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OUTLINE (I + II)

• Lattice QCD in magnetic background fields:

– General properties

– QQ̄ interactions in a strong magnetic background

– Effects on color flux tubes

– New phases for compactified SU(N) gauge theories in a magnetic background

• Lattice QCD with imaginary chemical potentials:

– General properties

– Generalized susceptibities from imaginary chemical potentials

– Discussion on the possible location of the critical point



QCD IN EXTERNAL MAGNETIC BACKGROUNDS

Quarks are subject to electroweak interactions, which in general induce small corrections

to strong interaction dynamics. Exceptions are expected in the presence of strong

e.m. backgrounds, a situation relevant to many contexts:

• Large magnetic fields are expected in a class of neutron stars known as magnetars

(B ∼ 1010 Tesla on the surface) (Duncan-Thompson, 1992).

• Large magnetic fields (B ∼ 1016 Tesla,
√

|e|B ∼ 1.5 GeV), may have been

produced at the cosmological electroweak phase transition (Vachaspati, 1991).

•

in non-central heavy ion collisions, largest

magnetic fields ever created in a laboratory

(B up to 1015 Tesla at LHC) with a possible rich

associated phenomenology (e.g., chiral magnetic

effect)



Numerical QCD+QED studies go back to the early days of LQCD

- G. Martinelli, G. Parisi, R. Petronzio and F. Rapuano, Phys. Lett. B 116, 434 (1982).

- C. Bernard, T. Draper, K. Olynyk and M. Rushton, Phys. Rev. Lett. 49, 1076 (1982).

An e.m. background field aµ modifies the covariant derivative as follows:

Dµ = ∂µ + i gAa
µT

a → ∂µ + i gAa
µT

a + i qaµ

in the lattice formulation:

Dµψ → 1

2a

(

Uµ(n)uµ(n)ψ(n+ µ̂)− U †
µ(n− µ̂)u∗µ(n− µ̂)ψ(n− µ̂)

)

Uµ ∈ SU(3) uµ ≃ exp(i q aµ(n)) ∈ U(1)

• F (em)
ij 6= 0 =⇒ non-zero magnetic field (no sign problem)

• F (em)
0i 6= 0 =⇒ non-zero imaginary electric field (sign problem for real e. f.)

• Uniform background field are quantized in the presence of periodic boundary

conditions



We can only simulate constant magnetic fields and compute equilibrium properties

That may be different from experimental conditions and probes

Estimate of eB time evolution @ RHIC for

Au − Au collisions for two values of√
sNN .

As the collision energy increases the

magnetic field increases, but it gets

more shrinked in time.

[Skokov, Illarionov and Toneev, ’09]

Accurate predictions about the magnetic field evolution requires knowledge of the

medium conductivity



Recent years have seen an increasing activity in the lattice study of QCD in magnetic

backgrounds. An incomplete summary of results:

Magnetic catalysis (increase of chiral symmetry breaking) of the QCD vacuum has

been extensively verified ( P. V. Buividovich et al. 2010; MD, F. Negro, 2011; G. S. Bali et al.

2012; E.-M. Ilgenfritz et al., 2012, 2014)

A large effect on gluon fields manifests in

anisotropies of gauge observable and in

an increase of the gluon condensate as a

function of B (gluon magnetic catalysis)

(M. Ilgenfritz et al, arXiv:1203.3360; G. Bali et al.,

arXiv:1303.1328; MD, M. Mesiti, E. Meggiolaro and
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The magnetic field has strong effects also on

QCD thermodynamics and leads to a decrease

of the pseudo-critical temperature (inverse

magnetic catalysis)

G. S. Bali et al., arXiv:1111.4956

The thermal QCD medium becomes strongly

paramagnetic right above Tc
C. Bonati et al., arXiv:1307.8063, arXiv:1310.8656;

L. Levkova and C. DeTar, arXiv:1309.1142;

G. S. Bali et al., arXiv:1406.0269
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The focus here will be on:

Effects of the magnetic field on the static quark potential

• Is confinement affected by the magnetic background field?

A T = 0 study has shown that the quark-antiquark potential becomes anisotropic,

with a string tension smaller (larger) in the direction parallel to ~B (C. Bonati et al.,

arXiv:1403.6094)

• The issue is interesting both by itself and for possible phenomenological consequences,

e.g. for heavy quark bound states.

I discuss some recent results reported in arXiv:1607.08160 and arXiv:1506.07890 where

we try to achieve the following goals:

• A complete determination of the angular dependence of the potential

• An extrapolation to the continuum limit

• An extension to finite temperature, both below and above the pseudocritical temperature



LATTICE SETUP

Z(B) =

∫

DU e−SYM

∏

f=u, d, s

det (Df
st
[B])1/4 .

- pure gauge: Symanzik tree level improved gauge action

- fermion sector: 2-level stout improved rooted staggered fermions

- physical quark masses

- explored lattice spacings and sizes:

a = 0.2173, 0.1535, 0.1249, 0.0989 fm Lsa ∼ 5 fm in all cases

- numerical simulations on FERMI (BG/Q at CINECA) thanks to PRACE allocation



At T = 0, the potential is determined through

Wilson loop expectation values

1 HYP smearing for temporal links and various

APE smearings for spatial links to reduce UV

fluctuations q
r

t

q
_

As usual

aV (a~n) = lim
nt→∞

log

( 〈W (~n, nt)〉
〈W (~n, nt + 1)〉

)

results in the figure refer to two different

orientations with respect to ~B = Bẑ, and

for simulations performed at a ≃ 0.0989 fm

with |e|B ≃ 1GeV
2.
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we have first studied the potential at B = 0,

adopting the Cornell potential as an ansatz for

all lattice spacings

V (r) = −α
r
+ σr + V0 ,
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In this way we obtain continuum extrapolated results for σ,

α and for the Sommer parameter r0

r20
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α 0.395(22)
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σ 448(20) MeV
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For non-zero background field ~B, we want to study

the potential not just for parallel or orthogonal

directions, but for generic orientations.

In principle, one can either rotate the spatial side

of the Wilson loop, or rotate ~B and perform new

simulations.

Rotating the loop on the lattice introduces new

cusps and renormalization effects, so we chose the

second solution

θ

q
_

q
B

Each component of the field gets quantized in the presence of spatial periodic b.c.

eBx = 6πbx/(a
2NzNy) ; bx ∈ Z

eBy = 6πby/(a
2NxNz) ; by ∈ Z

eBz = 6πbz/(a
2NxNy) ; bz ∈ Z

we performed different simulations at fixedB2
x+B

2
y+B

2
z and different ~B orientations



Expected symmetries and ansatz for V (r, θ, φ)

• by residual rotational symmetry around ~B: V (r, θ, φ) = V (r, θ)

• by symmetry under ~B → − ~B: V (r, π − θ) = V (r, θ)

• We make the assumption the potential is Cornell like along each direction

V (r, θ) = −α(θ, B)

r
+ σ(θ, B)r + V0(θ, B)

and write a Fourier expansion in θ for each term:

V (r, θ) =− ᾱ(B)

r

(

1−
∑

n=1

cα2n(B) cos(2nθ)
)

+ σ̄(B)r
(

1−
∑

n=1

cσ2n(B) cos(2nθ)
)

+ V̄0(B)
(

1−
∑

n=1

cV0

2n(B) cos(2nθ)
)

.



RESULTS

• full angular dependence studied at just

two lattice spacings, a ≃ 0.1, 0.15 fm

and for eB ∼ 1 GeV2. Results shown for

a ∼ 0.1 fm

• At fixed r, the potential is an increasing

function of the angle and reaches a

maximum for orthogonal directions

• Our ansatz works well (χ2/d.o.f. ∼ 1)

with only the first term in the expansion

c2 6= 0 (quadrupole-like deformation)
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Strategy followed for other B and a: The simplified angular dependence (only c2 6=
0), permits to reconstruct V from data at θ = 0, π only.

Let O be α, σ, V and define

δO(|e|B) =
OXY (|e|B)−OZ(|e|B)

OXY (|e|B) +OZ(|e|B)
; RO(|e|B) =

OXY (|e|B) +OZ(|e|B)

2O(|e|B = 0)

then

δO = cO2 + cO4 + · · · =
∑

n

cO2n ≃ cO2

RO(|e|B) =
Ō(|e|B)

O(|e|B = 0)

(

1−
∑

n even

cO2n

)

≃ Ō(|e|B)

O(|e|B = 0)

i.e. such quantities are enough to fix all the coefficients giving a non-trivial contribution

to V (r, θ, B).

We perform the continuum extrapolation from data along longitudinal and orthogonal

directions only
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The continuum extrapolated results for

σ predict a vanishing longitudinal string

tension for eB ∼ 4 GeV2

This is outside the range explored for the

continuum extrapolation, eB . 1 GeV2.

Can we trust the prediction?
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Cut-off effects are large for eB & 1/a2. We could extend to larger B just on the

finest lattice spacing.

The decrease of σ‖ is steady, even if it somewhat undershoots the continuum band

extrapolated to large B.

Simulations at finer lattice spacings should clarify the issue in the future.



Finite T results

At finite T , the quark-antiquark potential is

measured from Polyakov loop correlators

〈TrP (~x) TrP †(~y)〉 ∼ exp

(

−Fq̄q(r, T )

T

)

✝P(x) P (y)

Results at T ∼ 100 MeV on a Nt = 20 lattice

Although a small anisotropy is still visible,

the main effect of B seems to suppress the

potential in all directions

The string tension tends to disappear
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A fit to the Cornell potential works in a limited

range of distances and permits to obtain a

determination of σ, which shows a steady

decrease in all directions.

We can call this effect deconfinement catalysis
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It is interesting to notice that this happens

before (in temperature) inverse magnetic

catalysis is visible in the chiral condensate

Is the decrease of Tc as a function ofB related

to a change in the confining properties?
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In the deconfined phase, Polyakov loop correlators give access to electric and magnetic

screening masses
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CE− =− 1

2
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.
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∣

r→∞
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∣

∣
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≃ e−mM (T )r

r



0 4 8 12 16 20 24 28 32 36
|e|B/T

2

8

9

10

11

12

13

14

m
E
/T

T = 200 MeV (XY)
T = 200 MeV (Z)
T = 250 MeV (XY)
T = 250 MeV (Z)
T = 330 MeV (XY)
T = 330 MeV (Z)

0 4 8 12 16 20 24 28 32 36
|e|B/T

2

5

6

7

8

m
M

/T

T = 200 MeV (XY)
T = 200 MeV (Z)
T = 250 MeV (XY)
T = 250 MeV (Z)
T = 330 MeV (XY)
T = 330 MeV (Z)

Such masses show a clear (increasing) dependence on B: the magnetic background

field enhances the color screening properties of the QGP

md
E/M

T
= adE/M

[

1 + cd1;E/M

|e|B
T 2

atan

(

cd2;E/M

cd1;E/M

|e|B
T 2

)]

,

Does B have any influence on heavy quark bound state suppression? (Satz, Matsui)

Actually, one should measure also quarkonia radii as a function of B and compare

the two lengths ...

as an alternative a direct determination of quarkonia spectral functions in the presence

of B would be the most direct way (possible project for the future? ...)



Color flux tubes in strong magnetic fields

We now go back to T = 0. Is the deformation of the static quark-antiquark potential

associated with a corresponding deformation of the color flux tube?

In principle, two different phenomena may happen:

• The flux tube for longitudinal separation is less intense than that for transverse

separation;

• The flux tube for transverse separation loses cilindrical symmetry and becomes

anisotropic



Lattice determinations of color flux tubes make use of correlation between Wilson

loops and plaquette operators.

Connected correlators allow the determination of the field strength itself

[Di Giacomo, Maggiore, Olejnik, 1990] [Cea, Cosmai, Cuteri, Papa, 2017]

Echromo
l = lim

a→0

1

a2g

[ 〈Tr(WLUPL
†)〉

〈Tr(W )〉 − 〈Tr(W )Tr(UP )〉
〈Tr(W )〉

]

W is the open Wilson loop operator

UP is the open plaquette operator

L is the adjoint parallel transport

A smearing procedure is adopted (1 HYP for

temporal links, several APE for spatial links) as

a noise reduction technique
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Dependence on the smearing step is non-trivial, however ...



... the dependence almost completely disappears as we consider the ratio of B 6= 0

to B = 0 quantities
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following analysis (PRELIMINARY) mostly based on such ratios

Signals of both kinds of anisotropy already visible:

- field strength for QQ̄ separation parallel/orthogonal to B is suppresses/enhanced

- for separation orthogonal to B, field strength keeps larger when moving along B
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These are the flux tube profiles for eB ∼ 3 GeV2 compared to B = 0 at a fixed

number of smearing steps NAPE = 80
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These are the same data (for eB = 3 GeV2) normalized to those at B = 0. It is not

just the overall normalization of the flux tube which changes, but also the flux tube

profile:

- it clearly shrinks for QQ̄ separation parallel to B

- it is more or less stable for orthogonal separation, with a tendency to shrink/widen

in directions orthogonal/parallel to B.



What if we consider the field strength “energy flux” across the tube? (energy per unit

length)

ε =

∫

d2xt
E2

l (xt)

2
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As we consider flux ratios (to B = 0), we can reproduce “semi-quantitatively” the

string tension suppression/enhancement.

“semi-quantitatively” is perfectly satisfactory, since ε contains also other contributions

apart from pure string (Coulomb term)
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Indeed, the “semi-quantitative” agreement improves as theQQ̄ separation increases:

we are measuring the energy per unit length in the middle of the tube, and the pure

string term dominates as the separation increases
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A direct measurement of the flux tube width

w ≡
√

〈x2t 〉 ; 〈x2t 〉 ≡
∫

d2xt El(xt)x
2
t

∫

d2xt El(xt)

confirms the shrinking/widening of the flux tube, which:

- clearly shrinks for QQ̄ separation parallel to B

- for orthogonal separation has a tendency to shrink/widen in directions orthogonal/parallel

to B



CONCLUSIONS (part I)

• Properties of strong interactions in magnetic backgrounds are highly non-trivial

• Confining properties, in particular, are showing a very rich phenomenology which

is likely still largely uncovered

• Are there new exotic phases in the presence of extremely large fields? Maybe

not interesting for phenomenology (too large magnetic fields) but theoretically

appealing


