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Motivation 1
1. Traditionally, the deconfinement in SU(N) color  gluodynamics is described 
2.                                   as the break down of Z(N) symmetry

   However,           such a language is well suited for the phase transitions  
of solid-liquid and solid-solid types.   

!
 Furthermore,        i) hadronic matter at low energy densities is a gas! 

!
    ii)  at high energy densities the QGP is (probably) the most perfect fluid!  

=> we need a language which is suited for GAS-to-LIQUID  phase transition (PT)

Moreover,   i) the language of symmetry breaking does not work for deconfinement 
PT in presence of quarks  

!
ii) the same is true for the chiral symmetry restoration PT, if  

one uses non-vanishing quark masses 

=> we need a language which can be used in presence of quarks with realistic 
masses



Motivation 1I
There are several exactly solvable cluster models for the LIQUID-GAS PT:

Fisher Droplet Model and its successors for ordinary liquid-gas PT 
	

 .	

 M. E. Fisher, Physics 3, 255 (1967)            

Statistical Multifragmentation Model for nuclear liquid-gas PT   
	

 .	

 K. A. Bugaev, M. I. Gorenstein, I. N. Mishustin and W. Greiner, Phys. Rev. 62 (2000) 	

            

Quark-Gluon Bags with Surface Tension Model of deconfinement PT   
	

 .	

 K. A. Bugaev, Phys. Rev. C 76, 014903 (2007)             

	

 K. A. Bugaev, V. K. Petrov and G. M. Zinovjev, Phys. Atom. Nucl. 76 (2013), 341   

However,  to use this framework we need to know  
                                                                                              i) the T-dependence of surface tension of QGP bags 

 ii) the Fisher exponent of QGP bags 

=> Lattice QCD allows us to determine all these quantities and 
to verify whether the known cluster models are suited to study deconfinement PT



Goals 

Using the cluster approach to LQCD we hope  

3.  to formulate the signals of 2-nd order LIQUID-GAS PT which maybe        

observed  in the experiments and will help to locate (tri)CEP

1.  to give a physical meaning to the concept of QGP bags 

2.  to formulate  appropriate order parameters  of this PT 



Definition of Polyakov loop

SU(2) Polyakov loop L (x) = Continuous Spin 

1. If  L > +|L    | it is spin Up, cut
2. If  L < -|L    | it is spin Down, cut
3. If  L: -|L    | < L <  |L    |  it is aux. Vacuum. cut cut

Similarly to Gattringer  we define spins via cut-off     L_cut
	

  C. Gattringer, Phys. Lett. B 690, (2010) 179. 	

   

	

  C. Gattringer and A. Schmidt, JHEP 1101 (2011) 051.   

Geometrical clusterization

Properties of clusters

New order parameters

Svetitsky-Jaffe conjecture

Deconfinement transitions in (d+1)dimensional SU(N) gluodynamics is
equivalent to magnetic transition in the d-dimensional Z(N) spin system
L. G. Yaffe and B. Svetitsky, PRD, 26, 963, 1982

SU(2) gluodynamics , Ising spin model

Local Polyakov loop - gauge invariant analog of continuous spin

L(x̃) = Tr

N⌧�1Y

t=0

U

4

(x̃, t)

U

4

(x̃, t)� temporal gauge link

defined by gluon field

SU(2) ) L(x̃) 2 [�1, 1], real

Geometrical clusterization and deconfinement phase transition in SU(2) gluodynamics

 existing at each spatial point of lattice



Geometrical cluster of N same sign spin monomers	


  is surrounded by opposite sign spins or aux Vac: 

Monomer Up  has all neighbors spin Down or auxVac. 

Dimer Up =Two neighboring monomers Up have	


 all other neighbors spin Down or auxVac. 

Definition of Polyakov loop Clusters
Geometrical clusterization

Properties of clusters

New order parameters

Identification of geometrical clusters

Definition of (anti)clusters

|L(x̃)| < L

cut

) auxiliary vacuum

|L(x̃)| � L

cut

) (anti)clusters

L

cut

� vacuum cut� o↵ parameter

C. Gattringer, PLB, 690, 179 (2010)
C. Gattringer, A. Schmidt, JHEP 1101, 051, 2011

(Anti)clusters can be either “spin up"or “spin down"ones
Largest fragment - “anticluster liquid droplet"
Next to largest fragment of opposite sign - “cluster liquid droplet"
Gas of (anti)clusters has the same Polykov loop sign as their “liquids"

Geometrical clusterization and deconfinement phase transition in SU(2) gluodynamics

Geometrical clusterization

Properties of clusters

New order parameters

Identification of geometrical clusters

Definition of (anti)clusters

|L(x̃)| < L

cut

) auxiliary vacuum

|L(x̃)| � L

cut

) (anti)clusters

L

cut

� vacuum cut� o↵ parameter

C. Gattringer, PLB, 690, 179 (2010)
C. Gattringer, A. Schmidt, JHEP 1101, 051, 2011

(Anti)clusters can be either “spin up"or “spin down"ones
Largest fragment - “anticluster liquid droplet"
Next to largest fragment of opposite sign - “cluster liquid droplet"
Gas of (anti)clusters has the same Polykov loop sign as their “liquids"

Geometrical clusterization and deconfinement phase transition in SU(2) gluodynamics



Size Distributions of Clusters I

βc = 2.5115 In thermodynamic limit the critical value is

Geometrical clusterization

Properties of clusters

New order parameters

Size distributions of (anti)clusters
Numerical simulations at 3 + 1 dimensional lattice of size N� = 24, N⌧ = 8

13 values of inverse coupling � 2 [2.31, 3] ) 13 values of physical temperature
vacuum cut-off parameter L

cut

= 0.1 and 0.2
Average over 1600 independent configurations for all � and L

cut

Distributions at low �  �
c

' 2.52 (phase of restored global Z(2) symmetry)

symmetry between (anti)cluster distributions
gas and “liquid"domains are well separated

Distributions at high � > �
c

' 2.52 (phase of broken global Z(2) symmetry)

no symmetry between (anti)cluster distributions
“cluster liquid"evaporates to cluster gas
anticluster gas condensates to “anticluster liquid"
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Size Distributions of Clusters II
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The liquid cluster 
disappeared
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=> Distributions are rather sensitive to value of β!

Can we describe the gas distributions by the liquid droplet formula? 



 Liquid Droplet Formula

Free fit parameters:  C, μ, σ, τ 

Since a priori  k-min is unknown we perform a free fit  of

(anti)cluster size distributions for all k-min    

according to Liquid Drop Model

3

if monomers (clusters with volume k=1) are excluded. This fact takes place for all lattice � or temperatures. It
simply means that model distribution of (anti)clusters (1) is, in fact, valid already for kmin � 2.
Fig. 2 also demonstrates the stability of results. Indeed, the observed variations of C, µ, � and ⌧ for di↵erent
� and kmin are reasonably small, i.e. we do not have variations of a few orders of magnitude. One of the
main assumptions of cluster models [2, 3, 5] is that the Fisher term ⌧ = const does not depend of �. Such
an assumption allows us to find kmin. From Fig. 2 it is seen that all values of ⌧(�) approximately coincide
at kmin = 2 for clusters and at kmin = 2 or 3 for anticlusters. Hence, assuming the universality of the Fisher
topological exponent we conclude that the most adequate description for all data can be achieved for kmin = 2.
In other words, even the dimers can be described within the present model. However, the case kmin = 3 is also
interesting, at least to compare it with kmin = 2 one. Fig. 3 demonstrates how C, µ, � and ⌧ depends on � for
kmin = 2 and 3.
It is important to emphasize that in both of these cases we got ⌧ < 2 for all �, which is unusual for the
Fisher droplet model, but is consistent with our analysis of the exactly solvable model of the gas of bags with
the tricritical endpoint [6, 7]. The question whether ⌧ is larger or smaller than 2 is of principal importance
because, firstly, it determines the universality class of the model and, secondly, it tells us whether the endpoint
is tricritical (as we see it now) or the critical one.
Of course, it is bit early to interpret the obtained results before invoking the complement method [1], but
already now it is clear that the Polyakov loop (anti)clusters behave as a mixture of two liquids with some vapor.
Increasing � leads to evaporation of one liquid droplet (clusters) and to condensation of the gas on the other
liquid droplet (anticlusters). Thus, it seems that we are dealing with the kind of phase transition in a solution.

[1] L. G. Moretto, K. A. Bugaev, J. B. Elliott, R. Ghetti, J. Helgesson and L. Phair, The Complement: a Solution to Liquid
Drop Finite Size E↵ects in Phase Transitions, Phys. Rev. Lett. 94 (2005) 202701.

[2] M. E. Fisher, Physics 3, 255 (1967).
[3] K. A. Bugaev, M. I. Gorenstein, I. N. Mishustin and W. Greiner, Phys. Rev. C 62, 044320 (2000) and references therein.
[4] A. Dillmann and G. E. Meier, J. Chem. Phys. 94, 3872 (1991).
[5] A. Laaksonen, I. J. Ford, and M. Kulmala, Phys. Rev. E 49, 5517 (1994).
[6] A. I. Ivanytskyi, Nucl. Phys. A. 880, 12 (2012).
[7] A. I. Ivanytskyi and K. A. Bugaev, On possible existence of non-Fisher universality classes, Ukr. J. Phys.57, No 9 (2012)
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REPORT
on the liquid droplet model fit results of the SU(2) gluodynamics lattice data

12.11.2014

A. Ivanytskyi, K. Bugaev, E.-M. Ilgenfritz, E. Nikonov, G.M. Zinovjev et al.

• Data

The table of data contains information about size of clusters k, their occupancies nk and their errors �k. The
distributions of clusters are marked as clp dstr... .dat, whereas for anticlusters they are marked as cln dstr...

.dat. The data used here do not contain occupancies of the largest (anti)cluster.

• Model

Our main goal was to describe the volume distributions of physical clusters built up from positive and negative
Polyakov loops on the basis of the liquid droplet model and to determine the � = a�N� dependence of the
surface tension of these clusters. At this stage of research we wanted to analyze the raw lattice data and to look
at the possible analog of phase transition on the language of liquid-gas phase transition.
The Polyakov loops were taken because of their analogy to spins. For spin systems one can calculate the partition
function over all clusters which are built up from the neighboring spins pointing to the same direction. Some
useful references on the Ising spin models can be found in [1]. The Polyakov loop clusters are defined like for
the spins [1] with the only di↵erence that we introduced the cut-o↵ for the minimal (maximal) value for positive
(negative) Polyakov loops at a given 3-dimensional point. In this calculations we used the cut-o↵ 0.2.
The theoretical expression for occupancy reads as

n

th
k = C exp (µk � �k

 � ⌧ ln k) , (1)

where µ, � and ⌧ are reduced chemical potential (i.e. measured in the units of temperature T ), reduced surface
tension and the Fisher topological exponent respectively. The surface of large cluster is taken into account for
by the parameter  2 (0, 1), whereas C is the normalization coe�cient. In the present analysis  was fixed to
be equal 2/3 due to 3-dimensional nature of clusters.
Usually, Eq. (1) is valid for large clusters (k � 1) within the frame work of Fisher droplet model [2], the
statistical multifragmentation model [3] or other cluster models [4, 5].
This expression does not account either for the finite size of the system nor the presence of the liquid droplet
(complement). Accounting for the complement corrections will be one of our next tasks.
A few typical distributions of clusters and anticlusters (see the figure caption) are shown in Fig. 1. As one can
see the symmetry between positive and negative clusters observed at low values of lattice inverse temperature
� is lost at higher values of �, when one of two largest droplets is melted away (or evaporated).

• 4-parametric fit scheme

The fit procedure corresponds to minimization of �

2
/dof with respect to parameters C, µ, � and ⌧ , where

�

2 =
X

k

(nth
k � nk)2

�

2
k

. (2)

If the vector of parameters p = (C, µ,�, ⌧) is given at some step of iteration procedure, then the next approxi-
mation is defined as

p! p� ✏ ·rp �

2
/dof. (3)

Here rp is the gradient operator, whereas ✏ = diag(✏C , ✏µ, ✏�, ✏⌧ ) is diagonal matrix with positive elements. This
simple scheme corresponds to searches for the local extremum rp�

2
/dof = 0, where �

2
/dof has a minimum.

It is necessary to stress that the obtained result demonstrate a high stability with respect to the random
variation of the initial values of the parameters p. For each minimization search 5 to 6 di↵erent initial values
of the parameters p were taken which led to the same minimum. Only after fulfillment of this criterion the
minimization was stopped. Hence, we are sure that the found minima are the global ones.

k > k-min - 1

normalization bulk surface Fisher index

0.667



 Defining the minimal N-mer and Fisher index τ
Geometrical clusterization

Properties of clusters

New order parameters

Determination of k
min

and ⌧
LDF describes size distributions with almost the same quality for all k

min

� 2

Fisher topological exponent ⌧ is temperature independent at k

min

= 2

in agreement with Fisher droplet model M.E. Fisher, Physics 3, 255 (1967)

kmin = 2, ⌧⌧⌧ = 1.806 ± 0.008
value of ⌧ agrees with NPA 924, 24 (2014)
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This value of τ = const of β  as required by LDM!



 This Is Important Finding!

Since in exactly solvable models τ defines the universality class: 

Fisher droplet model: for d=2 => τ=2.07;    for d=3 => τ=2.209    

SMM and QGBags with surface tension with 3CEP: τ=1.825±0.025    

 QGBags with surface tension with  CEP: τ >2    

However, at the moment we cannot say that QCD has 3CEP!  



 Fixed τ=1.806 Fit Results For Cut-off  0.2
Geometrical clusterization

Properties of clusters

New order parameters

Reduced chemical potential and surface tension

At � = 2.52 global Z(2) symmetry breaks down )
chemical nonequilibrium between (anti)clusters (µ

Cl

6= µ
aCl

)
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TABLE I: Two-loop � dependence of the spatial lattice spacing a

�

(�) given by the ratio to a

�

(�1
c

)

as function of the physical temperature T in units of the critical temperature T

1
c

.

� a

�

(�)/a
�

(�1
c

) T/T

1
c

2.3115 1.7132 0.5837

2.3850 1.4057 0.7114

2.4500 1.1783 0.8487

2.5115 1.0000 1.0000

2.5200 0.9774 1.0231

2.5300 0.9514 1.0510

2.5500 0.9016 1.1092

2.5930 0.8030 1.2453

2.6300 0.7269 1.3757

2.6770 0.6405 1.5612

2.7325 0.5516 1.8128

2.8115 0.4459 2.2423

3.0000 0.2685 3.7244

The �-dependence of physical surface tension defined as

�

phys

A

(�) ⌘ T

�

A

(�)

[ a
�

(�) ]2
= T

1
c

a

�

(�1
c

)

a

�

(�)

�

A

(�)

[ a
�

(�) ]2
, (7)

where in the last step we have used the following relation for the temperature T = T

1
c

a

�

(�

1
c

)

a

�

(�)

[37]. Such a surface tension has the correct physical dimension, but it is more convenient to

use the dimensionless ratio �
A

(�) a
�

(�1
c

)/�
A

(�1
c

)/a
�

(�) because such a ratio, as one can see

from Fig. 9, clearly demonstrates the di↵erent behavior on two sides of the point � = �

1
c

.

Also in this case one does not need to care about an exact value of a coe�cient relating the

volume and the surface of (anti)clusters. To find this ratio from Eq. (7) we used the second

column of Table I.

We would like to stress that in contrast to all known cluster models the physical surface

tension of clusters has a peak at about �

1
c

while the surface tension of anticlusters has a

the inverse coupling constant squared �, it is a good approximation above �

1
c .
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Fit quality Normalization

Reduced chem. potential Reduced surface tension

=> Break down of symmetry leads to bifurcations in gas quantities!

Fitting parameters:  C, μ, σ 



  Surface Tension in Physical Units	


for Fixed τ=1.806
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(�) because such a ratio, as one can see

from Fig. 9, clearly demonstrates the di↵erent behavior on two sides of the point � = �
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.

Also in this case one does not need to care about an exact value of a coe�cient relating the

volume and the surface of (anti)clusters. To find this ratio from Eq. (7) we used the second

column of Table I.

We would like to stress that in contrast to all known cluster models the physical surface

tension of clusters has a peak at about �
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while the surface tension of anticlusters has a

the inverse coupling constant squared �, it is a good approximation above �

1
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The validity of this estimate is clearly seen from Fig. 9, which demonstrates that the ratio
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(�) saturates at � � 2.6. Also we found the following estimate
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(T ) ⇠ T

4 for the physical surface tension of anticlusters at temperatures belonging

to the range 1.25T1
c

< T  3.7T1
c

. However, one should keep in mind that, in contrast

to clusters, for which µ

cl

! 0 in this temperature range, the quantity �

phys

acl

(T ) may also

include an unknown dependence on reduced chemical potential µ
acl

, which for anticlusters

strongly increases with T (see Fig. 6).

One important di↵erence between the present consideration and the traditional cluster

models is that the largest Polyakov loop cluster (anticluster) is not homogeneous inside and

it looks like a Swiss Cheese, since it is filled by the gas of anticlusters (clusters). A similar

conclusion for the largest anticluster was recently suggested in [47]. Note, however, that

in traditional cluster models, including the Fisher droplet model [8], such a possibility is

usually ignored. Let us demonstrate this important new feature for the cut-o↵ L

cut

= 0.2

and � = 3.0. At high values of � the treatment gets simpler, since the gas of anticlusters

is practically absent and the largest cluster is rather small. Indeed, for � = 3.0 one finds

that the volume of largest anticluster is maxK
acl

= 7300, the volume of largest cluster is

maxK
cl

= 223, the total volume of the gas of anticlusters is only V

gas

acl

= gP
k

k n

acl

(k) =

89, while the total volume of the gas of clusters is V

gas

cl

= gP
k

k n

cl

(k) = 2848 and the

volume of auxiliary vacuum is V

vac

= 1707. Hereafter the sums with tilde indicate that

the summation does not include that largest (anti)cluster. In order to find out where the

gaseous clusters are located, let us first estimate the number of nearest neighbors for the

gas of clusters. Since in the gas of clusters the number of monomers is n

cl

(1) ' 550, the

number of dimers is n
cl

(2) ' 130 and the number of trimers and fourmers are, respectively,

n

cl

(3) ' 60 and n

cl

(4) ' 35, then one can estimate the number of their nearest neighbors as

N

near

cl

' 6n
cl

(1)+10 (n
cl

(2)+n

cl

(3)+n

cl

(4)) ' 5600. Here we have taken into account that

each monomer has 6 nearest neighbors, each dimer has 10 nearest neighbors, while the larger

clusters have at least 10 nearest neighbors. According to definition, the nearest neighbors of

a gaseous cluster cannot be the other gaseous clusters themselves or the largest cluster, but

should be only the anticlusters or vacuum. However, the gas of anticlusters is practically
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 Other Important Findings
In contrast to existing exactly solvable models of cluster type 
the physical surface tension of Polyakov loop (anti)clusters 

 DOES NOT VANISH above PT! 

=> Hence SU(2) gluodynamics should have a different mechanism 	


for 2-nd order PT!

However, the KINKs in physical surface tension are known from 
existing cluster models!

	

 K. A. Bugaev, V. K. Petrov and G. M. Zinovjev, Phys. Atom. Nucl. 76 (2013), 341   

This is the surface tension induced PT which was invented to	


generate the CEP! 



 Properties of Auxiliary Vacuum

Both gases and aux. Vac. occupy a small part of the lattice 3-d volume
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 Properties of Liquid (Anti)Cluster

The mean value of Polyakov loop <L> is an order parameter in gluodynamics

One can show that 
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Properties of clusters

New order parameters

Average maximal (anti)cluster
Average Polyakov loop is SU(2) gluodynamics order parameter, not observable
Largest (anti)cluster occupies almost all lattice ) |L| ⇠ max K
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type a b �2/dof

0.1 Cl �3056± 246 0.2964± 0.0284 16.32/4 ' 4.08
0.1 aCl 2129± 160 0.3315± 0.0269 8.94/4 ' 2.235
0.2 Cl �4953± 443 0.3359± 0.0289 12.3/3 ' 4.01
0.2 aCl 2462± 87.7 0.3750± 0.0129 2.068/4 ' 0.517

Exponent b coinside with b

Ising

of the Ising model - Svetitsky-Jaffe conjecture
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is the mean liquid (=largest) (anti)cluster
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strong  
fluctuations



 Space Inhomogeneity and Existence of SLOJKAs
Where the gaseous (anti)clusters are located?

T >> Tc

 Gaseous clusters (anticlusters) are mainly located INSIDE the anticluster (cluster) 
LIQUID. Hence each LIQUID looks like Swiss Cheese!

 Small portion of gaseous clusters (anticlusters) is located INSIDE  other anticlusters 
(clusters), not the largest one! 

At T >> Tc the largest cluster is also located inside the anticluster LIQUID!

Hence at T >> Tc we observe SLOJKAs = highly inhomogeneous structures!
What do they form in thermodynamic limit? Kind of vortexes?  

Other topological defects?

T slightly above Tc



 Surface Free Energy of Liquid (Anti)Cluster

Can be deduced from locations of gaseous (anti)clusters 
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with the growth of maxK
acl

and that in this case the volume of gas of anticlusters decreases

simultaneously with the reduction of maxK
cl

. For � = 3.0 this statement can be nicely

illustrated using the following estimates. Indeed, comparing the relative packing fraction of

the gaseous anticlusters inside the largest cluster ⇢

acl/cl

= V

gas

acl

/maxK
cl

' 0.399 and the

one of the gaseous clusters inside the largest anticluster ⇢
cl/acl

' 0.39, one finds almost the

same values. In addition, an existence of the Swiss Cheese structure would naturally explain

the fact of the fractal dimension of the largest (anti)clusters [6, 34]. Therefore, one should

distinguish between the volume of the largest (anti)cluster and its geometrical size, which

can be essentially larger, than its volume due to presence of the non-native gas. Hence, the

surface free energy of the largest (anti)cluster should have the following form

F
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"
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¯
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(k)
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� T�

¯
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2
3
n

¯

A

(k) , (11)

where the notation Ā means the summation over the gaseous clusters which are non-native

for the largest (anti)cluster and D

A

is the fractal dimension [47] of the largest cluster of

sort A. The first term on the right hand side accounts for the outer surface of maximal

(anti)cluster containing the non-native gas with the outer surface tension coe�cient ⌃outer

A

,

while the second term on the right hand side of (11) accounts for the surface free energy of

all cavities made by the non-native clusters. Now it is also clear that inside the (anti)clusters

which are smaller than the largest one there may exist the non-native gas, but this problem

requires a separate investigation.

V. SURFACE TENSION COEFFICIENT AS A NEW ORDER PARAMETER

From Figs. 6-9 one can immediately learn that in the phase of unbroken Z(2) symmetry,

i.e. for �  �

1
c

, the behavior of the thermodynamical functions µ
A

, �
A

, C
A

, hk
A

i
gas

, hk
A

i
tot

and maxK
A

for clusters and anticlusters is absolutely identical within the error bars, while

in the phase of broken Z(2) symmetry these functions are entirely di↵erent. Therefore, one

can use the following combination
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for any of the quantities q
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} as an order parameter

of PT between the phases with unbroken and broken symmetry. We, however, would like

}total geometrical volume

}
total free energy of inner 

non-native gaseous clusters
surface tension 
of outer surface

fractal 
dimension

Due to periodic boundary conditions at T >> Tc there is no outer surface for 
anticluster LIQUID droplet!

=> at T >> Tc  the largest droplet (liquid) has NEGATIVE  SURFACE TENSION! 

Its existence was predicted in  	

 K. A. Bugaev and G. M. Zinovjev, Nucl. Phys. A 848 (2010)  443   



New Order Parameters

Above we have seen that 
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The ratio can serve as an order parameter  

Where  F  is   mean volume of gas, total volume of (anti)clusters, 
or surface tension coefficient of gas 

Evidently, one can relate |L| and  for gases



• The cluster approach based on Polyakov loop geometrical clusters is suggested. 

• In terms of liquid-gas cluster model the PT in SU(2) gluodynamics is an 
evaporation of smaller liquid droplet into corresponding gas and condensation of 
another gas onto the largest liquid droplet. 

• The size distributions of the gaseous (anti)clusters are analyzed on the basis of 
the Liquid Droplet Model. It is shown that even the dimers are described within 
this approach with high accuracy. 

• The Fisher topological constant τ is found to be 1.806 ± 0.008 which disagrees 
with the Fisher Droplet Model value, but agrees with SMM and QGPbags with 
surface tension model with 3CEP. 

• Any quantity which shows bifurcation can be used as the order parameter. 

• In contrast to existing cluster models the surface tension of (anti)clusters does 
not vanish above PT and, hence, we need to search for another mechanism of     
2-nd order PT. 

Conclusions



Thank you for your attention!



 Space Inhomogeneity
Geometrical clusterization

Properties of clusters

New order parameters

Space inhomogeneity

Geometrical clusterization and deconfinement phase transition in SU(2) gluodynamics

Example:  β  = 3 and cut-off  0.2  

Assuming  DENSE PACKING of  all clusters one needs at least 3100  
surrounding anticlusters or aux. Vacuum, but one can get 1796 only! 
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Properties of clusters

New order parameters

Space inhomogeneity

Geometrical clusterization and deconfinement phase transition in SU(2) gluodynamics

Since at hight T the surface tension and  
chem. potential of clusters is about 0, 
then size distribution is a power like!

=> Gaseous clusters are located inside of anticluster LIQUID droplet! 

=> High T is not an exception, hence,  the clusters are located inside  
of anticluster LIQUID droplet and vice versa! 


