

Der Wissenschaftsfonds.

Glueballs and Vector Mesons at NICA

Denis Parganlija

Based on

D. Parganlija, Eur. Phys. J. A 52, no. 8, 229 (2016) [arXiv:1601.05328 [hep-ph]] – NICA White Paper

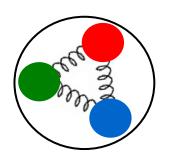
Thanks to:

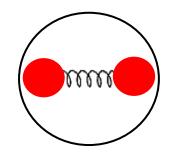
F. Brünner and A. Rebhan (Vienna);

F. Giacosa (Kielce);

D. Bugg (London)

Glueballs


Quantum Chromodynamics


QCD Lagrangian:

$$\mathcal{L} = \overline{q}_f (i \gamma^{\mu} D_{\mu} - m_f) q_f - \frac{1}{4} G^a_{\mu \nu} G^{\mu \nu}_a$$

$$D_{\mu} = \partial_{\mu} - igA_{\mu}^{a}t^{a}$$

$$G^{a}_{\mu\nu} = \partial_{\mu}A^{a}_{\nu} - \partial_{\nu}A^{a}_{\mu} + gf^{abc}A^{b}_{\mu}A^{c}_{\nu}$$

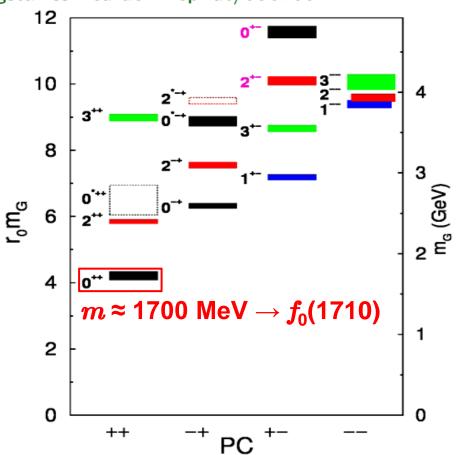
Strong Coupling Energy-Dependent

Hadrons Emerge at Small Energies

Half-Integer Spin Baryons

Integer Spin Mesons

- Gluons are self-interacting
- Gluon bound states: Glueballs!


Musele your eleganor

Leadingorder mass generated only by the strong interaction!

Denis Parganlija
Glueballs and Vector Mesons at NICA

Glueballs on the Lattice

Morningstar & Peardon hep-lat/9901004:

Pure gluodynamics

Glueball spectrum predicted

Denis Parganlija, Glueballs and Vector Mesons at NICA -- EPJ A 52 (2016) no.8, 229 [1601.05328]

Glueball Dynamics: an Example

- AdS/CFT Correspondence
 - → Witten-Sakai-Sugimoto (WSS) Model

Decay	$M_{\rm exp}$.	Γ/M (exp.)	Γ/M (holography)
$f_0(1710) \text{ (total)}$	1723	0.078(4)	$0.059 \dots 0.076$
$f_0(1710) \to 2K$	1723	$0.047(17)^*$	$0.012 \dots 0.016$
$f_0(1710) \rightarrow 2\eta$	1723	$0.022(11)^*$	$0.003 \dots 0.004$
$f_0(1710) \rightarrow 2\pi$	1723	$0.009(2)^*$	$0.009 \dots 0.012$
$f_0(1710) \to 4\pi$	1723	?	$0.024 \dots 0.030$
$f_0(1710) \rightarrow 2\omega \rightarrow 6c$	$\pi 1723$	seen	$0.011 \dots 0.014$

[F. Brünner, D. Parganlija, A. Rebhan, Phys. Rev. D 91, 106002 (2015) 93, 109903(E) (2016) arXiv:1501.07906 [hep-ph]]

... but it is not the only candidate for the scalar glueball

Denis Parganlija, Glueballs and Vector Mesons at NICA -- EPJ A 52 (2016) no.8, 229 [1601.05328]

Candidates for the Glueball Ground State

States up to 1.8 GeV (PDG)

State	Mass [MeV]	Width [MeV]
$f_0(500)$ [Particle	400 - 550 Data Group (PDG)]	400 - 700
$f_0(980)$ [PDG]	990 ± 20	40 - 100
$f_0(1370)_{\text{[PDG]}}$	1200 - 1500	200 - 500
$f_0(1500)_{\text{[PDG]}}$	1504 ± 6	109 ± 7
$f_0(1710)_{\text{[PDG]}}$	1723 ⁺⁶ ₋₅	139 ± 8
	1790 ⁺⁴⁰ 2005); LHCb (2014)] -30	270 ₋₃₀ ⁺⁶⁰

Glueball Production

Main production channels for low-energy mesons:

- pp [Axial Field Spectrometer Collaboration; Ames-Bologna-CERN-Dortmund-Heidelberg-Warsaw Collaboration; GAMS; WA76; WA91; WA102; LHCb]
- $oldsymbol{\overline{p}p}$ [Crystal Barrel; OBELIX]
- $e^+e^- o arphi(1020) ext{ or } e^+e^- o J/\psi$ [CMD-2; MARK-III; Crystal Ball; KLOE; BES; BES II; BES III; Belle; Belle-II]
- $\pi-$ nucleon [CERN-Cracow-Munich Collaboration; CERN-Munich Collaboration; E791; WA76; GAMS]
- Glueballs should be produced in radiative decays
 - absent from yy collisions

[U. Wiedner, Excited QCD Winter Workshop (Sarajevo, 2013)]

The latest candidate for the scalar glueball comes from I/ψ decays and proton-proton collisions

How can NICA help?

Possible NICA Contribution to the Glueball Search

Spin Physics Detector (SPD)

Eur. Phys. J. A (2016) 52: 215DOI 10.1140/epja/i2016-16215-x

THE EUROPEAN
PHYSICAL JOURNAL A

Regular Article - Experimental Physics

Spin physics experiments at NICA-SPD with polarized proton and deuteron beams*

14 September 2000

Physics Letters B 489 (2000) 29-37

PHYSICS LETTERS B

www.elsevier.nl/locate/npe

I. Savin, A. Efremov, D. Pshekhonov, A. Kovalenko, O. Teryaev^a, O. Shevchenko, A V. Kukhtin, and N. Toplilin

JINR, 141980 Dubna, Russia.

Received: 15 October 2015 / Revised: 20 January 2016

Published online: 12 August 2016 – © Società Italiana di Fisica / Springer-Verlag

Communicated by D. Blaschke

Abstract. This is a brief description of suggested measurements of asymmetries of the production in collisions of non-polarized, longitudinally and transversally polarized which provide an access to all leading-twist collinear and TMD PDFs of quarks and a Other spin effects in hadronic and heavy-ion collisions may be also studied constitution program at NICA.

Resonance pro	duction	in central	pp	collisions
at the Cl	ERN Om	nega Spect	rom	eter

A. Kirk

School of Physics and Astronomy, University of Birmingham, Birmingham, UK

Received 21 July 2000; accepted 7 August 2000 Editor: L. Montanet

Experiment	NICA,	
_	SPD	

mode collider

Beam/target pp, pd,dd

Polarization:b/t 0.9

Luminosity 10³²

Vs , GeV 10-26

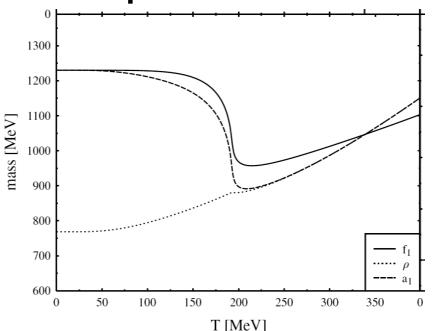
Abstract

A study of resonance production in central pp collisions is presented as a function of several kinematical variables. In particular the difference in the transverse momentum (dP_T) of the exchanged particles shows that undisputed $q\bar{q}$ mesons are suppressed at small dP_T whereas glueball candidates are enhanced and in addition, the azimuthal angle ϕ gives information on the nature of the Pomeron. © 2000 Elsevier Science B.V. All rights reserved.

Denis Parganlija Glueballs and Vector Mesons at NICA The experiments have been performed at incident beam momenta of 85, 300 and 450 GeV/c, corresponding to centre-of-mass energies of $\sqrt{s} = 12.7$, 23.8 and 29 GeV.

[NICA LoI-02.06.14]

What I Propose To Be Done:


- Look into $\pi\pi$ final states starting at ~ (1.5 2) GeV; can the glueball candidate f_0 (1790) be reconstructed?
- Look into 4π final states starting at ~
 (1.5 2) GeV: glueball coupling may be strong
- Look into KK final states starting at ~
 (1.5 2) GeV: glueball should couple due to flavour symmetry

But there is more

Thermal Vector Mesons I

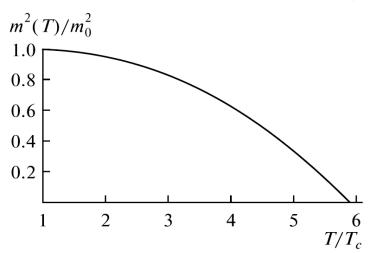
- Glueballs couple to the vector and axial-vector mesons in vacuum, e.g. ho and a_1
- Mass degeneration of ρ and a_1 at finite T and μ is an order parameter for the chiral-symmetry restoration

[See the talk by Su Houng Lee at this Meeting]

[S. Struber and D. H. Rischke, Phys. Rev. D 77, 085004 (2008) arXiv:0708.2389 [hep-th]]

Thermal Vector Mesons II

- Glueball coupling to the (axial-)vectors can persist at finite T and $\mu \rightarrow$ glueball influence on the chiral-symmetry restoration
- Both $\langle \bar{q}q \rangle$ and $\langle G^{\mu\nu}G_{\mu\nu} \rangle$ contribute to the (axial-)vector masses
- How does $\langle G^{\mu\nu}G_{\mu\nu}\rangle$ change away from vacuum?


Thermal Vector Mesons III

ISSN 1547-4771, Physics of Particles and Nuclei Letters, 2016, Vol. 13, No. 2, pp. 149-156. © Pleiades Publishing, Ltd., 2016.

PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. THEORY

Ultralight Glueballs in Quark-Gluon Plasma¹

Nikolai Kocheleva, b

se Academy of Sciences, Lanzhou 730000, China cal Physics, Joint Institute for Nuclear Research, cow region, 141980 Russia tochelev@theor.jinr.ru red October 10, 2015

Scalar glueball becomes massless at ~ 900 MeV

Fig. 4. The ratio of $m_{\Phi}^2(T)/m_0^2$ as a function of T/T_c

How can NICA help?

Thermal Vector Mesons IV

Eur. Phys. J. A (2016) **52**: 212 DOI 10.1140/epja/i2016-16212-1

THE EUROPEAN
PHYSICAL JOURNAL A

Review

The Multi-Purpose Detector (MPD) of the collider experiment*

V. Golovatyuk¹, V. Kekelidze^{1,a}, V. Kolesnikov¹, O. Rogachevsky¹, and A. Sorin^{1,2} on behalf of the MPD Collaboration

Eur. Phys. J. A (2016) 52: 213 DOI 10.1140/epja/i2016-16213-0

THE EUROPEAN PHYSICAL JOURNAL A

Regular Article - Experimental Physics

The fixed target experiment for studies of baryonic matter at the Nuclotron (BM@N)*

Mikhail Kapishin^a for the BM@N Collaboration

Joint Institute for Nuclear Research, Joliot Curie 6, 141980 Dubna, Moscow region, Russia

Received: 25 January 2016 / Revised: 28 March 2016 Published online: 9 August 2016 – © Società Italiana di Fisica / Springer-Verlag 2016 Communicated by D. Blaschke

Abstract. BM@N (Baryonic Matter at Nuclotron) is the first experiment to be realized at the accelerator complex of NICA-Nuclotron. The aim of the BM@N experiment is to study interactions of relativistic heavy-ion beams with fixed targets. The BM@N setup, results of Monte Carlo simulations and the BM@N experimental program are presented.

> Denis Parganlija, Glueballs and Vector Mesons at NICA -- EPJ A 52 (2016) no.8, 229 [1601.05328]

My suggestion:

NICA can study spectral functions of (axial-)vectors away from vacuum

Hints for the behaviour of the gluon condensate

Summary

- NICA can help us gain insight into QCD both in vacuum and away from vacuum
- Vacuum: new resonance/glueball discovery is possible
- Away from vacuum: (axial-)vector spectral functions as means to study the phase diagram, including glueball contribution