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Standard Model process
B→ lν

• Direct measurement of  fB

• CKM matrix element – Vub

• New Physics beyond S.M.
(at tree level)
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The Radiative Partner B→γ lν
In Radiative B-decay Process, there are two major 
contributions to the amplitude:

Inner Bremsstrahlung (IB)

with

M IB  ie G F

2
V u b f B m l  L 

L  mlūp1  5 
2p 

2pk 
2pl

k

2plk
vpl, sl



Structure Dependent (SD)

where

It depends on vector and axial vector form factors.

M SD  i GF

2
V ub f Bm lH  l

H   iFVq2kp  FAq2p  kg  pk

q  p  k  pl  p 
l  ūp1  5 vpl,sl



The decay constant and form factors are defined as

0|ū5 b |Bp  if B p

k|ū5b|Bp    pk  p  kFAq2

k|ūb|Bp  ipkFVq2



The Structure Dependent part is given by

For real photon we can write

with                                                         

The absorptive part is given by

iH   i  d 4 x e ikx 0|Tj em
 x J 2

 0  |Bp 

H  H   fB
pp 

pk
k H   0

AbsiH   1
2  d 4 xe ikx 0|j em

 x, J2
 0 |Bp

 1
2 2

4

n
 0|j em

 0 |nn|J2
0 |Bp4k  pn


n
 0|J2

0 |nn|j em
 0 |Bp4k  pn  p



The contribution to absorptive part are all possible intermediate states 
that couple to       and are annihilated by the weak vertex     
These include the multiparticle contrinum as well resonances with 
quantum numbers 1⁻ and 1⁺.

We assume that the contributions from the radial excitations of 
and    dominate the higher state contribution.

B 0|J2
0|n

F Vt 
g BB 

M B
2 t

f B   

F A t 
f BA
 B

M BA


2  t
f B A

  

B

BA


FVt  RV

1t/MB
2 

i

RVi

1t/MBi


2  1
 S 0

M2 ImFV
Conts

sti ds

FAt  R A

1t/M BA
2 

i

R Ai

1t/M BA i
2  1

  S 0

M 2 Im F A
Conts

sti ds

S0  MB m



where

If we model the continum contributions by quark triangle graph, 
we have

where                       , together with the term

RV 
g BB

M B
2 f B 

RA 
fBA
 B

MB A
2 fB A



FV
Cont  FA

Cont  fB
MB

Qu


 Qb

MB
1  

MB
 1

1q2/MB
2

  M B  m b

Q u  Q b f B
p  p 

k p  f B
p  p 

k p



Calculation of Vector and Axial Vector 
Form Factors

Ward Identities
Gauge Invariance
Pole Contributions
Coupling Constants
Branching Ratio



Ward Identities and Gauge Invariance

Define

Ward Identities used to relate different form factors appearing in 
our calculation are 

k , |ūi q b |Bp   i k pF 1 q 2 

k,|ūi5qb|Bp  q  k    qk F3q2

k ,  |ūi  q  b |Bp  

mb  mqk,|ūb|Bp

k , |ūi5 qb |Bp 

mb mqk,|ūb|Bp

p  k k , |ūb |Bp

mb  mqk,|ū5b|Bp

p  k k, |ū5 b |Bp



 m b  m q k , |ū5 b |Bp



Using gauge invariance we have

To make use of Ward Identities to relate different form factors, define

And using Dirac algebra we can write

F Vq 2   1
m bm q

F 1 q 2

F A q 2   1
m bm q

F 3 q 2

k , |iūb |Bp  ikp  kg  qg 

 iq    k    p  k   q  h

iqkp  kq    h1

ip k
kp kq   h2

k , |iū   5 b |Bp    i
2 

k , |iūb |Bp



Using Gauge Invariance we can write

Finally

The normalization of these form factors at                  is 
determined by the universal from factor         .

F 3 q 2   2 g  q 2 h  M B
2  q 2 h 2

F 1 q 2   2 g   q 2 h 1  M B
2 h 2 

F V  2
m bm q

g   q 2 h 1  M B
2 h 2

FA  2
m bm q

g  q2h  MB
2  q2 h2

q 2  0
g0



Pole Contributions
The parent B-meson can go into a vector meson state or an axial 
vector meson state after emitting a real photon. There appear a 
pole term if momentum transfer become equal to the mass of the 
intermediate state. In context of HQS, the axial vector meson has 
L=1, and belongs to two separate spin doublets. This give rise to S
wave and D wave contributions to the axial vector meson.

Only h1, g- and h get pole contribution from B*(1-) and 
BA*(1+) mesons

h 1  pole   1
2

g BB

M B
2

f T
B 

1q 2 /MB 
2   1

2 m b  m q 
R V

M B
2

1
1q 2 /MB 

2

g   p o le  
g BA
 B

M BA
2

f T
B A


1q 2 /M B A
2  m b  m q 

R A
S

M BA
2

1
1q 2 /M B A

2

h  pole  1
2

fBA
 B

M B A


2
fT
B A


1q 2 /MB A


2   1
2 m b  m q 

R A
D

M BA


2
1

1q 2 /MB A


2



On the other hand g₊ get contribution from triangle graph

(A)

and h are related through the equation

and the coupling constants                     are defined as follows     

g,g

g  fB
Qu

2 
Qb

2MB
1  mq

MB
 1

1q 2/MB
2

g  g  2q  k h  0
gBA

B, fBA
B

Bq,k,  BP  igBBqp

0|iūb |Bq,  f T
Bq  q 

BA
q,k,  BP  igBA

B.  ifBA
Bq.k.

0|iū b |BA
q,  f T

BA


 q



Using Ward Identity we take the matrix element between       and
, we obtain

where                                          ,  so we can write

Working on the same line we can write

and

0|
|B

0|iūqb |Bq,  m b  m q f B

0|iūb|Bq,  fB

f T
B   m bm q

MB
2 fB  

m bm q

MB
fB  MB

MB
fB  fB

0|iūq5b |BA
 q,  m b  m qf B A

 

f T
B A


  m b m q 

M B A
2 f B A





Using the gauge invariance the ratio of S-wave and D-wave 
couplings is given as

We will use this ratio to predict the coupling of     with  and       
vertex.  We will also predict the coupling            for       taken as 
an intermediate state.      

RA
S

RA
D  

2gBA
B

fBA
B

 MB
2  q2

 B BA


gBB B



Form Factors and determination of 
Coupling constants

Using the pole contributions calculated above the form factors can 
be written as

The constraint 

gives restriction to the first radial excitation,

FVq2  2
m bmq

gq2  RV
q2

MB
2

1
1q2/MB

2 i
q2

MBi
2

RVi

1q2/MBi
2

FAq2  2
m bmq

gq2  RA
D q2

MB A
2

1
1q 2/MB A

2 i
q 2

MB i
2

R Ai
D

1q2/MBi
2

R   i Ri  0



The pole behavior is softened by an effective suppression factor
which takes care of the off-shell-ness of the couplings 

of     or     with      channel. . We can not expect the above relations 
obtained from Ward identities, to hold for all      for which we use 
the parameterization  

In this way we obtain

F Vq 2   2
m bm q

gq 2  RVq 2
MB 1

2 M B
2 

M B 
2 q2 M B1

2 q 2 

F A q2   2
m bm q

gq2  RA
D q2

MB A1


2 M BA


2 

M B A


2 q2 M BA 1


2 q 2 

MB1


2 MB
2 

B BA
 B

q2

Fq 2   F 0 
1aq 2bq 4

Fq2  F0 

1 q 2

M2 
R

F0
q 2

M1
2

M 1
2M 2

M 2 1 q 2

M2
M1

2M2

M1
2 1 R

F0 



Now it is tempting to factor out                      pole behavior, which 
gives

The couplings can be obtained as

1
1  q 2 / M 2

R  1
M 1

2

M 2 1

2g
MB

Fq2  F0

1 q2

M2 1 q2

M1
2

gBB  2g 0

fB

MB 1
2

MB
2 1

f B A
B 

MB A
2

MB

2g0

fB A


MB A1
2

M BA


2 1



From Eq. (A) for                       we have  

and the same value gives us the coupling constants

The relation between S-wave and D-wave couplings near the pole 
at                 is 

g0  2
3

fB
2  0.15

gBB  2.2

 5.6 GeV1

  0.4 GeV1

fBA
B  6.5

fBMBA


fBA


GeV1

q2  MB A


2

gB A
B 

M B
2 MB A

2

2 f B A
B

 2. 36  f B A
B



The final expression for form factors becomes

F Vq2   F V 0 

1q 2 /MB 
2 1q 2/M B 1

2

F A q 2   F A0 

1q 2 /MB A
2 1q 2/M BA 1

2

F V, A 0  
2 g  0 

M B



Branching Ratio

Using the form factors calculated above we have

CLEO 2x10-6

Bethe-Salpeter approach 0.9 x10-6

Light-Cone QCD (2-5) x10-6

Monte-Carlo Simulation 5.2x10-5

BB  ll  0.5  106 for l  



0 0.2 0.4 0.6 0.8 1



Conclusion
We have studied                      decay using Ward Identities.
The form factors              and            have been calculated and it is 
found that their normalization is essentially determined by a single 
constant       .
We use parameterization  which takes into account potential 
corrections to single pole dominance arising from radial excitation 
of M.
We have calculated the value of           and using this we have
found the ratio of S-wave to D-wave coupling.
Branching ratio is calculated and compared it with different 
approaches.
Finally the partial decay width vs. the photon energy spectrum is 
plotted and it is found that our peak shifts towards the lower value 
of x. 

B  l l

FVq2 FAq2

g0

g0



Thanks!


