The Asymmetry of the $\langle A^2 \rangle$ Condensate and Propagators in the *SU*(2) Gluodynamics at $T > T_c$

V.G. Bornyakov^{1,3,4}, V.K. Mitrjushkin², and R.N. Rogalyov¹

¹ IHEP, Protvino; ² JINR, Dubna ³ FEFU, Vladivostok ⁴ ITEP, Moscow

01.11.2016

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Motivation

- Why $\langle A^2 \rangle$ is of interest?
- Does semi-QGP make sense?
- Domains of chromoelectric and chromomagnetic dominance
- Propagators and the asymmetry are to set boundary between them
- Problem of small lattices at high T
 - Gribov copies and flip sectors
 - Finite-volume effects
- Temperature dependence of the asymmetry and propagators

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Unexpected goodness of perturbatively motivated fits

Dimension 2 operators in gauge theories.

We begin with the Semenov-tyan-Shanskii–Franke functional:

$$\mathcal{F}(A) = \frac{1}{V} \int_{V} A^{a}_{\mu} A^{a}_{\mu} dx$$
$$min_{g(x)} \mathcal{F}(A^{g}) \implies \partial_{\mu} A^{a}_{\mu} = 0$$

The operator $A^a_{\mu}A^a_{\mu}$ in the Landau gauge is

local;

- Lorentz and BRST invariant;
- needed in the Operator Product Expansion in PT
- $\langle A^2 \rangle$ is gauge-invariant [A.A.Slavnov, 2004]

$$egin{split} D^{ab}_{\mu
u}(
ho) &\simeq \left(g_{\mu
u} - rac{
ho_{\mu}
ho_{
u}}{
ho^2}
ight) \left(D_{pert}(
ho^2) + rac{3g^2 \langle A^2
angle}{4(N_c^2-1)
ho^2} + ...
ight) \ lpha_s^{MOM}(q^2) &\simeq \left(lpha_s^{MOM}(q^2)
ight)_{pert} \left[1 + rac{9g^2 \langle A^2
angle}{4(N_c^2-1)q^2} + ...
ight] \end{split}$$

イロト イロト イヨト イヨト

2

 $\langle A^2 \rangle$ was computed numerically

from fits to lattice data for the gluon and ghost propagators.

For example, in the Taylor renormalization scheme (defined by zero incoming ghost momentum) at $\mu = 10$ GeV, the following values for the $N_f = 2 + 1 + 1$ QCD were found [Blossier, Boucaud et al., 2013]:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $ig\langle A^2 ig
angle = 2.8(8) \ {
m GeV}^2$ (OPE up to ${1 \over p^4}$) $ig\langle A^2 ig
angle = 3.8(6) \ {
m GeV}^2$ (OPE up to ${1 \over p^6}$)

in order to obtain the QCD coupling constant $\alpha_{\overline{MS}}(M_Z) = 0.1198(4)(8)(6)$!

Interest in $A^a_\mu A^a_\mu$ aroused in 2001

Rapid change of

$$\langle {\it A}^2
angle_{\it noncompact} - \langle {\it A}^2
angle_{\it compact}$$

is correlated with the confinementdeconfinement transition in the compact U(1) theory.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

F.V.Gubarev, L.Stodolsky, V.I.Zakharov, Phys.Rev.Lett.(2001) At nonzero temperatures there are two condensates,

$$\langle A_E^2 \rangle = g^2 \langle A_4^a(x) A_4^a(x) \rangle, \qquad \langle A_M^2 \rangle = g^2 \langle \sum_{i=1}^3 A_i^a(x) A_i^a(x) \rangle.$$

0

The A^2 asymmetry is defined by the formula

$$\langle \Delta_{\mathcal{A}^2} \rangle \equiv \langle \mathcal{A}_E^2 \rangle - \frac{1}{3} \langle \mathcal{A}_M^2 \rangle \qquad \quad \overline{\mathcal{A}} = \frac{\langle \Delta_{\mathcal{A}^2} \rangle}{T^2}.$$

The asymmetry in terms of the propagators:

$$\overline{\mathcal{A}} = \frac{4N_t}{\beta a^2 N_s^3} \left[3(D_L(0) - D_T(0)) + \sum_{p \neq 0} \left(\frac{3|\vec{p}|^2 - p_4^2}{p^2} D_L(p) - 2D_T(p) \right) \right]$$

▲□▶▲□▶▲□▶▲□▶ □ のへで

Postconfinement domain

[Mitrjushkin, Zadorozhny, Zinoviev 1988]

- Polaykov loop behavior
- ► Failure of PT and old effective theories to evaluate pressure at *T_c* < *T* < 2 ÷ 3*T_c*.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 Monopole density (condensate-liquid-gas) We are interested not only in the interplay of $\langle E^2 \rangle$ and $\langle B^2 \rangle$, but also in the radii of action of the chromoelectric and chromomagnetic forces

Yet another candidate to distinguish between the postconfinement and deconfinement domains is an interplay between $\langle A_E^2 \rangle$ and $\langle A_E^2 \rangle$

(日) (日) (日) (日) (日) (日) (日)

$$D_{\mu\nu}(p) = D_L(p)P_{\mu\nu}^L + D_T(p)P_{\mu\nu}^T + \alpha \frac{p_\mu p_\nu}{p^4}$$

We consider propagators only for <u>soft modes</u> $p_4 = 0$, where

$$egin{aligned} P^T_{\mu
u} &= \left(egin{array}{cc} 0 & 0 \ 0 & \delta_{ij} - rac{p_i p_j}{|ec{p}|^2} \end{array}
ight) & P^L_{\mu
u} &= \left(egin{array}{cc} 1 & 0 \ 0 & 0 \end{array}
ight) \ D_L(p) &= rac{1}{p^2 + F(p)}, & D_T(p) &= rac{1}{p^2 + G(p)} \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

$$D_L(0) \simeq rac{1}{m_e^2} \simeq r_e^2$$
 — chromoelectric forces
 $D_T(0) \simeq rac{1}{r_e^2} \simeq r_m^2$ — chromomagnetic forces

Screening mass in QED

We consider two charges in QED plasma,

$$ec{E}_1^{c\prime} = -irac{ec{p}}{ec{p}ec{p}ec{z}_1} Q_1 e^{-iec{p}ec{x}_1} \qquad \qquad ec{E}_2^{c\prime} = -irac{ec{p}}{ec{p}ec{z}_2} Q_2 e^{-iec{p}ec{x}_2}$$

Each of them can be considered as a small perturbation in the linear response theory:

$$h=\int dec{x}\;ec{\mathcal{E}}^{cl}(ec{x})ec{\mathcal{E}}(ec{x})\,,$$

the resulting field has the form

$$egin{aligned} \mathcal{E}_i^{tot}(ec{
ho}) &= \mathcal{E}_i^{cl} + \langle\!\langle \delta \mathcal{E}_i
angle\!
angle &= rac{eta_i
ho_j \mathcal{E}_j^{cl}(ec{
ho})}{|ec{
ho}|^2 + \mathcal{F}(0,ec{
ho})} \;. \end{aligned}$$

▲□▶▲圖▶▲≣▶▲≣▶ ■ のQ@

$$V \simeq \frac{1}{2} \int d\vec{x} \left(\langle \langle \vec{E}_1^{tot} \rangle \rangle \vec{E}_2^{cl} + \langle \langle \vec{E}_2^{tot} \rangle \rangle \vec{E}_1^{cl} \right)$$
$$= Q_1 Q_2 \int \frac{d\vec{k}}{(2\pi)^3} \frac{e^{i\vec{k}(\vec{x}_1 - \vec{x}_2)}}{|\vec{k}|^2 + F(0, \vec{k})}$$
$$Q_1 Q_2 e^{-\frac{m_e}{|\vec{x}_1 - \vec{x}_2|}}$$

$$\simeq \frac{\alpha_1 \alpha_2}{4\pi} \frac{e^{-3(1+2)}}{|\vec{x}_1 - \vec{x}_2|}$$

$$m_e = rac{eI}{\sqrt{3}}$$

Screening in $SU(N_c)$ theories to one loop

Feynman gauge:

$$F(0, \vec{p} \to 0) = \frac{1}{3}g^2 T^2 N_c - \frac{1}{4}g^2 T N_c |\vec{p}|$$

$$G(0, \vec{p} \to 0) = -\frac{3}{16}g^2 T N_c |\vec{p}|$$

Temporal axial gauge ($A_0 = 0$ with the PV pole prescription):

$$F(0, \vec{p} \to 0) = \frac{1}{3}g^2 T^2 N_c - \frac{1}{4}g^2 T N_c |\vec{p}| - \frac{11g^2}{48\pi^2} N_c |\vec{p}|^2 \ln\left(\frac{|\vec{p}|^2}{T^2}\right)$$

$$G(0, \vec{p} \to 0) = -\frac{5}{16}g^2 T N_c |\vec{p}|$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Lattice settings

$$S = \frac{4}{g^2} \sum_{P=x,\mu,\nu} \left(1 - \frac{1}{2} \operatorname{Tr} U_P \right)$$

where

$$U_P = U_{x,\mu} U_{x+\hat{\mu},\nu} U^{\dagger}_{x+\hat{\nu},\mu} U^{\dagger}_{x,\nu}$$

$$U_{x,\mu} = u_0 + i \sum_{a=1}^{3} u_a \sigma_a$$
, (1)

$$A^a_\mu = - \frac{2Z \ u^a_\mu}{ga}, \qquad (2)$$

 $\Lambda: \quad U_{x,\mu} \to \Lambda^{\dagger}_{x} U_{x,\mu} \Lambda_{x+\hat{\mu}},$

We fix the absolute Landau gauge by finding the global maximum of the functional

$$\mathcal{F}[\mathcal{U}] = \frac{1}{2} \sum_{x,\mu} \operatorname{Tr} U_{x,\mu}, \quad (3)$$

Stationarity condition:

 $\partial_{\nu}A^{a}_{\nu}=0.$

We use the simulated annealing algorithm with subsequent overrelaxation

(日) (日) (日) (日) (日) (日) (日)

M.N. Chernodub and E.-M. Ilgenfritz, Phys.Rev.D (2008) main result

・ コット (雪) (小田) (コット 日)

our result

$$egin{aligned} \mathcal{A}_{\mu} &
ightarrow \mathcal{A}_{\mu}^{\Lambda} = (\Lambda Z)^{\dagger} \mathcal{A}_{\mu} (\Lambda Z) + rac{i}{g} (\Lambda Z)^{\dagger} \partial_{\mu} (\Lambda Z). \end{aligned}$$
 $\mathcal{A}_{\mu} &
ightarrow \mathcal{A}_{\mu}^{\Lambda} = \Lambda^{\dagger} \mathcal{A}_{\mu} \Lambda + rac{i}{g} \Lambda^{\dagger} \partial_{\mu} \Lambda. \end{aligned}$

For SU(3), as an example:

$$Z \in \left\{ \left(egin{array}{cccc} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{array}
ight), \left(egin{array}{cccc} e^{rac{2i\pi}{3}} & 0 & 0 \ 0 & e^{rac{2i\pi}{3}} & 0 \ 0 & 0 & e^{rac{2i\pi}{3}} \end{array}
ight), \left(egin{array}{ccccc} e^{rac{4i\pi}{3}} & 0 & 0 \ 0 & e^{rac{4i\pi}{3}} & 0 \ 0 & 0 & e^{rac{4i\pi}{3}} \end{array}
ight)
ight\}$$

Gauge transformation is the same on both sides!

We extend the gauge group by nonperiodic gauge transformations:

$$\Lambda(x_1, b, x_3) = Z \Lambda(x_1, 0, x_3)$$
 etc.

$$P \exp\left(ig \int_0^b A_2(x_1, z, x_3) dz\right) =$$
$$= L(x_1, x_3) \longrightarrow L(x_1, x_3) Z$$

イロト イロト イヨト イヨト 二日 二

Thus the Hilbert space is broken into 8 superselection sectors

Finite-volume effects

$$\overline{\mathcal{A}}(L) = \overline{\mathcal{A}}_{\infty}^{pol} - \frac{c_2}{L^2} - \frac{c_4}{L^4} ,$$
$$\overline{\mathcal{A}}(L) \simeq \overline{\mathcal{A}}_{\infty}^{exp} - c \exp\left(-L/L_0\right)$$

-	Gauge				
$\frac{1}{T_{a}}$	fixing	$\overline{\mathcal{A}}_{\infty}^{e\!x\!p}$	с	<i>L</i> ₀ (fm)	$\frac{\chi^2}{N_{dof}}$
10	algorithm				
1.49	bc	0.380(2)	1.7(1.0)	0.41(5)	0.34
1.49	fc	0.352(1)	4.7(1.0)	0.47(8)	0.06
2.49	bc	0.190(2)	1.7(5)	0.31(3)	1.71
2.49	fc	0.161(2)	5.6(5)	0.31(1)	2.60
6.60	bc	0.09254(21)	1.06(11)	0.151(5)	0.89

Table: Parameters are given for the exponential fit. The quadratic fit function works worse: at $T/T_c = 6.6$ quality of the exponential fit Q = 0.55, polynomial - Q = 0.00072.

For the best copy both exponential and polynomial fit functions are shown ($N_t = 4$).

"Chromoelectric" condensate

"Chromomagnetic" condensate

A D > A P > A D > A D >

э.

$$\left< \Delta_{\mathcal{A}^2} \right> \equiv \left< \mathcal{A}_t^2 \right> - \left< \mathcal{A}_s^2 \right> \,.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Fitting high-temperature behavior

$$\overline{\mathcal{A}} \simeq b_0 + b_2 \left(\frac{T_c}{T}\right)^2$$

Gauge			-
fixing	b_0	b_2	$\frac{\chi^2}{N_{def}}$
algorithm			- 401
bc	0.1036(27)	0.517(16)	1.40
fc	0.0893(22)	0.372(13)	0.92
WC	0.0682(5)	0.231(3)	0.05

Table: 1.65 < T/T_c < 3.32, fixed lattice size L = 2fm.

 $b_0 > 0$ in all cases in agreement with perturbation theory

One-loop estimate at high temperatures [Vercauteren et al., 2010]

$$\langle \Delta_{A^2} \rangle \simeq c \ g^2 T^2 \left(1 - \frac{g}{3\pi} \sqrt{\frac{2}{3}} \right)$$
 (4)

- Perturbation theory (2010):
- Lattice simulations (2008):

c>0 c<0

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$\overline{\mathcal{A}}\simeq rac{zg^2(\mathcal{T})}{4}\left(1-rac{g(\mathcal{T})}{3\pi}\sqrt{rac{2}{3}}
ight)\;,$$

where the running coupling is taken in the two-loop approximation,

$$\frac{1}{g^2(T)} = \frac{1}{4\pi^2} \left(\frac{11}{6} \ln\left(\frac{T^2}{\Lambda^2}\right) + \frac{17}{11} \ln\ln\left(\frac{T^2}{\Lambda^2}\right) \right) ,$$

z and Λ are the fit parameters, 1.24 < $\frac{T}{T_c}$ < 3.32.

$$z = 0.1284(14), \quad \Lambda/T_c = 0.845(7), \quad \frac{\chi^2}{N_{dof}} = 1.50$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Another definition of screening masses [Heller, Karsch, Rank 97]:

$$egin{array}{lll} ilde{\mathcal{D}}_L(m{p}_\perp=0,x_3) &\sim & \exp(-m_e|x_3|), \ ilde{\mathcal{D}}_T(m{p}_\perp=0,x_3) &\sim & \exp(-m_m|x_3|), \ |x_3|
ightarrow\infty \end{array}$$

Approximations $m_e = \sqrt{\frac{2}{3}g(T)T} + ...$ and $m_m \sim g^2(T)T$ suggest the fit function $(T > 2T_c)$

$$\frac{m_e^2(T)}{m_m^2(T)} = \frac{C}{g^2(T)} = 1$$
 at $\frac{T}{T_c} = 0.9(1)$

(日) (日) (日) (日) (日) (日) (日)

we consider the ratio $r(T) = \frac{D_T(0)}{D_L(0)}$ instead of $\frac{m_e^2}{m_m^2}$

・ロト・四ト・モート ヨー うへの

Ratio of the "magnetic" to the "electric" propagator at $p = p_{min}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

$$r(T)\simeq r_0+\frac{r_1}{g^2(T)}$$

where

$$\frac{1}{g^2(T)} = \frac{1}{4\pi^2} \left(\frac{11}{6} \ln\left(\frac{T^2}{\Lambda^2}\right) + \frac{17}{11} \ln\ln\left(\frac{T^2}{\Lambda^2}\right) \right) ,$$

Lattice					2
size	<i>r</i> ₀	<i>r</i> ₁	Λ/T_c	T_p/T_c	$\frac{\chi}{N_{LL}}$
					I N dof
2 fm	0.94(1)	3.78(12)	1.060(3)	1.494(30)	0.64
3 fm	0.79(3)	4.59(37)	1.02(2)	1.68(12)	1.42

Table: Fit parameters for the best-copy values of r(T).

ヘロン ヘロン ヘロン ヘロン æ

$$r(T) \simeq R_0 + R_1 \ln \left(\frac{T}{T_c} - 1 \right) = R_1 \ln \left(\frac{T - T_c}{Q} \right) \;.$$

Lattice				. 2
size	R_0	R_1	T_p/T_c	$\frac{\chi^{-}}{N_{dof}}$
2 fm	1.21(1)	0.293(6)	1.488(13)	1.35
3 fm	1.115(15)	0.283(9)	1.667(27)	1.92

Table: Fit parameters for the best-copy values of r(T).

▲□▶▲□▶▲□▶▲□▶ = つくぐ

Conclusions

- The flip-sector effect is substantial at L ~ 2 fm and crucial at L < 1 fm. In the latter case, it dramatically changes the behavior of the asymmetry.
- Finite-volume effects for A and r are significant at lattice sizes < 2 fm .
- The data can be fitted to the function motivated by perturbation theory down to temperatures as low as 1.25T_c
- Contrary to the conclusions by Chernodub and Ilgenritz (2008), $\overline{A} > 0$ at all temperatures under consideration
- Boundary of the postconfinement domain *T_p* is indicated by the condition *D_T*(0)/*D_L*(0) = 1 rather than by criteria based on *A*. At *L* = 3*fm T_p* = 1.68(12)*T_c*.