Ward Identities and Radiative Rare Semileptonic B-decays

Muhammad Jamil Aslam
National Centre for Physics,
Quaid-i-Azam University,
Islamabad, Pakistan.

Standard Model process $B \rightarrow l v$

- Direct measurement of f_{B}
- CKM matrix element - Vub
- New Physics beyond S.M.
(at tree level)

The decay width

$$
\begin{gathered}
\Gamma(B \rightarrow l v)=\frac{G_{F}^{2}}{8 \pi}\left|V_{u b}\right|^{2} f_{B}^{2} \frac{m_{l}^{2}}{M_{B}^{2}} M_{B}^{3}\left(1-\frac{m_{l}^{2}}{M_{B}^{2}}\right)^{2} \\
\operatorname{Br}(B \rightarrow l v) \approx\left\{\begin{array}{l}
5.8 \times 10^{-12} \text { for } e^{-} \\
2.2 \times 10^{-7} \text { for } \mu^{-}
\end{array}\right.
\end{gathered}
$$

The Radiative Partner $B \rightarrow \gamma / v$

In Radiative B-decay Process, there are two major contributions to the amplitude:

- Inner Bremsstrahlung (IB)

$$
M_{I B}=i e \frac{G_{F}}{\sqrt{2}} V_{u b} f_{B} m_{l} \epsilon_{\mu}^{*} L^{\mu}
$$

with

$$
L^{\mu}=m_{l} \bar{u}\left(p_{v}\right)\left(1+\gamma_{5}\right)\left(\frac{2 p^{\mu}}{2 p \cdot k}-\frac{2 p_{l}^{\mu}+k \gamma^{\mu}}{2 p_{l} \cdot k}\right) v\left(p_{l}, s_{l}\right)
$$

- Structure Dependent (SD)

$$
M_{S D}=-i \frac{G_{F}}{\sqrt{2}} V_{u b} f_{B} m_{l} \epsilon_{\mu}^{*} \tilde{H}^{\mu v} l_{v}
$$

where

$$
\begin{gathered}
\tilde{H}^{\mu \nu}=i F_{V}\left(q^{2}\right) \epsilon^{\mu v \alpha \beta} k_{\alpha} p_{\beta}-F_{A}\left(q^{2}\right)\left(p \cdot k g^{\mu \nu}-p^{\mu} k^{v}\right) \\
l^{\mu}=\bar{u}\left(p_{v}\right) \gamma^{\mu}\left(1+\gamma_{5}\right) v\left(p_{l}, s_{l}\right) \\
q^{\mu}=(p-k)^{\mu}=\left(p_{l}+p_{v}\right)^{\mu}
\end{gathered}
$$

It depends on vector and axial vector form factors.

The decay constant and form factors are defined as

$$
\langle 0| \bar{u} \gamma^{\mu} \gamma_{5} b|B(p)\rangle=-i f_{B} p^{\mu}
$$

$$
\langle\gamma(k)| \overline{u^{\prime}} \gamma^{\mu} \gamma_{5} b|B(p)\rangle=-\left[\left(\epsilon^{*} \cdot p\right) k^{\mu}-\epsilon^{* \mu}(p \cdot k)\right] F_{A}\left(q^{2}\right)
$$

$$
\langle\gamma(k)| \bar{u} \gamma^{\mu} b|B(p)\rangle=-i \epsilon^{\mu v \alpha \beta} \epsilon_{v}^{*} p_{\alpha} k_{\beta} F_{V}\left(q^{2}\right)
$$

The Structure Dependent part is given by

$$
i H^{\mu \nu}=i \int d^{4} x e^{i k * x}\langle 0| T\left(j_{e m}^{\mu}(x) J_{2}^{\nu}(0)\right)|B(p)\rangle
$$

For real photon we can write
with $k_{\mu} \tilde{H}^{\mu \nu}=0$

$$
\begin{aligned}
& H^{\mu v}=\tilde{H}^{\mu v}+f_{B} \frac{p^{\mu} p^{v}}{p \cdot k} \\
& \tilde{H}^{\mu v}=0
\end{aligned}
$$

The absorptive part is given by

$$
\begin{aligned}
A b s\left[i H^{\mu v}\right]= & \frac{1}{2} \int d^{4} x e^{i k \cdot x}\langle 0|\left[j_{e m}^{\mu}(x), J_{2}^{v}(0)\right]|B(p)\rangle \\
= & \frac{1}{2}(2 \pi)^{4}\left[\sum_{n}\langle 0| j_{e m}^{\mu}(0)|n\rangle\langle n| J_{2}^{v}(0)|B(p)\rangle \delta^{4}\left(k-p_{n}\right)\right. \\
& \left.-\sum_{n}\langle 0| J_{2}^{v}(0)|n\rangle\langle n| j_{e m}^{\mu}(0)|B(p)\rangle \delta^{4}\left(k+p_{n}-p\right)\right]
\end{aligned}
$$

The contribution to absorptive part are all possible intermediate states that couple to $B \gamma$ and are annihilated by the weak vertex $\langle 0| J_{2}^{\nu}(0)|n\rangle$ These include the multiparticle contrinum as well resonances with quantum numbers 1^{-}and 1^{+}.

$$
\begin{aligned}
& F_{V}(t)=\frac{g_{B B^{*} \gamma}}{M_{B^{*}}^{2}-t} f_{B^{*}}+\cdots \\
& F_{A}(t)=\frac{f_{B_{A}^{*} B \gamma}}{M_{B_{A}^{*}}^{2}-t} f_{B_{A}^{*}}+\cdots
\end{aligned}
$$

We assume that the contributions from the radial excitations of B^{*} and B_{A}^{*} dominate the higher state contribution.

$$
\begin{aligned}
& F_{V}(t)= \frac{R_{V}}{1-t / M_{B^{*}}^{2}}+\sum_{i} \frac{R_{V_{i}}}{1-t / M_{B_{i}^{*}}^{2}}+\frac{1}{\pi} \int_{S_{0}}^{M^{2}} \frac{\operatorname{Im} F_{V}^{\mathrm{Cont}}(s)}{s-t-i \varepsilon} d s \\
& F_{A}(t)=\frac{R_{A}}{1-t / M_{B_{A}^{*}}^{2}}+\sum_{i} \frac{R_{A_{i}}}{1-t / M_{B_{A}}^{2}}+\frac{1}{\pi} \int_{S_{0}}^{M^{2}} \frac{\operatorname{Im} F_{A}^{\mathrm{Cont}}(s)}{s-t-i \varepsilon} d s \\
& S_{0}=M_{B}+m_{\pi}
\end{aligned}
$$

where

$$
\begin{aligned}
& R_{V}=\frac{g_{B B^{*} \gamma}}{M_{B^{*}}^{*}} f_{B^{*}} \\
& R_{A}=\frac{f_{B_{A}^{*} B \gamma}^{M_{B_{A}^{*}}^{2}} f_{B_{A}^{*}}}{}
\end{aligned}
$$

If we model the continum contributions by quark triangle graph, we have

$$
F_{V}^{\text {Cont }}=F_{A}^{\text {Cont }}=\frac{f_{B}}{M_{B}}\left\{\frac{Q_{u}}{\bar{\Lambda}}-\frac{Q_{b}}{M_{B}}\left(1+\frac{\bar{\Lambda}}{M_{B}}\right)\right\} \frac{1}{1-q^{2} / M_{B}^{2}}
$$

where $\bar{\Lambda}=M_{B}-m_{b}$, together with the term

$$
\left(Q_{u}-Q_{b}\right) f_{B} \frac{p^{\mu} p^{v}}{k \cdot p}=f_{B} \frac{p^{\mu} p^{v}}{k \cdot p}
$$

Calculation of Vector and Axial Vector Form Factors

- Ward Identities
- Gauge Invariance
- Pole Contributions
- Coupling Constants
- Branching Ratio

Ward Identities and Gauge Invariance

Define

$$
\begin{aligned}
\langle\gamma(k, \epsilon)| \bar{u} i \sigma^{\mu v} q_{v} b|B(p)\rangle & =-i \varepsilon^{\mu v \alpha \beta} \epsilon_{v}^{*} k_{\alpha} p_{\beta} F_{1}\left(q^{2}\right) \\
\langle\gamma(k, \epsilon)| \bar{u} i \sigma^{\mu v} \gamma_{5} q_{v} b|B(p)\rangle & =\left[(q \cdot k) \epsilon^{* \mu}-\left(\epsilon^{*} \cdot q\right) k^{\mu}\right] F_{3}\left(q^{2}\right)
\end{aligned}
$$

Ward Identities used to relate different form factors appearing in our calculation are

$$
\begin{aligned}
\langle\gamma(k, \epsilon)| \bar{u} i \sigma^{\mu v} q_{v} b|B(p)\rangle= & -\left(m_{b}+m_{q}\right)\langle\gamma(k, \epsilon)| \bar{u} \gamma^{\mu} b|B(p)\rangle \\
& +\left(p^{\mu}+k^{\mu}\right)\langle\gamma(k, \epsilon)| \bar{u} b|B(p)\rangle \\
= & -\left(m_{b}+m_{q}\right)\langle\gamma(k, \epsilon)| \bar{u} \gamma^{\mu} b|B(p)\rangle \\
\langle\gamma(k, \epsilon)| \bar{u} i \sigma^{\mu v} \gamma_{5} q_{v} b|B(p)\rangle= & \left(m_{b}-m_{q}\right)\langle\gamma(k, \epsilon)| \bar{u} \gamma^{\mu} \gamma_{5} b|B(p)\rangle \\
& +\left(p^{\mu}+k^{\mu}\right)\langle\gamma(k, \epsilon)| \bar{u} \gamma_{5} b|B(p)\rangle \\
= & \left(m_{b}-m_{q}\right)\langle\gamma(k, \epsilon)| \bar{u} \gamma^{\mu} \gamma_{5} b|B(p)\rangle
\end{aligned}
$$

Using gauge invariance we have

$$
\begin{aligned}
& F_{V}\left(q^{2}\right)=\frac{1}{m_{b}+m_{q}} F_{1}\left(q^{2}\right) \\
& F_{A}\left(q^{2}\right)=\frac{1}{m_{b}-m_{q}} F_{3}\left(q^{2}\right)
\end{aligned}
$$

To make use of Ward Identities to relate different form factors, define

$$
\begin{aligned}
\langle\gamma(k, \epsilon)| i \bar{u} \sigma_{\alpha \beta} b|B(p)\rangle= & -i \varepsilon_{\alpha \beta \rho \sigma} \epsilon^{* \rho}(k)\left[(p+k)^{\sigma} g_{+}+q^{\sigma} g_{-}\right] \\
& -i q \cdot \epsilon^{*}(k) \varepsilon_{\alpha \beta \rho \sigma}(p+k)^{\rho} q^{\sigma} h \\
& -i\left[q_{\alpha} \varepsilon_{\beta \rho \sigma \tau} \epsilon^{* \rho}(k)(p+k)^{\sigma} q^{\tau}-\alpha \leftrightarrow \beta\right] h_{1} \\
& -i\left[(p+k)_{\alpha} \varepsilon_{\beta \rho \sigma \tau} \epsilon^{* \rho}(k)(p+k)^{\sigma} q^{\tau}-\alpha \leftrightarrow \beta\right] h_{2}
\end{aligned}
$$

And using Dirac algebra we can write

$$
\langle\gamma(k, \epsilon)| i \bar{u} \sigma^{\mu v} \gamma_{5} b|B(p)\rangle=-\frac{i}{2} \varepsilon^{\mu v \alpha \beta}\langle\gamma(k, \epsilon)| i \bar{u} \sigma_{\alpha \beta} b|B(p)\rangle
$$

Using Gauge Invariance we can write

$$
\begin{aligned}
& F_{1}\left(q^{2}\right)=2\left[g_{+}-q^{2} h_{1}-M_{B}^{2} h_{2}\right] \\
& F_{3}\left(q^{2}\right)=2\left[-g_{+}-q^{2} h-\left(M_{B}^{2}-q^{2}\right) h_{2}\right]
\end{aligned}
$$

Finally

$$
\begin{aligned}
& F_{V}=\frac{2}{m_{b}+m_{q}}\left(g_{+}-q^{2} h_{1}-M_{B}^{2} h_{2}\right) \\
& F_{A}=\frac{2}{m_{b}-m_{q}}\left(g_{+}-q^{2} h-\left(M_{B}^{2}-q^{2}\right) h_{2}\right)
\end{aligned}
$$

The normalization of these form factors at $q^{2}=0$ is determined by the universal from factor $g_{+}(0)$.

Pole Contributions

The parent B-meson can go into a vector meson state or an axial vector meson state after emitting a real photon. There appear a pole term if momentum transfer become equal to the mass of the intermediate state. In context of $H Q S$, the axial vector meson has $L=1$, and belongs to two separate spin doublets. This give rise to S wave and D wave contributions to the axial vector meson.

Only h_{1}, g_{-}and h get pole contribution from $B^{*}\left(1^{-}\right)$and $\mathrm{B}_{\mathrm{A}}{ }^{*}\left(1^{+}\right)$mesons

$$
\begin{aligned}
\left.h_{1}\right|_{\text {pole }} & =-\frac{1}{2} \frac{g_{B^{*} B \gamma}}{M_{B^{*}}^{2}} \frac{f_{T}^{B^{*}}}{1-q^{2} / M_{B^{*}}^{2}}=-\frac{1}{2}\left(m_{b}+m_{q}\right) \frac{R_{V}}{M_{B^{*}}^{2}} \frac{1}{1-q^{2} / M_{B^{*}}^{2}} \\
\left.g_{-}\right|_{\text {pole }} & =-\frac{g_{B_{A}^{*} B^{\prime}}}{M_{B_{A}^{*}}^{2}} \frac{f_{T}^{B_{A}^{*}}}{1-q^{2} / M_{B_{A}^{*}}^{2}}=\left(m_{b}-m_{q}\right) \frac{R_{A}^{S}}{M_{B_{A}^{*}}^{2}} \frac{1}{1-q^{2} / M_{B_{A}^{*}}^{2}} \\
\left.h\right|_{\text {pole }} & =\frac{1}{2} \frac{f_{B_{B}^{*} B \gamma}}{M_{B_{A}^{*}}^{2}} \frac{f_{T}^{B_{A}^{*}}}{1-q^{2} / M_{B_{A}^{*}}^{2}}=-\frac{1}{2}\left(m_{b}-m_{q}\right) \frac{R_{A}^{D}}{M_{B_{A}^{*}}^{2}} \frac{1}{1-q^{2} / M_{B_{A}^{*}}^{2}}
\end{aligned}
$$

On the other hand g_{+}get contribution from triangle graph

$$
\begin{equation*}
g_{+}=f_{B}\left\{\frac{Q_{u}}{2 \bar{\Lambda}}-\frac{Q_{b}}{2 M_{B}}\left(1-\frac{m_{q}}{M_{B}}\right)\right\} \frac{1}{1-q^{2} / M_{B}^{2}} \tag{A}
\end{equation*}
$$

g_{+}, g_{-}and h are related through the equation

$$
g_{+}+g_{-}+2(q \cdot k) h=0
$$

and the coupling constants $g_{B_{A}^{*} B \gamma}, f_{B_{A}^{*} B \gamma}$ are defined as follows

$$
\begin{gathered}
\left\langle B^{*-}(q, \eta) \gamma(k, \epsilon) \mid B^{-}(P)\right\rangle=i g_{B^{*} B \gamma} \varepsilon_{\alpha \rho \mu \sigma} \epsilon^{* \alpha} q^{\rho} \eta^{* \mu} p^{\sigma} \\
\langle 0| i \bar{u} \sigma_{\mu \nu} b\left|B^{*-}(q, \eta)\right\rangle=f_{T}^{B^{*}}\left(q_{\mu} \eta_{\nu}-q_{\nu} \eta_{\mu}\right) \\
\left\langle B_{A}^{*-}(q, \eta) \gamma(k, \epsilon) \mid B^{-}(P)\right\rangle=i g_{B_{A}^{*} B \gamma}\left(\epsilon^{*} \cdot \eta^{*}\right)-i f_{B_{A}^{*} B \gamma}\left(q \cdot \epsilon^{*}\right)\left(k \cdot \eta^{*}\right) \\
\langle 0| i \bar{u} \sigma_{\mu \nu} b\left|B_{A}^{*-}(q, \eta)\right\rangle=f_{T}^{B_{A}^{*}} \varepsilon_{\mu \nu \alpha \beta} \eta^{\alpha} q^{\beta}
\end{gathered}
$$

Using Ward Identity we take the matrix element between $\langle 0|$ and $\left|B^{*}\right\rangle$, we obtain

$$
\langle 0| i \bar{u} \sigma^{\mu v} q_{v} b\left|B^{*}(q, \eta)\right\rangle=-\left(m_{b}+m_{q}\right) f_{B^{*}} \eta^{\mu}
$$

where $\langle 0| i \bar{u} \gamma^{\mu} b\left|B^{*}(q, \eta)\right\rangle=f_{B^{*}} \eta^{\mu}$, so we can write

$$
f_{T}^{B^{*}}=\frac{\left(m_{b}+m_{q}\right)}{M_{B^{*}}^{2}} f_{B^{*}}=\frac{\left(m_{b}+m_{q}\right)}{M_{B^{*}}} f_{B}=\frac{M_{B}}{M_{B^{*}}} f_{B}=f_{B}
$$

Working on the same line we can write

$$
\langle 0| i \bar{u} \sigma^{\mu v} q_{v} \gamma_{5} b\left|B_{A}^{*}(q, \eta)\right\rangle=\left(m_{b}-m_{q}\right) f_{B_{A}^{*}} \eta^{\mu}
$$

and

$$
f_{T}^{B_{A}^{*}}=-\frac{\left(m_{b}-m_{q}\right)}{M_{B_{A}^{*}}^{2}} f_{B_{A}^{*}}
$$

Using the gauge invariance the ratio of S-wave and D-wave couplings is given as

$$
\frac{R_{A}^{S}}{R_{A}^{D}}=-\frac{2 g_{B_{A}^{*} B \gamma}}{f_{B_{A}^{*} B \gamma}}=-\left(M_{B}^{2}-q^{2}\right)
$$

We will use this ratio to predict the coupling of γ with B and B_{A}^{*} vertex. We will also predict the coupling $g_{B^{*} B \gamma}$ for B^{*} taken as an intermediate state.

Form Factors and determination of Coupling constants

Using the pole contributions calculated above the form factors can be written as

$$
\begin{aligned}
& F_{V}\left(q^{2}\right)=\left\{\frac{2}{m_{b}+m_{q}} g_{+}\left(q^{2}\right)+R_{V} \frac{q^{2}}{M_{B^{*}}^{2}} \frac{1}{1-q^{2} / M_{B^{*}}^{2}}+\sum_{i} \frac{q^{2}}{M_{B_{i}^{*}}^{2}} \frac{R_{V_{i}}}{1-q^{2} / M_{B_{i}^{*}}^{2}}\right\} \\
& F_{A}\left(q^{2}\right)=\left\{\frac{2}{m_{b}-m_{q}} g_{+}\left(q^{2}\right)+R_{A}^{D} \frac{q^{2}}{M_{B_{A}^{*}}^{2}} \frac{1}{1-q^{2} / M_{B_{A}^{*}}^{2}}+\sum_{i} \frac{q^{2}}{M_{B_{i}^{*}}^{2}} \frac{R_{A_{i}}^{D}}{1-q^{2} / M_{B_{i}^{*}}^{2}}\right\}
\end{aligned}
$$

The constraint

$$
R+\sum_{i} R_{i}=0
$$

gives restriction to the first radial excitation,

$$
\begin{aligned}
& F_{V}\left(q^{2}\right)=\frac{2}{m_{b}+m_{q}} g_{+}\left(q^{2}\right)+R_{V} q^{2} \frac{\left(M_{B_{1}^{*}}^{2}-M_{B^{*}}^{2}\right)}{\left(M_{B^{*}-q^{2}}^{2}\right)\left(M_{B_{1}^{*}}^{2}-q^{2}\right)} \\
& F_{A}\left(q^{2}\right)=\frac{2}{m_{b}-m_{q}} g_{+}\left(q^{2}\right)+R_{A}^{D} q^{2} \frac{\left(M_{B_{A_{1}}^{*}}^{2}-M_{B_{A}^{*}}^{2}\right)}{\left(M_{B_{A}^{*}}^{2}-q^{2}\right)\left(M_{B_{A_{1}}^{*}}^{2}-q^{2}\right)}
\end{aligned}
$$

The pole behavior is softened by an effective suppression factor $\left(M_{B_{1}^{*}}^{2}-M_{B^{*}}^{2}\right)$ which takes care of the off-shell-ness of the couplings of B^{*} or B_{A}^{*} with $B \gamma$ channel. We can not expect the above relations obtained from Ward identities, to hold for all q^{2} for which we use the parameterization

In this way we obtain

$$
F\left(q^{2}\right)=\frac{F(0)}{1+a q^{2}+b q^{4}}
$$

$$
F\left(q^{2}\right)=\frac{F(0)}{1-\frac{q^{2}}{M^{2}}-\frac{R}{F(0)} \frac{q^{2}}{M_{1}^{2}}\left(\frac{M_{1}^{2}-M^{2}}{M^{2}}\right)\left(1-\frac{q^{2}}{M^{2}} \frac{M_{1}^{2}-M^{2}}{M_{1}^{2}}\left(1+\frac{R}{F(0)}\right)\right.}
$$

Now it is tempting to factor out $\frac{1}{1-q^{2} / M^{2}}$ pole behavior, which gives

$$
R=\left(\frac{1}{\frac{M_{1}^{2}}{M^{2}}-1}\right) \frac{2 g_{+}}{M_{B}}
$$

$$
F\left(q^{2}\right)=\frac{F(0)}{\left(1-\frac{q^{2}}{M^{2}}\right)\left(1-\frac{q^{2}}{M_{1}^{2}}\right)}
$$

The couplings can be obtained as

$$
\begin{aligned}
g_{B^{*} B \gamma} & \left.\simeq \frac{2 g_{+}(0)}{f_{B}\left(\frac{M_{B_{1}^{*}}^{*}}{M_{B^{*}}^{2}}-1\right.}\right) \\
f_{B_{A}^{*} B \gamma} & \left.=\frac{M_{B_{A}^{*}}^{2}}{M_{B}} \frac{2 g_{+}(0)}{f_{B_{A}^{*}}\left(\frac{M_{B_{A_{1}}^{*}}^{2}}{M_{B_{A}^{*}}^{2}}-1\right.}\right)
\end{aligned}
$$

From Eq. (A) for $\bar{\Lambda}=0.4 \mathrm{GeV}^{-1}$ we have

$$
g_{+}(0)=\frac{2}{3} \frac{f_{B}}{2 \bar{\Lambda}}=0.15
$$

and the same value gives us the coupling constants

$$
\begin{aligned}
& g_{B^{*} B \gamma}=\frac{2.2}{\bar{\Lambda}}=5.6 \mathrm{GeV}^{-1} \\
& f_{B_{A}^{*} B \gamma}=6.5 \frac{f_{B} M_{B_{A}^{*}}}{f_{B_{A}^{*}}} \mathrm{GeV}^{-1}
\end{aligned}
$$

The relation between S-wave and D-wave couplings near the pole at $q^{2}=M_{B_{A}^{*}}^{2}$ is

$$
\begin{aligned}
g_{B_{A}^{*} B \gamma} & =\frac{M_{B}^{2}-M_{B_{A}^{*}}^{2}}{2} f_{B_{A}^{*} B \gamma} \\
& =-2.36 \times f_{B_{A}^{*} B \gamma}
\end{aligned}
$$

The final expression for form factors becomes

$$
\begin{aligned}
& F_{V}\left(q^{2}\right)=\frac{F_{V}(0)}{\left(1-q^{2} / M_{B^{*}}^{2}\right)\left(1-q^{2} / M_{B_{1}^{*}}^{2}\right)} \\
& F_{A}\left(q^{2}\right)=\frac{F_{A}(0)}{\left(1-q^{2} / M_{B_{A}^{*}}^{2}\right) 1-q^{2} / M_{B_{A_{1}}^{*}}^{2}} \\
& F_{V, A}(0)=\frac{2 g_{+}(0)}{M_{B}}
\end{aligned}
$$

Branching Ratio

Using the form factors calculated above we have

$$
\mathcal{B}\left(B \rightarrow \gamma l \nu_{l}\right)=0.5 \times 10^{-6} \quad \text { for } l=\mu
$$

- CLEO 2×10^{-6}
- Bethe-Salpeter approach 0.9×10^{-6}
- Light-Cone QCD (2-5) ×10-6
- Monte-Carlo Simulation 5.2×10^{-5}

Conclusion

- We have studied $B \rightarrow \gamma l v_{l}$ decay using Ward Identities.
- The form factors $F_{V}\left(q^{2}\right)$ and $F_{A}\left(q^{2}\right)$ have been calculated and it is found that their normalization is essentially determined by a single constantg+(0).
- We use parameterization which takes into account potential corrections to single pole dominance arising from radial excitation of M.
- We have calculated the value of $g_{+}(0)$ and using this we have found the ratio of S-wave to D-wave coupling.
- Branching ratio is calculated and compared it with different approaches.
- Finally the partial decay width vs. the photon energy spectrum is plotted and it is found that our peak shifts towards the lower value of x.
Thanks!

