EQUILIBRATION AND THERMALIZATION IN RELATIVISTIC HEAVY-ION COLLISIONS

L.Bravina, <u>E.Zabrodin</u>

UiO : Universitetet i Oslo

FIAS Frankfurt Institute for Advanced Studies

ниияф

мгу

Stages of an ultrarelativistic heavy-ion collision

Initial state in colliding nuclei

Gluon-dominated preequilibrium

Quark-gluon matter Hadron gas

Initial stage: Hard partonic collisions described by pQCD. Partons materializing from gluon fields.
Formation of a quark-gluon plasma, approaching equilibrium through multiple interactions.
Initial temperature of several hundred MeV.
Violent expansion and cooling.
Hadronization when the plasma reaches

T_c ~ 170 MeV, through parton fragmentation or quark coalescence.

- Chemical and finally kinetic freezeout. Only variables surviving to this stage are observable.

Phase diagram

Diagram by S. Milov

Central cell: Relaxation to equilibrium

Equilibration in the Central Cell

 $t^{eq} \ge t^{cross} + \Delta z/(2\beta_{cm})$ $= 2\mathbf{R}/(\gamma_{\rm cm} \beta_{\rm cm})$

Kinetic equilibrium: Isotropy of velocity distributions Isotropy of pressure

Thermal equilibrium: Energy spectra of particles are described by Boltzmann distribution

L.Bravina et al., PLB 434 (1998) 379; $\frac{dN_i}{4\pi pEdE} = \frac{Vg_i}{(2\pi\hbar)^3} \exp\left(\frac{\mu_i}{T}\right) \exp\left(-\frac{E_i}{T}\right)$

Chemical equilbrium:

JPG 25 (1999) 351

Particle yields are reproduced by SM with the same values of (T, μ_B, μ_S) :

$$N_i = \frac{Vg_i}{2\pi^2\hbar^3} \int_0^\infty p^2 dp \exp\left(\frac{\mu_i}{T}\right) \exp\left(-\frac{E_i}{T}\right)$$

Statistical model of ideal hadron gas

output values

Pre-equilibrium Stage

The local equilibrium in the central zone is quite possible

Models employed: UrQMD,QGSM, also PHSD, GiBUU, **3-fluid hydro, SU(3)**

Kinetic Equilibrium

Velocity distributions and pressure become isotropic for all energies

Thermal and Chemical Equilibrium

Particle yields

Thermal and chemical equilibrium seems to be reached

Other approaches

Isotropy of pressure for hadron species

UrQMD 3.3; Au+Au @ 10, 20, 30, 40 AGeV; central cell: 2x2x2 fm³

Other approaches

Fit of inverse slope parameter T_{slope} to Bjorken model

Fit to t^{-1/3} (1D, dotted line) and t⁻¹ (3D, dashed line)

How dense can be the medium?

Dramatic differences at the non-equilibrium stage; after beginning of kinetic equilibrium the energy densities and the baryon densities are the same for "small" and "big" cell

Comparison between models

The phase trajectories at the center of a head-on Au+Au collisions

Green area : freeze-out region; Yellow area : the phase coexistence region from schematic EOS that has a critical point at final density

Different models exhibit a large degree of mutual agreement

Infinite hadron gas: a box with periodic boundary conditions

BOX WITH PERIODIC BOUNDARY CONDITIONS

Initialization: (i) nucleons are uniformly distributed in a configuration space; (ii) Their momenta are uniformly distributed in a sphere with random radius and then rescaled to the desired energy density. M.Belkacem et al., PRC 58, 1727 (1998)

Model employed: UrQMD 55 different baryon species $(N, \Delta, hyperons and their$ resonances with $m \leq 2.25 \text{ GeV}/c^2$), 32 different meson species (including resonances with $m \le 2 \text{ GeV}/c^2$) and their respective antistates. For higher mass excitations a string mechanism is invoked.

Test for equilibrium: particle yields and energy spectra

BOX: PARTICLE ABUNDANCES

Saturation of yields after a certain time. Strange hadrons are saturated longer than others .

BOX: ENERGY SPECTRA AND MOMENTUM DISTRIBUTIONS

Nearly the same temperature and complete isotropy of dN/dp_T

BOX: HAGEDORN-LIKE LIMITING TEMPERATURE

UrQMD

E.Bratkovs aya et al., NPA 675, 661 (2000)

A rapid rise of T at low ε and saturation at high energy densities. Saturation temperature depends on number of resonances in the model. W/o strings and many-N decays – no limiting T is observed.

Comparison of cell and box results

THERMAL AND CHEMICAL EQUILIBRIUM

Box calculations are on the top of the cell results

THERMAL AND CHEMICAL EQUILIBRIUM

Partial entropy densities

T vs ɛ

Box calculations are on the top of the cell results

Equation of State T vs. energy, etc

Isentropic expansion

Expansion proceeds isentropically (with constant entropy per baryon). This result supports application of hydrodynamics

 $s/\rho_B = const = 12(AGS), 20(40), 38(SPS)$

Equation of State in the cell

Still sonic velocity drops faster than in Hagedorn model . Non-zero chemical potential ?

The difference increases with bombarding energy

...B. et al., PRC 78 (2008) 014907

Equation of State: energy and entropy densities vs. T

No difference between the models

Modification of the analysis (small cells or coarse-graining)

Example of coarse-graining

T. Kodama, conf. NeD/TURIC'2012

EOS in the cell: observation of knee temperature vs. chemical potentials

The "knee" in MC simulations appears at chemical FO

Observation of the 'knee' in other models temperature vs. chemical potentials

Conclusions

- MC models favor formation of equilibrated matter for a period of 10-15 fm/c
- During this period the expansion of matter in the central cell proceeds isentropically with constant S/B (hydro!)
- The EOS has a simple form: P/ɛ = const, where the speed of sound squared varies from 0.12 (AGS) to 0.14 (40 AGeV), and to 0.15 (SPS & RHIC) => onset of saturation
- Heavy resonances: are seeing in c_s²(T) or c_s²(µ_b), but not in energy(entropy) vs. T - distributions
- **T vs. mu:** the knee structure which appears at the onset of equilibrium is related to chemical freeze-out

Back-up Slides

Bibliography

Local thermodynamical equilibration in central Au + Au collisions at AGS

L.V. Bravina et al., Phys. Lett. B434 (1998) 379-387; DOI: 10.1016/S0370-2693(98)00624-8

Equation of state, spectra and composition of hot and dense infinite hadronic matter in a microscopic transport model

M. Belkacem et al., Phys. Rev. C58 (1998) 1727-1733; DOI: 10.1103/PhysRevC.58.1727

Local thermal and chemical equilibration and the equation of state in relativistic heavy ion collisions L.V. Bravina et al., J. Phys. G25 (1999) 351-361; DOI: 10.1088/0954-3899/25/2/024

Equilibrium and nonequilibrium effects in relativistic heavy ion collisions

L.V. Bravina et al., Nucl. Phys. A661 (1999) 600-603; DOI: 10.1016/S0375-9474(99)85097-0

Local equilibrium in heavy ion collisions: Microscopic model versus statistical model analysis

L.V. Bravina et al., Phys. Rev. C60 (1999) 024904; DOI: 10.1103/PhysRevC.60.024904

Equation of state of resonance rich matter in the central cell in heavy ion collisions at S^(1/2)=200-A/GeV

L.V. Bravina et al., Phys. Rev. C63 (2001) 064902; DOI: 10.1103/PhysRevC.63.064902

Local equilibrium in heavy ion collisions: Microscopic analysis of a central cell versus infinite matter

L.V. Bravina et al., Phys. Rev. C62 (2000) 064906; DOI: 10.1103/PhysRevC.62.064906

Chemical freezeout parameters at RHIC from microscopic model calculations

L.V. Bravina et al., Nucl. Phys. A698 (2002) 383-386; DOI: 10.1016/S0375-9474(01)01385-9

Equilibration of matter near the QCD critical point

L.V. Bravina et al., J. Phys. G32 (2006) S213-S221; DOI: 10.1088/0954-3899/32/12/S27 Equilibration of matter in relativistic heavy-ion collisions

L. Bravina et al., Int. J. Mod. Phys. E16 (2007) 777-786; DOI: 10.1142/S0218301307006277

Bibliography (cont.)

Microscopic models and effective equation of state in nuclear collisions at FAIR energies L.V. Bravina et al., Phys. Rev. C78 (2008) 014907; DOI: 10.1103/PhysRevC.78.014907 Equation of state at FAIR energies and the role of resonances E E Zabrodin et al., J. Phys. G36 (2009) 064065; DOI: 10.1088/0954-3899/36/6/064065 Effective equation of state of hot and dense matter in nuclear collisions around FAIR energy L. Bravina, E. Zabrodin, EPJ Web Conf. 95 (2015) 01003; DOI: 10.1051/epjconf/20159501003

Phase Diagram

H. Stoecker, J. Phys. Conf. Ser. 50 (2006) 300 L. Bravina et al., PRC 60 (1999) 024904; 63 (2001) 064902

Other possible mechanisms of fast equilibration

gg <=> gggA. El, C. Greiner, Z. Xu, NPA 785 (2007) 132> Solving the Boltzmann equation for on-shell
gluons (and quarks) using Monte Carlo techniquesBoltzmann
Approach for

> 2<->3 processes included (detailed balance)
> stochastic interpretation of collision rates

Boltzmann Approach for Multi-Parton Scatterings

or fast thermalization via the Hagedorn States J.Noronha-Hostler et al., PRL 100 (2008) 252301 $g(m) = \int_{M_0}^{M} \frac{A}{[m^2 + (m_0)^2]^{(5/4)}} e^{(m/T_H)} dm$ $n\pi \leftrightarrow HS \leftrightarrow n'\pi + B\bar{B}, \quad n\pi \leftrightarrow HS \leftrightarrow n'\pi + K\bar{K},$

These mechanisms, however, are more appropriate for A+A collisions at RHIC and LHC

One possible Hagedorn state decay chain

UrQMD-Box, HS init

K. Gallmeister, talk at SQM'15 (JINR, Dubna)