

Spin Physics Experiments at NICA-SPD with polarized proton and deuteron beams

More details can be found at: arXiv:1408.3959 [hep-ex]

Meeting of the working group on theory of hadronic matter under extreme conditions A. Guskov, JINR (Dubna) on behalf of the drafting committee*

Dubna, 3.11.2016

I. Savin, A. Efremov, A. Guskov, A. Kovalenko, V. Kukhtin, A. Nagajcev, D. Peshekhonov, O. Shevchenko, O. Teryaev, N. Topilin

Mucleon structure and PDFs →

3 PDFs are needed to describe nucleon structure in collinear approximation

8 PDFs are needed if we want to take into account intrinsic transverse momentum k_T of quarks (LO)

T-odd chiral-odd

▲ Twist-2 PDFs of nucleons ↓ ↓

 (x, Q^2)

 $(x, k_T Q^2)$

- *f*₁ *density* of partons in non-polarized nucleon;
 *g*₁ *helicity*, longitudinal polarization of quarks in longitudinally polarized nucleon;
 *h*₁ *transversity*, transverse polarization of quarks in transversely polarized nucleon;
- f_{1T}^{\perp} *Sivers*, correlation between the transverse polarization of nucleon (transverse spin) and the transverse momentum of non-polarized quarks;
- g_{1T}^{\perp} *worm-gear-T*, correlation between the transverse spin and the longitudinal quark polarization;
- $h_{\perp 1}^{\perp}$ *Boer-Mulders*, transverse polarization of quarks in the non-polarized nucleon;
- h^{\perp}_{1L} worm-gear-L, correlation between the longitudinal polarization of the nucleon (longitudinal spin) and the transverse momentum of quarks;
- h^{\perp}_{1T} *pretzelosity*, distribution of the transverse momentum of quarks in the transversely polarized nucleon.

f, PDF

PDF gı

D SMC

A E143

e E168

HERMES

COMPASS

O CLAS WH2.5

L55 05

x=0.1217

0.1725

x=0.2228

x=0.2916

-0.4073

 Q^2 [GeV²]

5

10-3

10-2

10-1

1 X

← | →

SIDIS

A

TMD PDFs

We want to measure at the NICA-SPD the full set of PDFs

$B(P_B) = \mu^{+}$ $b(p_b) \gamma^{*}(q) \mu^{+}$ $a(p_a) \mu^{-}$ $A(P_A) = \mu^{-}$

 $p_a = \sqrt{s/2} x_a(1, 0, 1)$ $p_b = \sqrt{s/2} x_b(1, 0, -1)$ $q = p_a + p_b = (q_0, 0, q_L)$

 $\frac{d\sigma}{dQ^2} = \sum_{q=u,d,s} \int dx_a \int dx_b \left(q(x_a) \bar{q}(x_b) + \bar{q}(x_a) q(x_b) \right) \hat{\sigma_0} \,\delta(Q^2 - \hat{s})$

Drell-Yan process

Drell-Yan cross section includes a convolution of parton distribution functions from both hadrons

Collins-Soper frame

The kinematics of the Drell-Yan process is considered usually in the Collins-Soper (CS) reference frame [J.C. Collins, D.E. Soper, and G. Sterman, Nucl. Phys. B250, 199 (1985).]

Results of the most complete theoretical analysis of this process [S. Arnold, A. Metz and M. Schlegel, Phys.Rev. D79 (2009) 034005 [arXiv:hep-ph/0809.2262] are used .

 $\frac{d\sigma}{dx_a dx_b d^2 q_T d\Omega} = \frac{\alpha^2}{4Q^2} \times$ F_{XX} - structure functions connected to PDFs $\left\{ \left((1 + \cos^2 \theta) F_{UU}^1 + \sin^2 \theta \cos 2\phi F_{UU}^{\cos 2\phi} \right) + S_{aL} \sin^2 \theta \sin 2\phi F_{LU}^{\sin 2\phi} + S_{bL} \sin^2 \theta \sin 2\phi F_{UL}^{\sin 2\phi} \right\}$ $+ \left| S_{aT} \right| \left[\sin(\phi - \phi_{S_a}) \left(1 + \cos^2 \theta \right) F_{TU}^{\sin(\phi - \phi_{S_a})} + \sin^2 \theta \left(\sin(3\phi - \phi_{S_a}) F_{TU}^{\sin(3\phi - \phi_{S_a})} + \sin(\phi + \phi_{S_a}) F_{TU}^{\sin(\phi + \phi_{S_a})} \right) \right]$ $+ \left| S_{bT} \right| \left[\sin(\phi - \phi_{S_b}) \left(1 + \cos^2 \theta \right) F_{UT}^{\sin(\phi - \phi_{S_b})} + \sin^2 \theta \left(\sin(3\phi - \phi_{S_b}) F_{UT}^{\sin(3\phi - \phi_{S_b})} + \sin(\phi + \phi_{S_b}) F_{UT}^{\sin(\phi + \phi_{S_b})} \right) \right]$ $+S_{aL}S_{bL}\left[\left(1+\cos^2\theta\right)F_{LL}^1+\sin^2\theta\cos2\phi F_{LL}^{\cos2\phi}\right]$ (2.1.2) $+S_{aL}\left|S_{bT}\right|\left[\cos(\phi-\phi_{S_{b}})\left(1+\cos^{2}\theta\right)F_{LT}^{\cos(\phi-\phi_{S_{b}})}+\sin^{2}\theta\left(\cos(3\phi-\phi_{S_{b}})F_{LT}^{\cos(3\phi-\phi_{S_{b}})}+\cos(\phi+\phi_{S_{b}})F_{LT}^{\cos(\phi+\phi_{S_{b}})}\right)\right]$ $+ \left| S_{aT} \right| S_{bL} \left[\cos(\phi - \phi_{S_a}) \left(1 + \cos^2 \theta \right) F_{TL}^{\cos(\phi - \phi_{S_a})} + \sin^2 \theta \left(\cos(3\phi - \phi_{S_a}) F_{TL}^{\cos(3\phi - \phi_{S_a})} + \cos(\phi + \phi_{S_a}) F_{TL}^{\cos(\phi + \phi_{S_a})} \right) \right]$ $+ \left| S_{aT}^{\Gamma} \right| \left| S_{bT}^{\Gamma} \right| \left[(1 + \cos^2 \theta) (\cos(2\phi - \phi_{S_a} - \phi_{S_b}) F_{TT}^{\cos(2\phi - \phi_{S_a} - \phi_{S_b})} + \cos(\phi_{S_b} - \phi_{S_a}) F_{TT}^{\cos(\phi_{S_b} - \phi_{S_a})} \right] \right]$ $+ \left| S_{aT}^{1} \right| \left| S_{bT}^{1} \right| \left[\sin^{2} \theta \left(\cos(\phi_{S_{a}} + \phi_{S_{b}}) F_{TT}^{\cos(\phi_{S_{a}} + \phi_{S_{b}})} + \cos(4\phi - \phi_{S_{a}} - \phi_{S_{b}}) F_{TT}^{\cos(4\phi - \phi_{S_{a}} - \phi_{S_{b}})} \right) \right]$ $+ \left| S_{aT}^{r} \right| \left| S_{bT}^{r} \right| \left[\sin^{2} \theta \left(\cos(2\phi - \phi_{S_{a}} + \phi_{S_{b}}) F_{TT}^{\cos(2\phi - \phi_{S_{a}} + \phi_{S_{b}})} + \cos(2\phi + \phi_{S_{a}} - \phi_{S_{b}}) F_{TT}^{\cos(2\phi + \phi_{S_{a}} - \phi_{S_{b}})} \right) \right] \right\}$

Drell-Yan asymmetries (=)

$$\begin{aligned} \mathcal{A}_{UU} &= \frac{\sigma^{00}}{\sigma_{uv}^{00}} - \frac{1}{2\pi} (1 + D \cos 2\varphi A_{UU}^{mid}) \\ \mathcal{A}_{LU} &= \frac{\sigma^{-0} - \sigma^{-0}}{\sigma_{uv}^{-0} + \sigma_{uv}^{-0}} - \frac{|S_{dL}|}{2\pi} D \sin 2\varphi A_{UU}^{mid} \\ \mathcal{A}_{LU} &= \frac{\sigma^{00} - \sigma^{-0}}{\sigma_{uv}^{00} + \sigma_{uv}^{-0}} = \frac{|S_{dL}|}{2\pi} D \sin 2\varphi A_{UL}^{mid} \\ \mathcal{A}_{LU} &= \frac{\sigma^{00} - \sigma^{-0}}{\sigma_{uv}^{00} + \sigma_{uv}^{-0}} = \frac{|S_{dL}|}{2\pi} D \sin 2\varphi A_{UL}^{mid} \\ \mathcal{A}_{LU} &= \frac{\sigma^{00} - \sigma^{-0}}{\sigma_{uv}^{00} + \sigma_{uv}^{00}} = \frac{|S_{dL}|}{2\pi} D \sin 2\varphi A_{UL}^{mid} \\ \mathcal{A}_{LU} &= \frac{\sigma^{10} - \sigma^{10}}{\sigma_{uv}^{00} + \sigma_{uv}^{00}} = \frac{|S_{dL}|}{2\pi} \left[A_{UU}^{\min(\theta - \phi_{b_{1}})} \sin(\phi - \phi_{b_{1}}) + D\left(A_{UU}^{\min(\theta - \phi_{b_{1}})} \sin(3\phi - \phi_{b_{1}}) + A_{UU}^{\min(\theta - \phi_{b_{1}})} \sin(\phi + \phi_{b_{1}})\right) \right] \\ \mathcal{A}_{U} &= \frac{\sigma^{10} - \sigma^{01}}{\sigma_{uv}^{00} + \sigma_{uv}^{00}} = \frac{|S_{dL}|}{2\pi} \left[A_{UT}^{\min(\theta - \phi_{b_{1}})} \sin(\phi - \phi_{b_{1}}) + D\left(A_{UT}^{\min(\theta - \phi_{b_{1}})} \sin(3\phi - \phi_{b_{1}}) + A_{UT}^{\min(\theta - \phi_{b_{1}})} \sin(\phi + \phi_{b_{1}})\right) \right] \\ \mathcal{A}_{U} &= \frac{\sigma^{10} - \sigma^{01}}{\sigma_{uv}^{00} + \sigma_{uv}^{00}} = \frac{|S_{dL}|S_{dU}|}{2\pi} \left[A_{UT}^{\min(\theta - \phi_{b_{1}})} \sin(\phi - \phi_{b_{1}}) + D\left(A_{UT}^{\min(\theta - \phi_{b_{1}})} \sin(3\phi - \phi_{b_{1}}) + A_{UT}^{\min(\theta - \phi_{b_{1}})} \sin(\phi + \phi_{b_{1}})\right) \right] \\ \mathcal{A}_{U} &= \frac{\sigma^{10} - \sigma^{01}}{\sigma_{uv}^{1+} + \sigma_{uv}^{1+} - \sigma_{uv}^{1+} - \sigma_{uv}^{1+}} - \frac{|S_{dL}|S_{dU}|}{2\pi} \left[A_{U}^{\min(\theta - \phi_{b_{1}})} \cos(\phi - \phi_{b_{0}}) + D\left(A_{U}^{\min(\theta - \phi_{b_{1}})} \cos(3\phi - \phi_{b_{0}})\right) \right] \\ \mathcal{A}_{U} &= \frac{\sigma^{-1} + \sigma^{-1} - \sigma^{-1} - \sigma^{-1}}{\sigma_{uv}^{1+} + \sigma_{uv}^{1+} - \sigma_{uv}^{1+}} - \frac{|S_{dL}|S_{dU}|}{2\pi} \left[A_{U}^{\min(\theta - \phi_{b_{1}})} \cos(\phi - \phi_{b_{0}}) + D\left(A_{U}^{\min(\theta - \phi_{b_{1}})} \cos(3\phi - \phi_{b_{0}})\right) \right] \\ \mathcal{A}_{U} &= \frac{\sigma^{-1} + \sigma^{-1} - \sigma^{-1} - \sigma^{-1}}{\sigma_{uv}^{1+} + \sigma_{uv}^{1+} + \sigma_{uv}^{1+}}} = \frac{|S_{dV}||S_{U}|}{2\pi} \left[A_{U}^{\min(\theta - \phi_{b_{0}})} \cos((\phi - \phi_{b_{0}}) + D\left(A_{U}^{\min(\theta - \phi_{b_{0}})} \cos((\phi - \phi_{b_{0}}) + A_{U}^{\min(\theta - \phi_{b_{0}})} \cos((\phi -$$

tions with amplitudes to the unpolarized one.

8 asymmetries to be measured

each asymmetry contains a convolution of 2 PDFs (from each hadron)

Fourier analysis!

Main Why Drell-Yan process? ← | →

TMD PDFs can be accessed via SIDIS but ...

DY: no fragmentation functions !

PDFs in duality model (

q qbar $\rightarrow J/\psi$ g g $\rightarrow J/\psi$ - main mechanisms of J/ψ production X_c decay

Duality model predicts similar behavior for azimutal asymmetries for lepton pairs produced in DY and via J/ψ decay in case if **q qbar** mechanism dominates

X_c decay is ~30 % - previous measurements at ~30 GeV

Direct photons

Direct (prompt) photons - photons produced in parton-parton interaction

Hard processes: $qg \rightarrow q\gamma$ 85% $qqbar \rightarrow g\gamma$ 15% $gg \rightarrow g\gamma$ $qqbar \rightarrow \gamma\gamma$ $gg \rightarrow \gamma\gamma$

No fragmentation functions!

Direct photons

 $\hat{\mathbf{n}}$

J. Qui and G. Sterman, Phys. Rev. Lett. 67 (1991) 2264

Direct photons

m

Double longitudinal spin asymmetry A_{LL}

$$A_{LL} = \frac{(\sigma_{++} + \sigma_{--}) - (\sigma_{+-} + \sigma_{-+})}{(\sigma_{++} + \sigma_{--}) + (\sigma_{+-} + \sigma_{-+})}$$

G. Bunce et. al. Ann. Rev. Nucl. Part. Sci. 50:525-575,2000

- Spin-dependent effects in elastic pp, dp and dd scattering
- Spin-dependent high-p_T reactions.
- Spin effects in heavy ion collisions

Background processes ++

dimuon spectrum

Direct photons and π^0 decay

A

NICA facility

Wanted beams

Beams. The following beams will be needed, polarized and non-polarized: pp, pd, dd, pp, pd, pp, pd, dd.

Beam polarizations both at MPD and SPD: longitudinal and transversal. Absolute values of polarizations should be $\geq 50\%$. The life time of the beam polarization should be long enough. Measurements of Single Spin and Double Spin asymmetries in DY require running in different beam polarization modes: UU, LU, UL, TU, UT, LL, LT and TL (spin flipping for every bunch or group of bunches should be considered).

Beam energies: $p\uparrow p\uparrow (\sqrt{s_{pp}}) = 12 \Rightarrow \geq 27 \text{ GeV} (5 \Rightarrow \geq 12.6 \text{ GeV kinetic energy}),$ $d\uparrow d\uparrow (\sqrt{s_{NN}}) = 4 \Rightarrow \geq 13.8 \text{ GeV} (2 \Rightarrow \geq 5.9 \text{ GeV/u ion kinetic energy}).$ Beam luminosities: in the pp mode: $L_{average}$ $1 \cdot 10^{32}$ $cm^{-2}s^{-1}$ (at $s_{pp} = 27 \text{ GeV}),$ in the dd mode: $L_{average}$ $1 \cdot 10^{30}$ $cm^{-2}s^{-1}$ (at $s_{NN} = 14 \text{ GeV}).$

SPD detector

- 4π geometry - <0.1 X₀ before ECAL

Muon & hadron **Trigger elements** identification system **Electromagnetic** calorimeter **Vertex detector** Tracker

Local polarimetry

0'S 0'4 0'8 0'8

known asymmetries

pp- and dd- elastic scattering

Expectations: DY

Lower cut on M_{l+l-} , GeV	2.0	3.0	3.5	4.0	
$\sqrt{s}=24 \ GeV \ (L \approx 1.0 \ 10^{32} \ cm^{-2} \ s^{-1})$					
σ_{DY} total, nb	1.15	0.20	0.12	0.06	
events per year, 10 ³	1800	3 13	179	92	
$\sqrt{s}=26 \ GeV \ (L \approx 1.2 \ 10^{32} \ cm^{-2} \ s^{-1})$					
σ_{DY} total, nb	1.30	0.24	0.14	0.07	
events per year, 10^3	2490	460	269	142	

DY events at SPD

Invariant mass distribution

J/ψ events at SPD

√s , GeV	24	26
$\sigma_{J/\psi}$, B_{e+e-} , nb	12	16
Events per year	18·10 ⁶	23·10 ⁶

Pythia MC

Direct photons at SPD (=)

$\sqrt{s}=24 \text{ GeV}$	σ_{tot} ,	$\sigma_{P_T>4 \ GeV/c}$	Events/year,	Events/year,
$L=1.0 imes 10^{32},~cm^{-1}s^{-1}$	nbarn	nbarn	106	$10^{6} (P_{T} > 4 \ GeV/c)$
All processes	1290	42	3260	105
$qg ightarrow q\gamma$	1080	33	2730	84
$q \overline{q} ightarrow g \gamma$	210	9	530	21
- /s-26 CeV		<i>a</i>	Events/veer	Evente /wear
V 2 - 20 00 V	o toty	$O_{P_T>4} GeV/co$	Evenus/year,	Evenus/year,
$L = 1.2 \times 10^{32}, \ cm^{-1}s^{-1}$	nbarn	^O P _T >4 GeV/⇔ nbarn	10 ⁶	$10^6 (P_T > 4 \ GeV/c)$
$L = 1.2 \times 10^{32}$, $cm^{-1}s^{-1}$ All processes	nbarn 1440	0 P _T >4 GeV/cs nbarn 48	10 ⁶ 4340	$10^6 (P_T > 4 \ GeV/c)$ 144
$L = 1.2 \times 10^{32}, \ cm^{-1}s^{-1}$ All processes $qg \rightarrow q\gamma$	1440 1220	^O P _T >4 GeV/cs nbarn 48 38	10 ⁶ 4340 3680	$10^6 (P_T > 4 \ GeV/c)$ 144 116
$L = 1.2 \times 10^{32}, \ cm^{-1}s^{-1}$ All processes $qg \rightarrow q\gamma$ $q\bar{q} \rightarrow g\gamma$	nbarn 1440 1220 240	⁰ P _T >4 GeV/cs nbarn 48 38 10	10 ⁶ 4340 3680 660	$10^{6} (P_T > 4 \ GeV/c)$ 144 116 28

NICA-SPD vs others ++

Experiment	CERN, COMPII	FAIR, PANDA	FNAL, E-906	SPAS- CHARM	RHIC, STAR	RHIC, PHENIX	NICA, SPD
mode	FixTar	FixTar	FixTar	FixTar	collider	collider	collider
Beam/target	π-, р	anti-p, p	π-, p	π±, pol.p	рр	pp	pp,pd,dd
Polarization:b/t	0; 0.8	0; 0	0; 0	0; 0.5	0.5	0.5	0.9
Luminosity	2·10 ³³	2·10 ³²	3.5·10 ³⁵		5.10 ³²	5·10 ³²	10 ³²
√s, GeV	19	6	16	8	200,500	200,500	10-26
x _{1(beam)} range	0.1-0.9	0.1-0.6	0.1-0.9	0.1-0.3	0.03-1.0	0.03-1.0	0.1-0.8
q_T, GeV	0.5 -4.0	0.5 -1.5	0.5 -3.0		1.0 -10.0	1.0 -10.0	0.5 -6.0
Lepton pairs,	μ-μ+	μ-μ+	μ-μ+		μ-μ+	μ-μ+	μ-μ+, e+e-
Data taking	2014	>2018	2013		>2016	>2016	>2018
Transversity	NO	NO	NO		YES	YES	YES
Boer-Mulders	YES	YES	YES		YES	YES	YES
Sivers	YES	YES	YES		YES	YES	YES
Pretzelosity	YES (?)	NO	NO		NO	YES	YES
Worm Gear	YES (?)	NO	NO		NO	NO	YES
J/Ψ	YES	YES	NO		NO	NO	YES
Flavour separ.	NO	NO	YES		NO	NO	YES
Direct y	NO	NO	NO		YES	YES	YES

Exclusive DY

YES

- The comprehensive program of the nucleon structure study is suggested. It can be realized at NICA using the polarized proton, deuteron and heavy ion beams. The text of LoI is available at <u>http://arxiv.org/abs/1408.3959</u>
- LoI was approved by the JINR PAC on particle physics in 2014
- The International collaboration should be organized for preparations of the Proposal.

Backup slides

NICA facility

Problem: depolarization of accelerating beam during crossing of the spin resonances

>100 SR for p, just a few SR for d

Polarized deuterons acceleration in Nuclotron is possible up to the energy of 5.6 GeV/u

Polarized beams

NICA

protons $(B_{\parallel}L)_{max} = 8 \times (2.5 \div 12.5) \text{ T} \cdot \text{m}$ deuterons $(B_{\parallel}L)_{max} = 8 \times (7.5 \div 40) \text{ T} \cdot \text{m}$

Small control solenoids $(B_{\parallel}L)_{max} = 8 \times 0.25 \text{ T} \cdot \text{m}$ ♠

Beam parameters

The number of particles reaches a value about $2.2 \cdot 10^{13}$ in each ring and the peak luminosity $L_{peack} = 2 \cdot 10^{32} \text{ cm}^{-2} \text{s}^{-1}$ at 12.7 GeV. One can estimate also an average luminosity. Assuming the cooling time $T_{cool} = 1500$ s, the luminosity life time $T_{Llf} = 20000$ s and the machine reliability coefficient $k_r = 0.95$, the average luminosity will be $L_{aver} = L_{peack} \cdot 0.86$ or $1.7 \cdot 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$ [12].

Background processes <

dimuon spectrum

• $\sqrt{s}=24.3 \ GeV$

Direct photons and π^0 decay

Trigger system

Expected rates

4 MHz vs 8 Hz

process	cross section, nb	rate, Hz (√s=26 GeV, L=1.2*10 ³²)
Direct photons (p⊤>4 GeV/c)	48	5.8
DY (M>2 GeV) ee+µµ	2.6	0.3
J ⁄ψ	16	1.9
TOTAL	67	8