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OUTLINE (I + II)

• Lattice QCD in magnetic background fields:
√

General properties

√
QQ̄ interactions in a strong magnetic background

√
Effects on color flux tubes

– New phases for compactified SU(N) gauge theories in a magnetic background

• Lattice QCD with imaginary chemical potentials:

– General properties and the curvature of the pseudocritical line

– Generalized susceptibities from imaginary chemical potentials

– Discussion on the possible location of the critical point



The QCD phase diagram: not just temperature ...

(quark masses, background fields, ...)
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What we would like to know:

• Location and nature of deconfinement/chiral symmetry restoration as a function

of other external parameters (µB , external fields, ...)

• Properties of the various phases of strongly interacting matter

• Critical endpoint at finite µB?



Problems in lattice QCD at µB 6= 0

Z(µB, T ) = Tr
(

e−
HQCD−µBNB

T

)

=

∫

DUe−SG[U ] detM [U, µB]

detM [µB] complex =⇒ Monte Carlo simulations are not feasibile.

By now, we can rely on a few approximate methods, viable only for small µB/T , like

• Taylor expansion of physical quantities around µ = 0

Bielefeld-Swansea collaboration 2002; R. Gavai, S. Gupta 2003

• Reweighting (complex phase moved from the measure to observables)

Barbour et al. 1998; Z. Fodor and S, Katz, 2002

• Simulations at imaginary chemical potentials (plus analytic continuation)

Alford, Kapustin, Wilczek, 1999; Lombardo, 2000; de Forcrand, Philipsen, 2002; MD, Lombardo 2003.

Others are being developed but still not fully operative (Langevin simulations, density of

states, Lefschetz thimble, rewriting the partition function in terms of dual variables, ...)

In alternative: canonical approach (see talks by Atsushi, Vitaliy)

I will discuss some results from simulations at imaginary µ



Let us remember the interesting things happening in the T imaginary chemical potential

plane, in connection with the realization of center symmetry. Imaginary µ = iµI
rotates fermion temporal b.c. by µI/T

Pure gauge theory

Exact Z3 center symmetry

Spontaneously broken at T > Tc

Full QCD, µ = 0

Determinant couples to holonomy

Its trace is always real

Full QCD, θI ≡ µI/T 6= 0

Determinant couples to holonomy * eiθI

Minimum for the holonomy rotates with θI

At high T , the absolute minimum is decided by

θI =⇒ appearance of Roberge-Weiss transitions

as a function of θI (one every 2π/Nc interval)

This is true only for degenerate quark chemical

potentials, otherwise competing influences, first
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Continuation to real µ is conceivable for quantities with an expected analytic behavior

around µ = 0

An example is the dependence of Tc on µB:

T (µB)

Tc
≃ 1− κ

(

µB
T (µB)

)2

= 1− 9κ

(

µ

T (µ)

)2

µ is the quark chemical potential, κ is the curvature of the pseudo-critical line at

µB = 0 and can be obtained either by Taylor expansion technique or by numerical

simulations at imaginary µB , assuming analyticity around µB = 0:

T (µI)

Tc
≃ 1 + 9κ

(

µI
T (µI)

)2



In the imaginary chemical potential approach, Tc is computed as a function of µI
from various quantities

We (Bonati et al., arXiv:1507.03571) consider in particular the chiral condensate and its

susceptibility as probes for the location of the pseudo-critical temperature:

〈ψ̄ψf〉 =
T

V

∂ logZ

∂mf

χf
ψ̄ψ

=
∂〈ψ̄ψf〉
∂mf

= χdiscψ̄ψ + χconnψ̄ψ

χdisc
ψ̄ψ

≡ T

V

(

Nf

4

)2
[

〈(trM−1

f )2〉 − 〈trM−1

f 〉2
]

χconn
ψ̄ψ

≡ −T

V

Nf

4
〈trM−2

f 〉 .

which are then properly renormalized by subtracting T = 0 expectations values.
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Localizing the pseudocritical temperature for various imaginary chemical potentials

from various observables (continuum extrapolation)

(results from Bonati et al., arXiv:1507.03571)



then, assuming analyticity, κ is extracted

by fitting a linear dependence in µ2
I for

small µI .

Tc location depends on the observable,

slope in µ2
I is much less sensitive
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Results obtained for µu = µd = µl; µs = 0
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Non-linear terms for µs = µl likely

due to the nearby presence of the

Roberge-Weiss endpoint.

TRW quite large at the physical point,

TRW/Tc = 1.34(7)

(Bonati, MD, Mariti, Mesiti, Negro, Sanfilippo,

arXiv:1602.01426)
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Analytic continuation reveals a powerful tool also for the determination of generalized

susceptibilities:

F (T, V, µu, µd, µs) = F (T, V, 0) + V T 4
∑

i+j+k=even

χijk(T )

i!j!k!
µ̂(i)
u µ̂

(j)
d µ̂(k)

s

where V is the spatial volume, µ̂q ≡ µq/T and odd monomials are zero due to the

symmetry under charge conjugation of the theory at zero chemical potentials. The

coefficients

χijk(T ) =
1

V T 4

∂(i+j+k)F (T, µ)

∂µ̂
(i)
u ∂µ̂

(j)
d ∂µ̂

(k)
s

∣

∣

∣

∣

µu=µd=µs=0

where µi are quark number chemical potentials. They can be linked to fluctuations of

conserved charges through the relations

µu = µB/3 + 2µQ/3

µd = µB/3− µQ/3

µs = µB/3− µQ/3− µS .

Usually quite difficult to go to high orders: subtraction of many terms

in the computation, large fluctuations in higher order correlations



Possible idea to improve

Determines the generalized susceptibilities up to a given order i+j+k as a function

of the imaginary chemical potentials

χijk(µu, µd, µs) =
∞
∑

l=i
m=j
n=k

χlmn(0, 0, 0) µ̂
l−i
u µ̂m−j

d µ̂n−ks

(l − i)!(m− j)!(n− k)!

From a global fit of their dependence on µu, µd, µs, one extracts the higher order

susceptibilities.

The idea is not new (MD, Lombardo, 2002; MD, Sanfilippo, 2009, de Forcrand, Takahashi, 2009;

Bellwied et al., 2016; see also talk by Vitaliy)

Major bonus wrt determination at µ = 0: one determines directly the response to an

external source instead than a fluctuation, signal-to-noise improves dramatically.



The same idea applies to the study

of θ dependence: the dependence of

lower order cumulants on imaginary θ

allows a determination of larger order

cumulants
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This has recently allowed to check the

predicted largeN behavior of the fourth

order cumulant in pure gauge SU(N):

b2 ∝ 1/N2

A priori a very difficult task! A vanishing

signal drowning in a Gaussian sea

(Bonati, MD, Scapellato, arXiv:1512.01544;

Bonati, MD, Rossi, Vicari, arXiv:1607.06360)
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We have tried to apply this idea toNf = 2+1QCD, with the idea of a full determination

of all susceptibilities up to a given order (Gagliardi, M., Sanfilippo, 1611.08285, physical point)

We have 3 different flavors, do we needO(10)×O(10)×O(10) ∼ O(103) different

simulations?

If we need susceptibilities up to a given order, just points on a few lines suffice.

With 6 lines (6 × O(10) simulations) we can determine everything up to order 8).

(µu, µd, µs) = (iµI , 0, 0)

(µu, µd, µs) = ( 0, 0, iµI)

(µu, µd, µs) = (iµI , iµI , 0)

(µu, µd, µs) = (iµI ,−iµI , 0)

(µu, µd, µs) = (iµI , iµI , iµI)

(µu, µd, µs) = (iµI ,−iµI , iµI)



Gagliardi, M., Sanfilippo, 1611.08285, physical point of Nf = 2 + 1 QCD, only Nt = 8 by now

Optimal choice seems a direct determination and fit of all cumulants up to order 2



There is of course a drawback to pay: the fit involves arbitrariness in the fitting

polynomial and in the fitted range.

Systematic effects must be carefully checked



from them we can reconstruct the free energy dependence and extract estimates of

the radius of convergence of the various terms

F(T, µB) = F(T, 0) + V T 4
∑

n

χB
2n

(2n)!
(µB/T )

2n

ρfn,m =

(

χBn /n!

χBm/m!

)

1
(m−n)

ρχn,m =

(

χBn /(n− 2)!

χBm/(m− 2)!

)

1
(m−n)
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Such a game works well when applied to synthetic functions, e.g. F = (µB − 2.5)0.5

in the figure



“no-convergence” for the radius of convergence in QCD with Nf = 2 + 1 flavors

Data are compared to predictions of the same quantities from the Hadron Resonance

Gas model



in particular, the possible critical point seems confined well beyond the pseudo-critical line ...

similar results obtained by A. Bazavov et al., 1701.04325



CONCLUSIONS (maybe)

• We have good control over the small µB/ properties of the QCD phase diagram.

Simulations at imaginary µ are a valuable tool to achieve that.

• LargeµB properties, including the possible location/existence of the critical endpoint,

are still affected by large systematic uncertainties

• At this point, assuming I still have 3 minutes, let me go back to a purely theoretical

divertissement with magnetic fields, otherwise I stop here.



Non-Abelian gauge theories with compactified directions

in magnetic backgrouds

QUESTION

what happens if we compactify one dimension in the presence of an electromagnetic

background Fµν?

The question can be easily answered when the compactified direction is spatial and

the background is magnetic, since Monte-Carlo simulations are perfectly feasible in

this case

M. D. and M. Mariti, Phys. Rev. Lett. 118, no. 17, 172001 (2017) [arXiv:1612.07752 [hep-lat]].



In brief:

• the electromagnetic field couples to the holonomy in the compactified direction

(like an imaginary chemical potential does)

• center symmetry is explicitly broken by the presence of dynamical fermions, however

the selected center sector, because of the coupling to the e.m. field, becomes

space dependent

• For small compactifications, due to the perturbative holonomy potential, local

minima develop in each center sector, so that changing center sector gives rise to

interfaces, which cost energy.

Hence, a complicated pattern of phase transitions can arise at which interfaces are

created or destroyed, depending on the balance between compactification radius

and background field strength.



Let us remember the interesting things happening in the T imaginary chemical potential

plane, in connection with the realization of center symmetry. Imaginary µ = iµI
rotates fermion temporal b.c. by µI/T

Pure gauge theory

Exact Z3 center symmetry

Spontaneously broken at T > Tc

Full QCD, µ = 0

Determinant couples to holonomy

Its trace is always real

Full QCD, θI ≡ µI/T 6= 0

Determinant couples to holonomy * eiθI

Minimum for the holonomy rotates with θI

In the high T region, the absolute minimum (i.e.

the preferred center sector) is decided by θI .

That leads to the appearance of Roberge-Weiss

transitions as a function of θI (one every 2π/Nc

interval)
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A general U(1) background field, coupled to the electric charge of quark, will do a

similar thing. The covariant derivative is modified as follows

Dν = ∂ν + i gAaνT
a + i qaν (1)

where T a are the SU(3) generators and q is the coupling to the external U(1) field

aµ. For simplicity we consider quarks degenerate in mass and electric charge.

If a dimension is compactified, the coupling of dynamical fermions to the holonomy

involves the external field directly, i.e. the coupling is to

Tr exp

(
∫

dxµi(gAµ + qaµ)

)

= Leiφ(~x) .

where φ(~x) is a phase factor which, contrary to the case of an imaginary chemical

potential, can depend on the coordinates ~x orthogonal to the compactified direction

That will give rise to a coupling to holonomy which changes from point to point, that

will give rise to different orientations of the holonomy and to the rise of an interesting

phenomenology.



The specific example we will consider:

A cilinder with a magnetic background orthogonal to its surface

y

B

xx1 2 x

one can view this as a spatial compactified dimension with a magnetic field. However,

because of the spatially varying boundary conditions, thermal or non-thermal is completely

irrelevant, so a thermal gauge theory with an imaginary electric field is perfectly

equivalent.



The value of a single phase factor is not

relevant and depends on the U(1) gauge

choice.

However phase differences are meaningful and

gauge invariant

y

B

xx1 2 x

ei(φ(x2)−φ(x1)) = exp

(

iq

∫

dy(ay(x2, y)− ay(x2, y))

)

= eiqΦB

where ΦB is the total magnetic field flux going through the shadowed surface.

The value of such a flux is, for any given distribution of magnetic field, a property of

the points x1 and x2 only (also in higher dimensions)

Therefore, we expect that NcqΦB/(2π) different center sectors should be explored.

For small compactification, when the holonomy develops local minima, that would

imply the formation of NcqΦB/(2π) center interfaces between ~x1 and ~x2.



Does the “lattice” of center domains and interfaces really form?

Interfaces have an energy cost, could it be more convenient to stay (locally) in the

wrong sector without forming any interface?

This is an issue of energy balance. We will make an estimate of such energy balance

under some simplified assumption:

• The magnetic background is uniform and constant

• The compactification radius is so small that perturbative estimates for the interface

tension (or for the false vacuum energy) hold true



Uniform background field and exact center-translational symmetry

When the background field is uniform, center symmetry, which is explicitly broken by

the presence of dynamical fermions, is recovered in a different form:

One can rotate temporal boundary conditions for gauge fields by−2π/Nc, and perform

at the same time a translation along x by 2π/(qBLcNc), where Lc is the size of the

compactified direction the theory will be mapped onto itself

This discrete symmetry can be:

1. Realized exactly:

After each translation by 2π/(qBLcNc) the holonomy rotates by −2π/Nc, with

more or less sharp interfaces (more and more sharp as Lc decreases)

2. Spontaneously broken:

The holonomy fails to rotate as you translate, because interfaces cost too much

and it is more convenient to stay in the false vacuum somewhere.



ENERGY BALANCE - I

We need to compute the balance between

• the energy spent in creating center interfaces

this is a function of the interface tension and of the density of interfaces, which

depends on the magnetic field strength

• the energy spent in keeping the holonomy in a locally wrong vacuum

This is a function of the holonomy effective potential.

Let L ≡ x2 − x1. We consider two extreme situations:

• All center domains are actually formed: the number of interfaces, Nint, is given

by all the different center sectors spanned by the local phase between x1 and x2:

Nint = qΦB/(2π/Nc) = qBLLcNc/2π , (2)

• the holonomy stays in the same center sector everywhere, no interface is formed

one must keep the holonomy in the wrong center sector for a fraction (Nc−1)/Nc

of the region between x1 and x2.



ENERGY BALANCE - II

In the limit of asymptotically small Lc, we can recover perturbative results obtained

in thermal field theory, where Lc = 1/T

• The interface tension (energy per unit interface area) is proportional toL−3
c log(1/Lc)

• The energy density to keep the holonomy in the wrong vacuum is prop. to L−4
c .

Apart from a common factor related to the integration in the non-compactified directions

• the energy spent to create all possible interfaces between x1 and x2 is prop. to

qBLL−2
c log(1/Lc)

• the energy spent to maintain the holonomy in the same center sector, without

creating any interface, is proportional to

LL−4
c

The first situation is surely favored, at fixed magnetic field, for small enough Lc and,

at fixed Lc, for small enough B.

Increasing Lc or B can make instead the second situation more favorable.



Some numerical tests from lattice simulations

We have performed lattice simulations with rooted staggered fermions

• 2 flavors, degenerate both in mass and charge, pion mass quite large (800 MeV)

• magnetic field along ẑ, y is the short compactified direction, x is compactified as

well, but of length Lx = L≫ Lc

• Since we are on a torus, magnetic field (actually, magnetic flux) is quantized.

• We will consider simulations at fixed B and see what happens when decreasing

Lc, or at fixed Lc and see what happens when changing B



Simulations are done at fixed bare parameters (β = 6.2, am = 0.01)

Lz = Lt = 24 for all simulations

Ly is the compactified direction Lc
Lx is changed so as to tune qB = 2πb/(LxLya

2) where b is an integer.
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We start by showing the behavior of the local values taken by the holonomy (at fixed

x coordinate) for the case: b = 1, Lc = 4, Lx = 72

For the same values, atB = 0 the system is in the deconfined phase, with a non-zero,

real holonomy. At B 6= 0 the formation of center domains and center interfaces is

clearly visible
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Next we enlarging Lc at fixed B:

b = 1, Lc = 12, Lx = 24

The system is found in a different phase, the center-translational symmetry is broken

spontaneously, a given center sector is selected throughout the lattice



0 5 10 15 20 25 30 35
x coordinate

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

real part
Imaginary part

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
Real part

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Im
ag

in
ar

y 
pa

rt

We can even have different phases: b = 1, Lc = 8, Lx = 36

Metastability between two different phases in which the symmetry breaks in two

different ways cold start (above) and hot start (below) where one interface forms.
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A similar pattern of phase transitions

is observed if we change the magnetic

field at fixed compactification radius,

remember:

qB =
2πb

(LxLca2)
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Lx = 96   Lc = 8    b = 1
Lx = 48   Lc = 8    b = 1
Lx = 24   Lc = 8    b = 1

We start with a center-translation symmetric system

(three center domains and three interfaces)

then, as we increase B we go through a phase with just two center domains

(banana phase)

and finally to a phase with a single center sector.



Going from one phase to the other takes place through first order phase transitions

at which interfaces are destroyed or created.

This is clearly visible from time histories of the global Polyakov loop (averaged over

whole space) which shows strong metastabilities
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Is this interesting phenomenology relevant to any context?

• Beyond the standard model theories with compactified extradimensions and cosmological

magnetic backgrounds?

• Synthetic condensed matter systems with emergent non-Abelian symmetries and

compactifed dimensions?


