Flavour Physics and

CP Violation

Robert Fleischer
CERN, Department of Physics, Theory Unit

Helmholtz International Summer School "Heavy Quark Physics"
Dubna, Russia, 6-16 June 2005

Lecture I

- Setting the Stage
- CP Violation in the Standard Model:

Cabibbo-Kobayashi-Maskawa (CKM) Matrix

- A Closer Look at the B-meson System:

Low-Energy Effective Hamiltonians

- Towards Studies of CP Violation in the B-Meson System:
- Key problems in the exploration of CP violation
- Classification of the main strategies

Lecture II

- Exploring CP Violation through Amplitude Relations:
- Example: $\quad B^{ \pm} \rightarrow K^{ \pm} D, B_{c}^{ \pm} \rightarrow D_{s}^{ \pm} D$
- Exploring CP Violation through Neutral B Decays:
- Time Evolution of Neutral B Decays
- B-Factory Benchmark modes: $B_{d} \rightarrow J / \psi K_{\mathrm{S}}, B_{d} \rightarrow \pi^{+} \pi^{-}$
- The "El Dorado" for Hadron Colliders:
B_{s} System
- Basic Features
- Benchmark Decays:

$$
\begin{aligned}
& * B_{s} \rightarrow J / \psi \phi \\
& * B_{s} \rightarrow D_{s}^{ \pm} K^{\mp}\left(\text { complements } B_{d} \rightarrow D^{ \pm} \pi^{\mp}\right) \\
& * B_{s} \rightarrow K^{+} K^{-}\left(\text {complements } B_{d} \rightarrow \pi^{+} \pi^{-}\right)
\end{aligned}
$$

Lecture III

- Rare Decays:
- Example: $B_{s, d} \rightarrow \mu^{+} \mu^{-}$
- How Could New Physics Enter in the Roadmap of Quark-Flavour Physics?
- What about New Physics in $B_{d} \rightarrow J / \psi K_{S}$?
- Challenging the Standard Model through $B_{d} \rightarrow \phi K_{\mathrm{S}}$
- The $B \rightarrow \pi \pi, \pi K$ Puzzles \& Rare K and B Decays:
$\rightarrow \quad$ Example of a systematic strategy to search for NP

1. " $B \rightarrow \pi \pi$ puzzle"
2. " $B \rightarrow \pi K$ puzzle"
3. Connection with rare K and B decays

A Selection of Basic References

- Lecture Notes:
- R.F.: "Flavour Physics and CP Violation", 2003 European School on High-Energy Physics [hep-ph/0405091].
- Y. Nir: "CP Violation: A New Era", 2001 Scottish Univ. Summer School in Physics [hep-ph/0109090].
- Textbooks:
- G. Branco, L. Lavoura and J. Silva: "CP Violation", International Series of Monographs on Physics 103, Oxford Science Publications (Clarendon Press, Oxford 1999).
- I.I. Bigi and A. I. Sanda: "CP Violation", Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology (Cambridge University Press, Cambridge, 2000).
- K. Kleinknecht: "CP Violation", Springer Tracts in Modern Physics, Vol. 195 (2004).

Setting the Stage

A Brief History of CP Violation

- In 1957, surprising discovery that the weak interactions are not invariant under parity transformations (Wu et al.):

$$
\Rightarrow \text { parity violation! }
$$

- Parity transformation \mathcal{P} : space inversion $\vec{x} \rightarrow-\vec{x}$
- However, it was believed that the product $\mathcal{C P}$ was preserved:
- Charge conjugation \mathcal{C} : particle \rightarrow antiparticle

$$
\pi^{+} \rightarrow e^{+} \nu_{e} \xrightarrow[\text { lefthanded (×) }]{\stackrel{C}{\longrightarrow}} \pi^{-} \rightarrow e^{-} \nu_{e}^{C} \xrightarrow{\xrightarrow{P}} \pi^{-} \rightarrow e^{-} \bar{\nu}_{e}
$$

- In 1964, discovery of CP violation in neutral K decays (Christenson et al.):

$$
K_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-} \quad\left(\mathrm{BR} \sim 2 \times 10^{-3}\right)
$$

- These effects are a manifestation of indirect $C P$ violation:

$$
\varepsilon=(2.280 \pm 0.013) \times 10^{-3} \times e^{i \pi / 4}
$$

- In 1999, direct CP violation could be established [NA48 \& KTeV]:

$$
\operatorname{Re}\left(\varepsilon^{\prime} / \varepsilon\right)= \begin{cases}(14.7 \pm 2.2) \times 10^{-4} & {[\mathrm{NA} 48(2002)]} \\ (20.7 \pm 2.8) \times 10^{-4} & {[\mathrm{KTeV}(2002)]}\end{cases}
$$

- In 2001, discovery of CP-violating effects in B decays [BaBar \& Belle], i.e. for the first time outside of the K system:

$$
B_{d} \rightarrow J / \psi K_{\mathrm{S}} \rightarrow \text { mixing-induced CP violation! }
$$

- In 2004, also observation of direct CP violation in $B_{d} \rightarrow \pi^{\mp} K^{ \pm} \ldots$

$$
\begin{align*}
& (\mathcal{C P}) \quad(-) \quad(+) \tag{+}\\
& K_{\mathrm{L}}=K_{2} \stackrel{\text { direct: } \varepsilon^{\prime}}{\stackrel{\bar{\varepsilon} K_{1}}{\stackrel{\text { indirect: } \varepsilon}{ }}} \gg\left\{\begin{array}{c}
\pi^{+} \pi^{-} \\
\pi^{0} \pi^{0}
\end{array}\right.
\end{align*}
$$

Why Study CP Violation \& Flavour Physics?

- Despite tremendous progress, we have (still!) few insights ...
- New Physics (NP): \rightarrow typically new sources for flavour \& CP violation
- SUSY, models with extended Higgs sectors, LR-symmetric models...
- $\underline{\nu}$ masses: \rightarrow origin beyond the Standard Model (SM)!
- CP violation in the neutrino sector? Neutrino factories...
- Cosmology:
- CP violation is one of the necessary ingredients for the generation of the matter-antimater asymmetry! [Sacharow 1967]
- Model calculations: \Rightarrow CP violation too small in SM ... * Could be associated with very high energy scales (e.g. "Leptogenesis"). * But could also be accessible in the laboratory ...
- Moreover:
- The origin of the fermion masses, flavour mixing, CP violation etc. lies completely in the dark \rightarrow involves new physics, too!

Challenging the Standard Model ...

- Before searching for NP, we have first to understand the SM picture!
- Key problem for the theoretical interpretation: hadronic uncertainties!
- Famous example: $\operatorname{Re}\left(\varepsilon^{\prime} / \varepsilon\right)$
- The B-meson system is particularly promising in this respect:
- Offers various strategies: simply speaking, there are many B decays!
- Search for clean SM relations that may well by spoiled by NP ...

$$
\rightarrow \text { our focus! }
$$

- How about the good old K-meson system?
- Clean tests of the SM are offered by $K^{+} \rightarrow \pi^{+} \nu \bar{\nu}$ and $K_{\mathrm{L}} \rightarrow \pi^{0} \nu \bar{\nu}$!
- These "rare" decays are absent at the tree level of the SM, i.e. originate there exclusively from loop processes.

CP Violation

in the

Standard Model

Weak Interactions of Quarks

- Charged-current interactions:
$(D \in\{d, s, b\}, U \in\{u, c, t\})$

- Possible transitions:

1st gen.	2nd gen.	3rd gen.	
$d \rightarrow u$	$s \rightarrow u$	$b \rightarrow u$	1st gen.
$d \rightarrow c$	$s \rightarrow c$	$b \rightarrow c$	2nd gen.
$d \rightarrow t$	$s \rightarrow t$	$b \rightarrow t$	3rd gen.

- Matrix of couplings:

$$
\hat{V}_{\mathrm{CKM}}=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

Cabibbo-Kobayashi-Maskawa (CKM) matrix

- The CKM matrix connects the electroweak flavour states $\left(d^{\prime}, s^{\prime}, b^{\prime}\right)$ with their mass eigenstates (d, s, b) :

$$
\begin{gathered}
\left(\begin{array}{c}
d^{\prime} \\
s^{\prime} \\
b^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right) \cdot\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right) \\
\mathcal{L}_{\text {int }}^{\mathrm{CC}}=-\frac{g_{2}}{\sqrt{2}}\left(\bar{u}_{\mathrm{L}}, \bar{c}_{\mathrm{L}}, \bar{t}_{\mathrm{L}}\right) \gamma^{\mu} \hat{V}_{\mathrm{CKM}}\left(\begin{array}{c}
d_{\mathrm{L}} \\
s_{\mathrm{L}} \\
b_{\mathrm{L}}
\end{array}\right) W_{\mu}^{\dagger}+\text { h.c. }
\end{gathered}
$$

- The CKM matrix is unitary:

$$
\hat{V}_{\text {CK }}^{\dagger} \cdot \hat{V}_{\text {CM }}=\hat{1}=\hat{V}_{\text {CM }} \cdot \hat{V}_{\text {CM }}^{\dagger}
$$

- CP-conjugate transitions:

$$
V_{U D} \xrightarrow{\mathcal{C P}} V_{U D}^{*}
$$

Phase Structure of the CKM Matrix

- Redefinition of the quark-field phases in $\mathcal{L}_{\text {int }}^{\mathrm{CC}}$:

$$
\left.\begin{array}{l}
U \rightarrow \exp \left(i \xi_{U}\right) U \\
D \rightarrow \exp \left(i \xi_{D}\right) D
\end{array}\right\} \Rightarrow V_{U D} \rightarrow \exp \left(i \xi_{U}\right) V_{U D} \exp \left(-i \xi_{D}\right)
$$

- Parameters of the $N \times N$ quark-mixing matrix:

$$
\underbrace{\frac{1}{2} N(N-1)}_{\text {Euler angles }}+\underbrace{\frac{1}{2}(N-1)(N-2)}_{\text {complex phases }}=(N-1)^{2}
$$

- Two generations: $\rightarrow \quad$ Cabibbo angle $\theta_{\mathrm{C}}(1963)$

$$
\hat{V}_{\mathrm{C}}=\left(\begin{array}{cc}
\cos \theta_{\mathrm{C}} & \sin \theta_{\mathrm{C}} \\
-\sin \theta_{\mathrm{C}} & \cos \theta_{\mathrm{C}}
\end{array}\right) \quad\left[\sin \theta_{\mathrm{C}}=0.22 \text { from } K \rightarrow \pi e \bar{\nu}_{e}\right]
$$

- Three generations: \rightarrow Kobayashi \& Maskawa (1973)
- Requires three Euler angles and one complex phase ...
- Complex phase: origin of CP violation in the SM!

Parametrizations of the CKM Matrix

- "Standard" Parametrization $(\rightarrow \mathrm{PDG}): \quad\left[c_{i j}=\cos \theta_{i j}\right.$ and $\left.s_{i j}=\sin \theta_{i j}\right]$

$$
\hat{V}_{\mathrm{CKM}}=\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta_{13}} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta_{13}} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta_{13}} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta_{13}} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta_{13}} & c_{23} c_{13}
\end{array}\right)
$$

- Kobayashi \& Maskawa: $\quad\left[c_{i}=\cos \theta_{i}\right.$ and $\left.s_{i}=\sin \theta_{i}\right]$

$$
\hat{V}_{\mathrm{CKM}}=\left(\begin{array}{ccc}
c_{1} & -s_{1} c_{3} & -s_{1} s_{3} \\
s_{1} c_{2} & c_{1} c_{2} c_{3}-s_{2} s_{3} e^{i \delta} & c_{1} c_{2} s_{3}+s_{2} c_{3} e^{i \delta} \\
s_{1} s_{2} & c_{1} s_{2} c_{3}+c_{2} s_{3} e^{i \delta} & c_{1} s_{2} s_{3}-c_{2} c_{3} e^{i \delta}
\end{array}\right)
$$

- Fritzsch \& Xing: $\left[c_{\mathrm{u}}=\cos \theta_{\mathrm{u}}, s_{\mathrm{u}}=\sin \theta_{\mathrm{u}}\right.$, etc.]

$$
\hat{V}_{\mathrm{CKM}}=\left(\begin{array}{ccc}
s_{\mathrm{u}} s_{\mathrm{d}} c+c_{\mathrm{u}} c_{\mathrm{d}} e^{-i \varphi} & s_{\mathrm{u}} c_{\mathrm{d}} c-c_{\mathrm{u}} s_{\mathrm{d}} e^{-i \varphi} & s_{\mathrm{u}} s \\
c_{\mathrm{u}} s_{\mathrm{d}} c-s_{\mathrm{u}} c_{\mathrm{d}} e^{-i \varphi} & c_{\mathrm{u}} c_{\mathrm{d}} c+s_{\mathrm{u}} s_{\mathrm{d}} e^{-i \varphi} & c_{\mathrm{u}} s \\
-s_{\mathrm{d}} s & -c_{\mathrm{d}} s & c
\end{array}\right)
$$

Wolfenstein Parametrization

- Hierarchy of the quark transitions mediated through charged currents:

- This hierarchy is reflected in the standard parametrization as follows:

$$
s_{12}=0.22 \quad>\quad s_{23}=\mathcal{O}\left(10^{-2}\right) \quad \gg s_{13}=\mathcal{O}\left(10^{-3}\right) \quad \Rightarrow
$$

- New parameters: $\quad s_{12} \equiv \lambda=0.22, \quad s_{23} \equiv A \lambda^{2}, \quad s_{13} e^{-i \delta_{13}} \equiv A \lambda^{3}(\rho-i \eta)$
- Go back to the standard parametrization and neglect all terms of $\mathcal{O}\left(\lambda^{4}\right)$:

$$
\hat{V}_{\mathrm{CKM}}=\left(\begin{array}{ccc}
1-\frac{1}{2} \lambda^{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\frac{1}{2} \lambda^{2} & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)
$$

[Wolfenstein (1983)]

Unitarity Triangle(s) of the CKM Matrix

- Unitarity of the CKM matrix:

$$
\hat{V}_{\text {CKM }}^{\dagger} \cdot \hat{V}_{\text {CKM }}=\hat{1}=\hat{V}_{\text {CKM }} \cdot \hat{V}_{\text {CKM }}^{\dagger} \Rightarrow
$$

- 6 normalization relations (columns and rows)
- 6 orthogonality relations (columns and rows):

$$
A+B+C=0
$$

- The orthogonality relations can be represented as 6 triangles:

- These triangles have all the same area A_{Δ}, which can be interpreted as a measure of the "strength" of CP violation in the SM:

$$
2 A_{\Delta} \equiv\left|J_{\mathrm{CP}}\right|=\lambda^{6} A^{2} \eta=\mathcal{O}\left(10^{-5}\right)
$$

- Columns:

$$
\begin{aligned}
& \underbrace{V_{u d} V_{u s}^{*}}_{\mathcal{O}(\lambda)}+\underbrace{V_{c d} V_{c s}^{*}}_{\mathcal{O}(\lambda)}+\underbrace{V_{t d} V_{t s}^{*}}_{\mathcal{O}\left(\lambda^{5}\right)}=0 \\
& \underbrace{V_{u s} V_{u b}^{*}}_{\mathcal{O}\left(\lambda^{4}\right)}+\underbrace{V_{c s} V_{c b}^{*}}_{\mathcal{O}\left(\lambda^{2}\right)}+\underbrace{V_{t s} V_{t b}^{*}}_{\mathcal{O}\left(\lambda^{2}\right)}=0 \\
& \underbrace{V_{u d} V_{u b}^{*}}_{(\rho+i \eta) A \lambda^{3}}+\underbrace{V_{c d} V_{c b}^{*}}_{-A \lambda^{3}}+\underbrace{V_{t d} V_{t b}^{*}}_{(1-\rho-i \eta) A \lambda^{3}}=0 \\
& \underbrace{V_{u d}^{*} V_{c d}}_{\mathcal{O}(\lambda)}+\underbrace{V_{u s}^{*} V_{c s}}_{\mathcal{O}(\lambda)}+\underbrace{V_{u b}^{*} V_{c b}}_{\mathcal{O}\left(\lambda^{5}\right)}=0 \\
& \underbrace{V_{c d}^{*} V_{t d}}_{\mathcal{O}\left(\lambda^{4}\right)}+\underbrace{V_{c s}^{*} V_{t s}}_{\mathcal{O}\left(\lambda^{2}\right)}+\underbrace{V_{c b}^{*} V_{t b}}_{\mathcal{O}\left(\lambda^{2}\right)}=0 \\
& \underbrace{V_{u d}^{*} V_{t d}}_{(1-\rho-i \eta) A \lambda^{3}}+\underbrace{V_{u s}^{*} V_{t s}}_{-A \lambda^{3}}+\underbrace{V_{u b}^{*} V_{t b}}_{(\rho+i \eta) A \lambda^{3}}=0
\end{aligned}
$$

- Rows:
- Only in two relations, all terms are of $\mathcal{O}\left(\lambda^{3}\right)$, and agee with one another:

- The unitarity triangles at next-to-leading order in λ :

[Buras et al. (1994)]
$-\underline{V_{u d}^{*} V_{t d}+V_{u s}^{*} V_{t s}+V_{u b}^{*} V_{t b}=0:}$

$$
\gamma=\gamma^{\prime}+\delta \gamma, \quad \delta \gamma=\lambda^{2} \eta=\mathcal{O}\left(1^{\circ}\right)
$$

Determination of the Unitarity Triangle

- Method I: conventional ("CKM-Fits") ...
- Semileptonic $b \rightarrow u \ell \bar{\nu}_{\ell}, c \ell \bar{\nu}_{\ell}$ decays $\left[\rightarrow\right.$ UT side $\left.R_{b}\right]$.
- $B_{d, s}^{0}-\overline{B_{d, s}^{0}}$ mixing $\left[\rightarrow\right.$ UT side $\left.R_{t}\right]$.
- CP violation in the kaon system, $\varepsilon_{K}[\rightarrow$ hyperbola].

$$
\text { Theory } \Rightarrow \text { contours in the } \bar{\rho}-\bar{\eta} \text { plane }
$$

- Methode II: future ...
- CP-violating effects in B decays $[\rightarrow \sin 2 \beta, \ldots]$

$$
\text { Theory } \Rightarrow \text { angles of the unitarity triangle }
$$

- Example of a specific analysis:

[Buras, Schwab \& Uhlig, hep-ph/0405132; alternative analyses:
http://ckmfitter.in2p3.fr/, http://www.utfit.org]
- In the future, more contours in the $\bar{\rho}-\bar{\eta}$ plane can be added:
- Alternative determinations of R_{t} through rare decays.
$-K^{+} \rightarrow \pi^{+} \nu \bar{\nu} \quad \rightarrow \quad$ ellipse.
$-K_{\mathrm{L}} \rightarrow \pi^{0} \nu \bar{\nu} \rightarrow|\bar{\eta}|$, i.e. horizontal line.
\oplus measurements of the UT angles \Rightarrow overconstrain the UT!

The System of the B Mesons

- Promising experimental perspective:
- The asymmetric $e^{+}-e^{-} B$ factories are currently taking data:
\rightarrow already $\mathcal{O}\left(10^{8}\right)$ produced $B \bar{B}$ at BaBar (SLAC) \& Belle (KEK); first results from CDF-II and D0-II (FNAL).
- 2nd generation B-decay studies at the Large Hardon Collider (CERN):
* LHCb; also ATLAS and CMS 22007
- Discussion of an $e^{+}-e^{-}$super- B factory : $\gtrsim 201$?
- Interesting playground for theorists:
- Aspects of strong interactions
- Aspects of weak interactions
- Offers probes to search for NP ...
\rightarrow fruitful interplay between theory and experiment!

Basics of the B-Meson System

- Charged B mesons:

$$
\begin{array}{ll}
B^{+} \sim u \bar{b} & B^{-} \sim \bar{u} b \\
B_{c}^{+} \sim c \bar{b} & B_{c}^{-} \sim \bar{c} b
\end{array}
$$

- Neutral B mesons:

$$
\begin{array}{ll}
B_{d}^{0} \sim d \bar{b} & \overline{B_{d}^{0}} \sim \bar{d} b \\
B_{s}^{0} \sim s \bar{b} & \overline{B_{s}^{0}} \sim \bar{s} b
\end{array}
$$

$-\underline{B_{q}^{0}-\overline{B_{q}^{0}} \text { mixing: }}$

$$
\Rightarrow \quad\left|B_{q}(t)\right\rangle=a(t)\left|B_{q}^{0}\right\rangle+b(t)\left|\overline{B_{q}^{0}}\right\rangle:
$$

* Schrödinger equation \Rightarrow mass eigenstates:

$$
\Delta M_{q} \equiv M_{\mathrm{H}}^{(q)}-M_{\mathrm{L}}^{(q)}, \quad \Delta \Gamma_{q} \equiv \Gamma_{\mathrm{H}}^{(q)}-\Gamma_{\mathrm{L}}^{(q)}
$$

* Decay rates: $\Gamma\left(\stackrel{(-)}{B_{q}^{0}}(t) \rightarrow \stackrel{(-)}{f}\right)$:
$\cos \left(\Delta M_{q} t\right) \& \sin \left(\Delta M_{q} t\right) \rightarrow$ oscillations!

Key Rôle for CP Violation:

Nonleptonic B Decays

\rightarrow only quarks in the final states!

Topologies \& Classification

- Tree diagrams:

- Penguin diagrams:

QCD penguins:
Electroweak (EW) penguins:

- Classification (depends on the flavour content of the final state):
- Only tree diagrams.
- Tree and penguin diagrams.
- Only penguin diagrams.

Low-Energy Effective Hamiltonians

- Operator product expansion (OPE): \Rightarrow

$$
\langle f| \mathcal{H}_{\text {eff }}|i\rangle=\frac{G_{\mathrm{F}}}{\sqrt{2}} V_{\text {CKM }} \sum_{k} C_{k}(\mu)\langle f| Q_{k}(\mu)|i\rangle
$$

[G_{F} : Fermi constant, V_{CKM} : CKM factor, μ : renormalization scale]

- The operator product expansion allows a separation of the short-distance from the long-distance contributions:
- Perturbative Wilson coefficients $C_{k}(\mu) \rightarrow$ short-distance physics.
- Non-perturbative hadronic MEs $\langle f| Q_{k}(\mu)|i\rangle \rightarrow$ long-distance physics.
- The Q_{k} are local operators, which are generated through the electroweak interactions and QCD, and govern "effectively" the decay in question.
- The Wilson coefficients $C_{k}(\mu)$ describe the scale-dependent "couplings" of the interaction vertices associated with the Q_{k}.
- Illustration through an example:
- Consider a pure "tree" decay: $b \rightarrow c \bar{u} s$

- "Integrate out" the W boson:

$$
\begin{gathered}
\frac{g_{\nu \mu}}{k^{2}-M_{W}^{2}} \stackrel{k^{2} \ll M_{W}^{2}}{\longrightarrow}-\frac{g_{\nu \mu}}{M_{W}^{2}} \equiv-\left(\frac{8 G_{\mathrm{F}}}{\sqrt{2} g_{2}^{2}}\right) g_{\nu \mu} \\
\Rightarrow \mathcal{H}_{\mathrm{eff}}=\frac{G_{\mathrm{F}}}{\sqrt{2}} V_{u s}^{*} V_{c b} \underbrace{\left[\bar{s}_{\alpha} \gamma_{\mu}\left(1-\gamma_{5}\right) u_{\alpha}\right]\left[\bar{c}_{\beta} \gamma^{\mu}\left(1-\gamma_{5}\right) b_{\beta}\right]}_{\text {"current-current" operator } O_{2}} \equiv \frac{G_{\mathrm{F}}}{\sqrt{2}} V_{u s}^{*} V_{c b} C_{2} O_{2}
\end{gathered}
$$

- Impact of QCD, i.e. exchange of gluons:
* Factorizable QCD corrections:

$\rightarrow C_{2}$ acquires a renormalization-scale dependence, i.e. $C_{2}(\mu) \neq 1$
* Non-factorizable QCD corrections:

\rightarrow generation of a second current-current operator:

$$
\begin{aligned}
& O_{1} \equiv\left[\bar{s}_{\alpha} \gamma_{\mu}\left(1-\gamma_{5}\right) u_{\beta}\right]\left[\bar{c}_{\beta} \gamma^{\mu}\left(1-\gamma_{5}\right) b_{\alpha}\right] \\
& \rightarrow \text { operator mixing through QCD! }
\end{aligned}
$$

- The results for the $C_{k}(\mu)$ contain $\log \left(\mu / M_{W}\right)$ terms, which become large for renormalization scales μ in the GeV regime:
\rightarrow what shall we do?
- Use renormalization-group improved perturbation theory:
- The fact that the transition matrix element $\langle f| \mathcal{H}_{\text {eff }}|i\rangle$ cannot depend on the renormalization scale μ implies a renormalization-group equation.
- Its solution can be written as follows:

$$
\begin{equation*}
\vec{C}(\mu)=\hat{U}\left(\mu, M_{W}\right) \cdot \vec{C}\left(M_{W}\right) \tag{1}
\end{equation*}
$$

- The initial conditions $\vec{C}\left(M_{W}\right)$ describe the short-distance physics at the high-energy scales, and are related to the "Inami-Lim functions".
- The following terms can be systematically summed up through (1):

$$
\underbrace{\alpha_{s}^{n}\left[\log \left(\frac{\mu}{M_{W}}\right)\right]^{n}}_{(\mathrm{LO})}, \quad \underbrace{\alpha_{s}^{n}\left[\log \left(\frac{\mu}{M_{W}}\right)\right]^{n-1}}_{(\mathrm{NLO})}, \quad \cdots
$$

- Low-energy effective Hamiltonians provide a nice tool to deal with weak B - and K-meson decays, as well as with $B^{0}-\bar{B}^{0}$ and $K^{0}-\bar{K}^{0}$ mixing.

Application to Nonleptonic B Decays

- Particularly interesting: $|\Delta B|=1, \Delta C=\Delta U=0$
- $\Delta C=\Delta U=0 \Rightarrow$ tree and penguin processes:

- Integrate out the W boson and the top quark (\rightarrow penguins):

$$
\mathcal{H}_{\text {eff }}=\frac{G_{\mathrm{F}}}{\sqrt{2}}[\sum_{j=u, c} V_{j q}^{*} V_{j b}\{\underbrace{\sum_{k=1}^{2} C_{k}(\mu) Q_{k}^{j q}}_{\text {current-current }}+\underbrace{\sum_{k=3}^{10} C_{k}(\mu) Q_{k}^{q}}_{\text {penguins }}\}]+\text { h.c. }
$$

- Four-quark operators $Q_{k}^{j q}(j \in\{u, c\}, q \in\{d, s\})$:
- Current-current operators (tree-like processes):

$$
\begin{aligned}
Q_{1}^{j q} & =\left(\bar{q}_{\alpha} j_{\beta}\right)_{V-\mathrm{A}}\left(\bar{j}_{\beta} b_{\alpha}\right)_{\mathrm{V}-\mathrm{A}} \\
Q_{2}^{j q} & =\left(\bar{q}_{\alpha} j_{\alpha}\right)_{\mathrm{V}-\mathrm{A}}\left(\bar{j}_{\beta} b_{\beta}\right)_{\mathrm{V}-\mathrm{A}}
\end{aligned}
$$

- QCD penguin operators:

$$
\begin{aligned}
Q_{3}^{q} & =\left(\bar{q}_{\alpha} b_{\alpha}\right)_{\mathrm{V}-\mathrm{A}} \sum_{q^{\prime}}\left(\bar{q}_{\beta}^{\prime} q_{\beta}^{\prime}\right)_{\mathrm{V}-\mathrm{A}} \\
Q_{4}^{q} & =\left(\bar{q}_{\alpha} b_{\beta}\right)_{\mathrm{V}-\mathrm{A}} \sum_{q^{\prime}}\left(\bar{q}_{\beta}^{\prime} q_{\alpha}^{\prime}\right)_{\mathrm{V}-\mathrm{A}} \\
Q_{5}^{q} & =\left(\bar{q}_{\alpha} b_{\alpha}\right)_{\mathrm{VA}} \sum_{q^{\prime}}^{\prime} \bar{q}_{\beta}^{\prime} q_{\beta}^{\mathrm{V}+\mathrm{A}} \\
Q_{6}^{q} & =\left(\bar{q}_{\alpha} b_{\beta}\right)_{\mathrm{V}-\mathrm{A}} \sum_{q^{\prime}}\left(\bar{q}_{\beta}^{\prime} q_{\alpha}^{\prime}\right)_{\mathrm{V}+\mathrm{A}}
\end{aligned}
$$

- EW penguin operators:

$$
\begin{aligned}
Q_{7}^{q} & =\frac{3}{2}\left(\bar{q}_{\alpha} b_{\alpha}\right)_{\mathrm{V}-\mathrm{A}} \sum_{q^{\prime}} e_{q^{\prime}}\left(\bar{q}_{\beta}^{\prime} q_{\beta}^{\prime}\right)_{\mathrm{V}+\mathrm{A}} \\
Q_{8}^{q} & =\frac{3}{2}\left(\bar{q}_{\alpha} b_{\beta}\right)_{\mathrm{V}-\mathrm{A}} \sum_{q^{\prime}} e_{q^{\prime}}\left(\bar{q}_{\beta}^{\prime} q_{\alpha}^{\prime}\right)_{\mathrm{V}+\mathrm{A}} \\
Q_{9}^{q} & \left.=\frac{3}{2}\left(\bar{q}_{\alpha} b_{\alpha}\right)_{\mathrm{VA}} \sum_{q^{\prime}} e_{q^{\prime}}^{\prime} \bar{q}_{\beta}^{\prime} q_{\beta}^{\prime}\right)_{\mathrm{A}-\mathrm{A}} \\
Q_{10}^{q} & =\frac{3}{2}\left(\bar{q}_{\alpha} b_{\beta}\right)_{\mathrm{VA}} \sum_{q^{\prime}} e_{q^{\prime}}\left(\bar{q}_{\beta}^{\prime} q_{\alpha}^{\prime}\right)_{\mathrm{V}-\mathrm{A}}
\end{aligned}
$$

[Here α, β are $S U(3)_{\text {c }}$ indices, $\mathrm{V} \pm \mathrm{A}$ refers to $\gamma_{\mu}\left(1 \pm \gamma_{5}\right), q^{\prime} \in\{u, d, c, s, b\}$ runs over the active quark flavours at $\mu=\mathcal{O}\left(m_{b}\right)$, and the $e_{q^{\prime}}$ are the electrical charges]

- The Wilson coefficients at $\mu=m_{b}$ for different renormalization schemes:

	$\Lambda \frac{(5)}{\overline{\mathrm{MS}}}=160 \mathrm{MeV}$			$\Lambda \frac{(5)}{\overline{M S}}=225 \mathrm{MeV}$			$\Lambda \overline{\mathrm{MS}}=290 \mathrm{MeV}$		
Scheme	LO	NDR	HV	LO	NDR	HV	LO	NDR	HV
C_{1}	-0.283	-0.171	-0.209	-0.308	-0.185	-0.228	-0.331	-0.198	-0.245
C_{2}	1.131	1.075	1.095	1.144	1.082	1.105	1.156	1.089	1.114
C_{3}	0.013	0.013	0.012	0.014	0.014	0.013	0.016	0.016	0.014
C_{4}	-0.028	-0.033	-0.027	-0.030	-0.035	-0.029	-0.032	-0.038	-0.032
C_{5}	0.008	0.008	0.008	0.009	0.009	0.009	0.009	0.009	0.010
C_{6}	-0.035	-0.037	-0.030	-0.038	-0.041	-0.033	-0.041	-0.045	-0.036
C_{7} / α	0.043	-0.003	0.006	0.045	-0.002	0.005	0.047	-0.002	0.005
C_{8} / α	0.043	0.049	0.055	0.048	0.054	0.060	0.053	0.059	0.065
C_{9} / α	-1.268	-1.283	-1.273	-1.280	-1.292	-1.283	-1.290	-1.300	-1.293
C_{10} / α	0.302	0.243	0.245	0.328	0.263	0.266	0.352	0.281	0.284

[Detailed discussion: A.J. Buras, hep-ph/9806471]

Factorization of Hadronic Matrix Elements

- The problem:
- Transition amplitude: ${ }^{1}$

$$
\begin{aligned}
\left\langle D^{+} K^{-}\right| \mathcal{H}_{\mathrm{eff}}\left|\overline{B_{d}^{0}}\right\rangle= & \frac{G_{\mathrm{F}}}{\sqrt{2}} V_{u s}^{*} V_{c b}[\overbrace{\left(\frac{C_{1}}{N_{\mathrm{C}}}+C_{2}\right)}^{\equiv a_{1}}\left\langle D^{+} K^{-}\right|\left(\bar{s}_{\alpha} u_{\alpha}\right)_{\mathrm{V}-\mathrm{A}}\left(\bar{c}_{\beta} b_{\beta}\right)_{\mathrm{V}-\mathrm{A}}\left|\overline{B_{d}^{0}}\right\rangle \\
& \left.+2 C_{1}\left\langle D^{+} K^{-}\right|\left(\bar{s}_{\alpha} T_{\alpha \beta}^{a} u_{\beta}\right)_{\mathrm{V}-\mathrm{A}}\left(\bar{c}_{\gamma} T_{\gamma \delta}^{a} b_{\delta}\right)_{\mathrm{V}-\mathrm{A}}\left|\overline{B_{d}^{0}}\right\rangle\right]
\end{aligned}
$$

- "Factorization" of the hadronic matrix elements:

$$
\begin{aligned}
\left\langle D^{+}\right. & \left.K^{-}\left|\left(\bar{s}_{\alpha} u_{\alpha}\right)_{\mathrm{V}-\mathrm{A}}\left(\bar{c}_{\beta} b_{\beta}\right)_{\mathrm{V}-\mathrm{A}}\right| \overline{B_{d}^{0}}\right\rangle\left.\right|_{\text {fact }} \\
& =\left\langle K^{-}\right|\left[\bar{s}_{\alpha} \gamma_{\mu}\left(1-\gamma_{5}\right) u_{\alpha}\right]|0\rangle\left\langle D^{+}\right|\left[\bar{c}_{\beta} \gamma^{\mu}\left(1-\gamma_{5}\right) b_{\beta}\right]\left|\overline{B_{d}^{0}}\right\rangle \\
\propto & f_{K}[\rightarrow \text { "decay constant" }] \times F_{B D}[\rightarrow \text { "form factor" }] \\
& \left.\left\langle D^{+} K^{-}\right|\left(\bar{s}_{\alpha} T_{\alpha \beta}^{a} u_{\beta}\right)_{\mathrm{V}-\mathrm{A}}\left(\bar{c}_{\gamma} T_{\gamma \delta}^{a} b_{\delta}\right)_{\mathrm{V}-\mathrm{A}}\left|\overline{B_{d}^{0}}\right\rangle\right|_{\text {fact }}=0
\end{aligned}
$$

${ }^{1}$ Here we use the well-known $S U\left(N_{\mathrm{C}}\right)$ colour-algebra relation $T_{\alpha \beta}^{a} T_{\gamma \delta}^{a}=\left(\delta_{\alpha \delta} \delta_{\beta \gamma}-\delta_{\alpha \beta} \delta_{\gamma \delta} / N_{\mathrm{C}}\right) / 2$.

- Long history of factorization:

Schwinger (1964); Farikov \& Stech (1978); Cabibbo \& Maiani (1978); Bjorken (1989);
Dugan \& Grinstein (1991); Politzer \& Wise (1991); ...

- Factorization in weak decays in the large- N_{C} limit:

Buras, Gérard \& Rückl (1986); Buras and Gérard (1988).

- Interesting recent developments: \rightarrow important target $B \rightarrow \pi \pi, \pi K$
- QCD Factorization (QCDF):

Beneke, Buchalla, Neubert \& Sachrajda (1999-2001); ...

- Perturbative Hard-Scattering (PQCD) Approach:

Li \& Yu ('95); Cheng, Li \& Yang ('99); Keum, Li \& Sanda ('00); ...

- Soft Collinear Effective Theory (SCET):

Bauer, Pirjol \& Stewart (2001); Bauer, Grinstein, Pirjol \& Stewart (2003); ..

- QCD light-cone sum-rule methods:

Khodjamirian (2001); Khodjamirian, Mannel \& Melic (2003); ...

Data indicate large non-factorizable corrections \Rightarrow remain a theoretical challenge ...
[Buras et al.; Ali et al.; Bauer et al.; Chiang et al.; ...]

Towards Studies of

CP Violation in the
B-Meson System

Amplitude Structure

- Because of the unitarity of the CKM matrix, at most two independent CKM amplitudes contribute to a given decay, as we have seen above!
- Consequently, we may write the decay amplitudes as follows:

$$
\begin{aligned}
& A(\bar{B} \rightarrow \bar{f})=e^{+i \varphi_{1}}\left|A_{1}\right| e^{i \delta_{1}}+e^{+i \varphi_{2}}\left|A_{2}\right| e^{i \delta_{2}} \\
& A(B \rightarrow f)=e^{-i \varphi_{1}}\left|A_{1}\right| e^{i \delta_{1}}+e^{-i \varphi_{2}}\left|A_{2}\right| e^{i \delta_{2}}
\end{aligned}
$$

- The $\varphi_{1,2}$ are CP-violating weak phases (CKM matrix)
- The $\left|A_{1,2}\right| e^{i \delta_{1,2}}$ are CP-conserving "strong" amplitudes:

$$
\left|A_{j}\right| e^{i \delta_{j}}=\sum_{k} \underbrace{C_{k}(\mu)}_{\text {pert. QCD }} \times \underbrace{\langle\bar{f}| Q_{k}^{j}(\mu)|\bar{B}\rangle}_{\text {"unknown" }}
$$

\Rightarrow encode the hadron dynamics of the decay ...

Direct CP Violation

- The most straightforward CP asymmetry ("direct" CP violation):2

$$
\begin{aligned}
\mathcal{A}_{\mathrm{CP}} \equiv & \equiv \frac{\Gamma(B \rightarrow f)-\Gamma(\bar{B} \rightarrow \bar{f})}{\Gamma(B \rightarrow f)+\Gamma(\bar{B} \rightarrow \bar{f})}=\frac{|A(B \rightarrow f)|^{2}-|A(\bar{B} \rightarrow \bar{f})|^{2}}{|A(B \rightarrow f)|^{2}+|A(\bar{B} \rightarrow \bar{f})|^{2}} \\
& =\frac{2\left|A_{1}\right|\left|A_{2}\right| \sin \left(\delta_{1}-\delta_{2}\right) \sin \left(\varphi_{1}-\varphi_{2}\right)}{\left|A_{1}\right|^{2}+2\left|A_{1}\right|\left|A_{2}\right| \cos \left(\delta_{1}-\delta_{2}\right) \cos \left(\varphi_{1}-\varphi_{2}\right)+\left|A_{2}\right|^{2}}
\end{aligned}
$$

- Provided the two amplitudes satisfy the following requirements:
i) Non-trivial CP-conserving strong phase difference $\delta_{1}-\delta_{2}$.
ii) Non-trivial CP-violating weak phase difference $\varphi_{1}-\varphi_{2}$.

$$
\Rightarrow \quad \mathrm{CP} \text { violation originates through interference effects! }
$$

- Goal: extraction of $\varphi_{1}-\varphi_{2}(\rightarrow$ UT angle $)$ from the measured $\mathcal{A}_{\mathrm{CP}}$!
- Problem: uncertainties related to the strong amplitudes $\left|A_{1,2}\right| e^{i \delta_{1,2}} \ldots$
${ }^{2}$ This CP asymmetry is the B-meson counterpart of $\varepsilon^{\prime} / \varepsilon$; established through $B_{d} \rightarrow \pi^{\mp} K^{ \pm}$in '04.

Two Main Strategies

- Amplitude relations allow us in fortunate cases to eliminate the hadronic matrix elements (\rightarrow typically strategies to determine γ):
- Exact relations: class of pure "tree" decays (e.g. $B \rightarrow D K$).
- Approximate relations, which follow from the flavour symmetries of strong interactions, i.e. $S U(2)$ isospin or $S U(3)_{\mathrm{F}}$:

$$
B \rightarrow \pi \pi, B \rightarrow \pi K, B_{(s)} \rightarrow K K
$$

- Decays of neutral B_{d} and B_{s} mesons:

$$
\text { Interference effects through } B_{q}^{0}-\overline{B_{q}^{0}} \text { mixing }
$$

- "Mixing-induced" CP violation!
- If one CKM amplitude dominates (e.g. $B_{d} \rightarrow \psi K_{\mathrm{S}}$):
\Rightarrow hadronic matrix elements cancel!
- Otherwise, we have to rely again on amplitude relations ...

The Major Lessons of Lecture I

- Central Target: UT of the CKM matrix
- The B-meson system and ε_{K} allow us to determine this triangle; in the future also rare B and K decays will enter this game.
- A key rôle is played by non-leptonic B decays:
\rightarrow CP violation \& direct determination of the UT angles!
- Theoretical description of non-leptonic B decays:
- Low-energy effective Hamiltonians [\rightarrow general, very useful tool]
- Factorization
- Key Problem:
hadronic matrix elements
\rightarrow two main strategies \rightarrow Lecture II

