

November 1, 2016

Motivation	QCD-like theories	lsospin chemical potential	G ₂ -QCD 00	QC ₂ D 000000000	Conclusion

Motivation

Why QCD-like theories?

- testing effective theories
- $\mu > 0$ equation of state

Figure: 2-colour Quark-Meson-Diquark model [Strodthoff, Smekal, Phys. Let. B.2014.03.008]

 $(\det \mathcal{M}(\mu))^* = \det \mathcal{M}(-\mu)$

- Reweighting
- Taylor expansion
- Lefshetz thimbles
- Complex Langevin
- Effective theories

Motivation	QCD-like theories	Isospin chemical potential	G ₂ -QCD 00	QC ₂ D 000000000	Conclusion
Outline					

5 QC₂D

Motivation	QCD-like theories	Isospin chemical potential	G ₂ -QCD 00	QC ₂ D 000000000	Conclusion
	ke theories				

- generator isometry
 - \Rightarrow Anti-unitary sym.

-

$$T_a^* = -ST^aS^{-1}$$

$$\Rightarrow [A, D] = [SCK, D] = 0$$

• Dyson classification

•
$$eta=1:\; {\sf A}^2=+1$$
, $\det D\in \mathbb{R}$

•
$$\beta = 2$$
: ev. $\in \mathbb{C}$

• $\beta = 4$: $A^2 = -1$, det D > 0, det $D \in \mathbb{R}$

Motivation	QCD-like theories	Isospin chemical potential	G ₂ -QCD	QC ₂ D	Conclusion

Isospin chemical potential

 $\det \mathcal{M}(\mu_I) = \det \left(D(\mu_I) D(-\mu_I) \right)$

[Kamikado, Strodthoff, Smekal, PLB 718 (2013) 1044] [Detmold, Orginos, Shi, Phys. Rev. D86 (2012) 054507]

Motivation	QCD-like theories	Isospin chemical potential	G₂-QCD ●○	QC ₂ D 000000000	Conclusion
Symmetries of G	2 gauge theory				
G ₂ -QCE)				

- 7 colours, 14 gluons
- deconf. 1st order

$$SU(3) \subset G_2 \subset SO(7)$$

 $c_{abc} = c_{def} U_{da} U_{eb} U_{fc}$
 $c_{abc} = rac{1}{\sqrt{3}} \psi_{abc}$

Motivation	QCD-like theories	Isospin chemical potential	G ₂ -QCD 00	QC ₂ D ●00000000	Conclusion
Previous studies					
QC_2D					

Previous lattice studies:

- Hands et al., Nucl. Phys. B558, 327-346, (1999)
- Morrison et al., hep-lat/9902012, (1999)
- Kogut et al., Phys. Let. B514, 77-87, (2001)
- Kogut et al., Phys. Rev. D68, 1-32, (2003)
- Boz et al., arXiv/1502.01219, (2015)
- Braguta et al., arXiv/1605.04090, (2016)
- Talk by V. Braguta this morning

Quark-Meson-Diquark model

Figure: [Strodthoff, Smekal, Phys. Let. B.2014.03.008]

10/16

Figure:
$$\beta = 1.5$$
: $\langle z \rangle \approx 0.88404(10)$
Dyson index: $\beta = 4$

Phys. Rev. D.85.074007]

$$f_0/qq: \frac{1}{2} \left(\chi^T \tau_2 \chi + \overline{\chi} \tau_2 \overline{\chi}^T \right) \cos \alpha + \overline{\chi} \chi \sin \alpha$$
$$\pi/\epsilon qq: \overline{\chi} \epsilon \chi \cos \alpha + \frac{1}{2} \left(\chi^T \tau_2 \epsilon \chi + \overline{\chi} \tau_2 \epsilon \overline{\chi}^T \right) \sin \alpha$$

Motivation	QCD-like theories	Isospin chemical potential	G ₂ -QCD 00	QC2D ○○○○○●○○○	Conclusion
QC ₂ D with stagge	ered quarks				

Figure: $\beta = 1.5$: $\langle z \rangle \approx 0.88404(10)$ Dyson index: $\beta = 4$ any-colour, adjoint guarks Figure: $\beta = 1.7$: $\langle z \rangle \approx 0.27340(66)$ Dyson index: $\beta = 1$ two-colour, fundamental quarks

13/16

Motivation	QCD-like theories	Isospin chemical potential	G ₂ -QCD 00	QC ₂ D 000000000	Conclusion

Conclusion

- Leaving the bulk phase
- Coninuum sym. breaking pattern $\beta = 4 \rightarrow 1$
- Discretization effects

Outlook:

• Renormalization of $\langle \overline{\psi}\psi\rangle$ at $\mu>0$