However, there are also problems:
 - We encounter an *eightfold* discrete ambiguity for $\phi_q + \gamma$?
 - In the case of q = d, an additional input is required to extract x_d since interference effects of $\mathcal{O}(x_d^2)$ would otherwise have to be resolved ...
- Combined analysis of $B_s^0 \to D_s^{(*)+} K^-$ and $B_d^0 \to D^{(*)+} \pi^-$:

 $s \leftrightarrow d \mid \Rightarrow U$ -spin symmetry provides an interesting play ground:

- An *unambiguous* value of γ can be extracted from the observables!
- To this end, x_d has not to be fixed, and x_s may only enter through a $1 + x_s^2$ correction, which is determined through untagged B_s rates!
- Very promising first studies by LHCb [G. Wilkinson @ CKM 2005] ...

[R.F., Nucl. Phys. **B671** (2003) 459]

The $B_s
ightarrow K^+K^-$, $B_d
ightarrow \pi^+\pi^-$ System

W

u, c, t

G

S

S

K

 K^+

u

u

$$\Rightarrow$$
 $s \leftrightarrow d$

• Structure of the decay amplitudes in the SM [see above]:

$$A(\overline{B_d^0} \to \pi^+ \pi^-) \propto \left[e^{-i\gamma} - de^{i\theta} \right]$$
$$A(\overline{B_s^0} \to K^+ K^-) \propto \left[e^{-i\gamma} + \left(\frac{1-\lambda^2}{\lambda^2} \right) d' e^{i\theta'} \right]$$

$$d e^{i\theta} = \frac{\text{``penguin''}}{\text{``tree'''}}\Big|_{B_d \to \pi^+ \pi^-}, \ d' e^{i\theta'} = \frac{\text{``penguin''}}{\text{``tree'''}}\Big|_{B_s \to K^+ K^-}$$

[d, d': real hadronic parameters; θ , θ' : strong phases]

• General form of the CP asymmetries:

 $\mathcal{A}_{\rm CP}^{\rm dir}(B_d \to \pi^+\pi^-) = G_1(d,\theta,\gamma), \quad \mathcal{A}_{\rm CP}^{\rm mix}(B_d \to \pi^+\pi^-) = G_2(d,\theta,\gamma,\phi_d)$ $\mathcal{A}_{\rm CP}^{\rm dir}(B_s \to K^+K^-) = G_1'(d',\theta',\gamma), \quad \mathcal{A}_{\rm CP}^{\rm mix}(B_s \to K^+K^-) = G_2'(d',\theta',\gamma,\phi_s)$

• $\phi_d = 2\beta$ (from $B_d \to J/\psi K_S$) and $\phi_s \approx 0$ are known parameters:

$$- \mathcal{A}_{\rm CP}^{\rm dir}(B_d \to \pi^+ \pi^-) \& \mathcal{A}_{\rm CP}^{\rm mix}(B_d \to \pi^+ \pi^-): \Rightarrow \boxed{d = d(\gamma)} \text{ (clean!)}$$
$$- \mathcal{A}_{\rm CP}^{\rm dir}(B_s \to K^+ K^-) \& \mathcal{A}_{\rm CP}^{\rm mix}(B_s \to K^+ K^-): \Rightarrow \boxed{d' = d'(\gamma)} \text{ (clean!)}$$

• Example:

- Input parameter:

*
$$\phi_d = 47^\circ$$
, $\gamma = 65^\circ$, $d = d' = 0.5$, $\theta = \theta' = 140^\circ$

*
$$B_s^0 - \overline{B_s^0}$$
 mixing phase is neglected, i.e. $\phi_s = 0$

- CP asymmetries:

*
$$B_d \to \pi^+ \pi^-$$
: $\mathcal{A}_{CP}^{dir} = -0.37$, $\mathcal{A}_{CP}^{mix} = +0.61$
* $B_s \to K^+ K^-$: $\mathcal{A}_{CP}^{dir} = +0.13$, $\mathcal{A}_{CP}^{mix} = -0.14$

• The decays $B_d \to \pi^+\pi^-$ and $B_s \to K^+K^-$ are related to each other through the interchange of all down and strange quarks:

$$U\text{-spin symmetry} \quad \Rightarrow \quad d=d', \quad \theta=\theta'$$

$$- d = d': \Rightarrow | \text{determination of } \gamma, d, \theta, \theta' |$$

 $- \theta = \theta'$: \Rightarrow test of the *U*-spin symmetry!

[R.F. (1999)]

• Detailed experimental feasibility studies show that the $B_s \to K^+K^-$, $B_d \to \pi^+\pi^-$ strategy is very promising for LHCb:

 \rightarrow experimental accuracy for γ of $\mathcal{O}(1^{\circ})$

... first steps at Tevatron-II may be possible!

[Recent analyses: G. Balbi et al., CERN-LHCb/2003-123 & 124]

The Major Lessons of Lecture II

- Amplitude relations allow us to eliminate the hadronic uncertainties:
 - γ can be cleanly extracted from $B^{\pm} \to K^{\pm}D$, $B_c^{\pm} \to D_s^{\pm}D$ decays, where the latter modes offer theoretical advantages.
 - Practical implementation is challenging; several variants proposed ...
- In the decays of neutral B_q mesons, interference effects between $B_q^0 \overline{B_q^0}$ mixing and decay processes can be used:

mixing-induced CP violation

- If the decay is dominated by a single weak amplitude, the hadronic matrix element cancels \rightarrow clean determination of $\sin(\phi_q \phi_f)$.
- Otherwise, amplitude relations provide again a useful tool ...
- The B_s -meson system is the "El Dorado" for hadron colliders:
 - Mixing parameters ΔM_s and Γ_s are of key interest.
 - Several promising decays to explore CP violation...

Impact of NP? \rightarrow Lecture III