Chiral Thermodynamics in a box

Bernd-Jochen Schaefer

in collaboration with Ana Juricic

Der Wissenschaftsfonds.

Germany

Austria

Germany

Nov 1st, 2016

Meeting of the working group on theory of hadronic matter under extreme conditions Dubna, October 31 - November 3, 2016

Conjectured QC₃D phase diagram

Experiment:

Theory:

- → Lattice: but simulations restricted to small µ
- → Functional QFT methods: FRG,DSE, nPI
- → Models: effective theories parameter dependency

Experiment: (non-equilibrium)

→ in a finite box (HBT radii: freeze-out vol. ~ 2000-3000 fm³) (UrQMD (\sqrt{s}): system vol. ~ 50 - 250 fm³)

Theoretical aim:

deeper understanding & more realistic HIC description

→ existence of critical end point(s)?

Non-trivial physical issues!

Agenda

- Motivation: physics in a finite volume
- Generalized susceptibilities
 - → towards chiral phase transition
- Role of Fluctuations: from mean-field approximations to RG
- Comparison: Finite/infinite volume effects

complementary to

many open theoretical issues

to clarify \rightarrow long term project

Agenda

- Motivation: physics in a finite volume
- Generalized susceptibilities
 - → towards chiral phase transition
- Role of Fluctuations: from mean-field approximations to RG
- Comparison: Finite/infinite volume effects

Fluctuations are important

F. Rennecke, BJS 1610.08748 FRG Nf=2+1 beyond "usual" LPA truncation

Agenda

- Motivation: physics in a finite volume
- Generalized susceptibilities
 - → towards chiral phase transition

Fluctuations are important

F. Rennecke, BJS 1610.08748 FRG Nf=2+1 beyond "usual" LPA truncation

1200

Lattice simulations:

QCD (short-ranged) with QED (long-ranged → truncated) corrections

→ violation Gauss's & Ampere's law

if EM gauge field subject to periodic boundary condition

finite volume Coulomb potential between two charges

[Davoudi, Savage 2014]

point charge at the center

circumvent this problem:

introduce uniform background charge density

similar to many-body physics

→ equivalent to

removing zero modes of the gauge field

Quantum Field Theory in a finite volume:

→ no spontaneous symmetry breaking

if only finite number of degrees of freedom

QCD:

[Gasser, Leutwyler 1988]

chiral condensate: non-perturbative phenomenon

e.g.

chiral symmetry

$$N_f = 2: SU(2) \times SU(2) \cong O(4)$$

 $O(4) \to O(3) \qquad \text{infinite volume} \\ \text{massless Goldstone Bosons}$

finite volume:

fluctuations of Goldstone bosons always restore symmetry

minimum: zero-momentum mode of the field

$$Z_2:\varphi\to-\varphi$$

probability of tunneling: $P_{\text{tunnel}} \sim e^{-L}$ exponentially suppressed with volume

 ${\cal O}(N)$ - case: rotation \clubsuit averaging to zero (no breaking)

infinite volume \rightarrow no tunneling \rightarrow symmetry broken

result so far:

long-range correlations are necessary to obtain spontaneous SB (for a continuous symmetry) chiral limit: massless Goldstone boson fluctuations in a finite box avoid symmetry breaking

but

symmetry breaking in mean-field approximations are possible:

Goldstone-fluctuations are absent

result so far:

long-range correlations are necessary to obtain spontaneous SB (for a continuous symmetry) chiral limit: massless Goldstone boson fluctuations in a finite box avoid symmetry breaking

but

symmetry breaking in mean-field approximations are possible:

Goldstone-fluctuations are absent

<u>Thermodynamics on a torrus:</u> correlation length always finite → no real 2nd order phase transition criterion for phase transition: (generalized) susceptibilities → derivatives of order parameter reveal more details

derivatives of thermodynamic quantities ↔ fluctuations

result so far:

long-range correlations are necessary to obtain spontaneous SB (for a continuous symmetry) chiral limit: massless Goldstone boson fluctuations in a finite box avoid symmetry breaking

but

symmetry breaking in mean-field approximations are possible:

Goldstone-fluctuations are absent

ERSITAT

result so far:

long-range correlations are necessary to obtain spontaneous SB (for a continuous symmetry) chiral limit: massless Goldstone boson fluctuations in a finite box avoid symmetry breaking

but

symmetry breaking in mean-field approximations are possible:

Goldstone-fluctuations are absent

ERSITAT

Fluctuation observables

***** generalized susceptibilities:

$$\chi_n = \left. \frac{\partial^n p(T,\mu)/T^4}{\partial (\mu/T)^n} \right|_T$$

Fluctuations of conserved charges

$$\begin{split} \delta Q_X &= Q_X - \langle Q_X \rangle \qquad X = Q, B, S, \dots \\ \text{mean value:} \quad \chi_1 \sim \langle Q \rangle \\ \chi_2 \sim \langle (\delta Q)^2 \rangle \end{split}$$

strong temperature & density

dependence of ratios

[BJS, M. Wagner 2012]

VERSITÄT

9

Fluctuation observables

)

JUSTUS-LIEBIG-

UNIVERSITÄT

Grand potential

Low energy QCD model: $\phi = (\sigma, \vec{\pi})$

$$\mathcal{L} = \bar{\psi} \left(\partial \!\!\!/ + g(\sigma + i\vec{\tau} \cdot \vec{\pi}\gamma_5) \right) \psi + \frac{1}{2} (\partial_\mu \phi)^2 + V_{\text{Meson}}(\phi)$$

Partition function:

$$\mathcal{Z}(T,\mu) = \int \mathcal{D}\bar{\psi}\mathcal{D}\psi \mathcal{D}\phi e^{-\int d^4x \,\mathcal{L}(\bar{\psi},\psi,\phi)}$$

replace with (const.) condensate σ

Integration of quarks, neglect bosonic fluctuations: -> mean-field approximations MFA Integration of quarks and bosonic fluctuations: → renormalization group treatment FRG Grand potential (Polyakov-)quark-meson model (quark loop)

$$\begin{split} \Omega(T,\mu;\sigma) &= \Omega_{\rm vac} + \Omega_{\rm T} + V_{\rm MF}(\sigma) & (+\mathcal{U}_{\rm Poly}(\Phi) \) \\ & \overbrace{ -4 \int^{\Lambda} \frac{d^3p}{(2\pi)^3} \sqrt{\vec{p}^2 + m_q^2}} & {\rm Vacuum \ term: \ regularize \ e.g. \ sharp \ O(3)-momentum \ cutoff} \end{split}$$

regularize e.g. with

Infinite volume

Infinite volume

generalized susceptibilities

[A Juricic, BJS to be published]

UNIVERSITÄT

Higher cumulants

findings:

Fluctuations wash out phase transition \rightarrow broader negativer regions

JUSTUS-LIEBIG-

JNIVERSITÄT

Higher cumulants

infinite volume: influence of fluctuations

findings:

Fluctuations wash out phase transition -> broader negativer regions

INIVERSITÄT

UNIVERSITÄT

Longitudinal susceptibility:

$$\chi_{\sigma} = \frac{1}{m_{\sigma}^2} \sim \frac{\partial \langle \bar{q}q \rangle}{\partial m_q}$$

• periodic

× antiperiodic boundary conditions

Flow for sharp Litim regulator (not suitable for finite volume)

$$\partial_k U_k(T,L) \sim \mathcal{B}_\ell \cdot \partial_k U_k(T,\infty)$$
$$\mathcal{B}_\ell(k,L) = \frac{6\pi^2}{(kL)^3} \sum_{\vec{n}} \Theta(k^2 - \vec{p}_\ell^2)$$

[Juricic, BJS in preparation]

→ use smeared regulator

[Fister, Pawlowski 2015]

[Tripolt, Braun, Klein, BJS 2012, 2014]

Vacuum meson masses

Thermodynamics on a torus

grand potential T=0 & µ>0:

[A Juricic, BJS in preparation]

UNIVERSITÄT

GIESSEN

$$U^{\text{therm}} = 2N_c N_f \frac{1}{L^3} \sum_{\vec{n} \in \mathbb{Z}^3} (\mu - E_{q,\ell}) \Theta(\mu - E_{q,\ell})$$

for each mode: discontinuous jumps in potential

Thermodynamics on a torus

grand potential T=0 & µ>0:

[A Juricic, BJS in preparation]

UNIVERSITÄT

GIESSEN

 $U^{\text{therm}} = 2N_c N_f \frac{1}{L^3} \sum_{\vec{n} \in \mathbb{Z}^3} (\mu - E_{q,\ell}) \Theta(\mu - E_{q,\ell})$

for each mode: discontinuous jumps in potential

22

Thermodynamics on a torus

grand potential T=0 & µ>0:

[A Juricic, BJS in preparation]

UNIVERSITÄT

GIESSEN

 $U^{\text{therm}} = 2N_c N_f \frac{1}{L^3} \sum_{\vec{n} \in \mathbb{Z}^3} (\mu - E_{q,\ell}) \Theta(\mu - E_{q,\ell})$

for each mode: discontinuous jumps in potential

movement of the CEP's

standard MFA (no vacuum fluctuations)

phase diagram without vacuum fluctuations

Vacuum fluctuations

GIESSEN

31.10.2016 | B.-J. Schaefer | Giessen University |

Vacuum fluctuations

GIESSEN

31.10.2016 | B.-J. Schaefer | Giessen University |

Summary & Conclusions

- effects of quantum and thermal fluctuations in a box comparison: sMFA, rMFA, RG
 - → fluctuations wash out the phase transition
- existence of critical points in phase diagram in finite volume
- crossover curvature changes in a box

