Temperature dependence of bulk and shear viscosities from lattice SU(3)-gluodynamics

N.Yu. Astrakhantsev, V.V. Braguta, <u>A.Yu. Kotov</u>

based on arXiv:1701.02266, JHEP 1704 (2017) 101 & new results

Lattice and Functional Techniques for Exploration of Phase Structure and Transport Properties in Quantum Chromodynamics

10-14 July, 2017, Dubna

Outline

Introduction

- Details of the calculation
- Shear viscosity
 - Fitting of the data
 - Backus-Gilbert method
- Bulk viscosity
 - Middle point method
 - Backus-Gilbert method

Conclusion

Relativistic Hydrodynamics

$$T^{\mu\nu} = (e+p)u^{\mu}u^{\nu} + pg^{\mu\nu} + (\eta\nabla^{\langle\mu}u^{\nu\rangle} + \zeta\Delta^{\mu\nu}\nabla_{\alpha}u^{\alpha}) + \dots$$

$$\nabla^{\alpha} = \Delta^{\alpha\nu}\partial_{\nu}, \quad \Delta^{\mu\nu} = g^{\mu\nu} - u^{\mu}u^{\nu}$$

$$\nabla^{\langle\mu}u^{\nu\rangle} = \nabla^{\mu}u^{\nu} + \nabla^{\nu}u^{\mu} - \frac{2}{3}\Delta^{\mu\nu}\nabla_{\alpha}u^{\alpha}$$

• EOM
$$\partial_{\mu}T^{\mu\nu} = 0$$

• Non-relativistic limit
$$(u^{\mu} = (1, \vec{v}))$$

- Continuity equation: $\partial_t \rho + \rho(\vec{\partial}\vec{v}) + \vec{v}\vec{\partial}\rho = 0$
- ► Navier-Stokes equation: $\frac{\partial v^{i}}{\partial t} + v^{k} \frac{\partial v^{i}}{\partial x^{k}} = -\frac{1}{q} \frac{\partial p}{\partial x^{i}} \frac{1}{q} \frac{\partial \Pi^{ki}}{\partial x^{k}}$
- Viscous stress tensor: $\Pi^{ik} = -\eta \left(\frac{\partial v^{i}}{\partial x^{k}} + \frac{\partial v^{k}}{\partial x^{i}} - \frac{2}{3} \delta^{ik} \frac{\partial v^{l}}{\partial x^{l}} \right) - \zeta \delta^{ik} \frac{\partial v^{l}}{\partial x^{l}}$
- η -shear viscosity, ζ -bulk viscosity

Relativistic hydrodynamics & QGP

• Elliptic flow from STAR experiment (Nucl. Phys. A 757, 102 (2005)) $\frac{dN}{d\phi} \sim (1 + 2v_1 \cos(\phi) + 2v_2 \cos^2(\phi)), \phi \text{-scattering angle}$

• Quark-gluon plasma is close to ideal liquid $(\frac{\eta}{s} = (1-3)\frac{1}{4\pi})$ M. Luzum and P. Romatschke, Phys. Rev. C 78, 034915 (2008)

QM2017 (talk by S.Bass)

Temperature Dependence of Shear & Bulk Viscosities

confirming the presence / need for bulk viscosity either high sharp peak or broad & shallow temperature dependence

Caveat of current analysis.

 bulk-viscous corrections are implemented using relaxation-time approximation & regulated to prevent negative particle densities

QM2017 (talk by L.Yan)

Recent results from hydro simulations for A+A

• $\sqrt{s_{NN}} = 5.02$ TeV PbPb: IP-Glasma+MUSIC+UrQMD

First-principle determination of shear and bulk viscosities!

Lattice calculation of shear & bulk viscocity

The first step:

Measurement of the correlation functions:

$$C_{sh}(t) = \int d^3 \vec{x} \langle T_{12}(t, \vec{x}) T_{12}(0) \rangle$$
$$C_b(t) = \int d^3 \vec{x} \langle T_{\mu\mu}(t, \vec{x}) T_{\nu\nu}(0) \rangle$$

Lattice calculation of shear & bulk viscocity

The first step:

Measurement of the correlation functions:

$$C_{sh}(t) = \int d^3 \vec{x} \langle T_{12}(t, \vec{x}) T_{12}(0) \rangle$$
$$C_b(t) = \int d^3 \vec{x} \langle T_{\mu\mu}(t, \vec{x}) T_{\nu\nu}(0) \rangle$$

The second step (analytical continuation): Calculation of the spectral function $\rho(\omega)$:

$$C(t) = \int_{0}^{\infty} d\omega \rho(\omega) \frac{ch\left(\frac{\omega}{2\tau} - \omega t\right)}{sh\left(\frac{\omega}{2\tau}\right)}$$
$$\eta = \pi \lim_{\omega \to 0} \frac{\rho_{sh}(\omega)}{\omega}$$
$$\zeta = \frac{\pi}{9} \lim_{\omega \to 0} \frac{\rho_{b}(\omega)}{\omega}$$

Details of the calculation

- SU(3) gluodynamics
- Two-level algorithm (only for gluodynamics)
- Lattice size $32^3 \times 16$
- Temperatures $T/T_c = 0.9, 0.925, 0.95, 1.0, 1.2, 1.35, 1.5$

• Accuracy
$$\sim 2-3\%$$
 at $t=rac{1}{2T}$

- For $\langle T_{12}(x)T_{12}(y)\rangle \sim (\langle T_{11}(x)T_{11}(y)\rangle \langle T_{11}(x)T_{22}(y)\rangle)$
- Clover discretization for the $\hat{F}_{\mu
 u}$
- Renormalization of EMT: F. Karsch, Nucl. Phys. B205 (1982) 285

Shear viscosity

Other lattice works

SU(3) gluodynamics:

- Karsch, F. et al., Phys.Rev. D35 (1987)
- A. Nakamura, S. Sakai, Phys. Rev. Lett. 94, 072305 (2005)
- H. B. Meyer, Phys.Rev. D76 (2007) 101701
- H. B. Meyer, Nucl.Phys. A830 (2009) 641C-648C

Results:

- $\frac{\eta}{s} = 0.134 \pm 0.033 \ (T/T_c = 1.65, 8 \times 28^3)$
- $\frac{\eta}{s} = 0.102 \pm 0.056 \ (T/T_c = 1.24, 8 \times 28^3)$
- $\frac{\eta}{s} = 0.20 \pm 0.03 \ (T/T_c = 1.58, 16 \times 48^3)$
- $\frac{\eta}{s} = 0.26 \pm 0.03 \ (T/T_c = 2.32, 16 \times 48^3)$

SU(2) gluodynamics:

▶
$$\frac{\eta}{s} = 0.134 \pm 0.057 \ (T/T_c = 1.2, 16 \times 32^3)$$

N.Yu. Astrakhantsev, V.V. Braguta, A.Yu. Kotov, JHEP 1509 (2015) 082

Correlation functions (shear viscosity)

Spectral function

$$C_{sh}(t) = \int_0^\infty d\omega \rho_{sh}(\omega) rac{ch\left(rac{\omega}{2T} - \omega t
ight)}{sh\left(rac{\omega}{2T}
ight)}$$

Properties of the spectral function:

•
$$\rho(\omega) \ge 0$$
, $\rho(-\omega) = -\rho(\omega)$

- Asymptotic freedom: $\rho(\omega)|_{\omega\to\infty}^{NLO} = \frac{1}{10} \frac{d_A}{(4\pi)^2} \omega^4 \left(1 \frac{5N_c \alpha_s}{9\pi}\right)$ ~ 90% of the total contribution t = 1/(2T)
- Hydrodynamics: $\rho(\omega)|_{\omega \to 0} = \frac{\eta}{\pi} \omega$

Spectral function

$$C_{sh}(t) = \int_0^\infty d\omega \rho_{sh}(\omega) rac{ch\left(rac{\omega}{2T} - \omega t
ight)}{sh\left(rac{\omega}{2T}
ight)}$$

Properties of the spectral function:

•
$$\rho(\omega) \ge 0$$
, $\rho(-\omega) = -\rho(\omega)$

- Asymptotic freedom: $\rho(\omega)|_{\omega\to\infty}^{NLO} = \frac{1}{10} \frac{d_A}{(4\pi)^2} \omega^4 \left(1 \frac{5N_c \alpha_s}{9\pi}\right)$ ~ 90% of the total contribution t = 1/(2T)
- Hydrodynamics: $ho(\omega)|_{\omega \to 0} = \frac{\eta}{\pi} \omega$

Ansatz for the spectral function (QCD sum rules motivation)

$$\rho(\omega) = \frac{\eta}{\pi} \omega \theta(\omega_0 - \omega) + A \rho_{lat}(\omega) \theta(\omega - \omega_0)$$

Lattice spectral function

Properties of the spectral function

• Hydrodynamical approximation works well up to $\omega < \pi T \sim 1 GeV$ (H.B. Meyer, arXiv:0809.5202)

Properties of the spectral function

- ► Hydrodynamical approximation works well up to $\omega < \pi T \sim 1 GeV$ (H.B. Meyer, arXiv:0809.5202)
- Asymptotic freedom works well from $\omega > 3~{
 m GeV}$

Properties of the spectral function

- ► Hydrodynamical approximation works well up to $\omega < \pi T \sim 1 GeV$ (H.B. Meyer, arXiv:0809.5202)
- Asymptotic freedom works well from $\omega > 3~{
 m GeV}$
- ▶ Poor knowledge of the spectral function in the region $\omega \in (1,3)$ GeV ⇒ Main source of uncertainty in the fitting procedure

Backus-Gilbert method for the spectral function

• Problem: find $\rho(\omega)$ from the integral equation

$$C(x_i) = \int_0^\infty d\omega \rho(\omega) K(x_i, \omega), \quad K(x_i, \omega) = \frac{ch\left(\frac{\omega}{2T} - \omega x_i\right)}{sh\left(\frac{\omega}{2T}\right)}$$

▶ Define an estimator $\tilde{\rho}(\bar{\omega})$ ($\delta(\bar{\omega}, \omega)$ - resolution function):

$$ilde{
ho}(ar{\omega}) = \int_0^\infty d\omega \hat{\delta}(ar{\omega},\omega)
ho(\omega)$$

• Let us expand $\delta(\bar{\omega},\omega)$ as

$$\delta(\bar{\omega},\omega) = \sum_{i} b_{i}(\bar{\omega})K(x_{i},\omega) \quad \tilde{\rho}(\bar{\omega}) = \sum_{i} b_{i}(\bar{\omega})C(x_{i})$$

Goal: minimize the width of the resolution function

$$b_{i}(\bar{\omega}) = \frac{\sum_{j} W_{ij}^{-1} R_{j}}{\sum_{ij} R_{i} W_{ij}^{-1} R_{j}},$$
$$W_{ij} = \int d\omega K(x_{i}, \omega) (\omega - \bar{\omega})^{2} K(x_{j}, \omega), R_{i} = \int d\omega K(x_{i}, \omega)$$

Regularization by the covariance matrix S_{ij}:

$$W_{ij}
ightarrow \lambda W_{ij} + (1-\lambda)S_{ij}, \quad 0 < \lambda < 1$$

Resolution function $\delta(0,\omega)$ ($T/T_c = 1.35$)

- \blacktriangleright Width of the resolution function $\omega/\mathit{T}\sim4$
- Hydrodynamical approximation works up to $\omega/T < \pi$
- Problem: large contribution from ultraviolet tail ($\sim 50\%$)

Solution:

Take ultraviolet contribution in the form:

$$\rho_{ultr} = A \rho_{lat}(\omega) \theta(\omega - \omega_0)$$

- Determine the value of the A comparing restored spectral function by BG and convolution of ρ_{ultr} with resolution function
- Subtract ultraviolet contribution and obtain η/s as a function of ω_0

 ω_0 ?

As an estimation take ω_0 from fitting procedure

Results

Bulk viscosity

Preliminary results

Bulk viscosity in two limits

- CHPT: A. Dobado, F.J. Llanes-Estrada, J.M. Torres-Rincon, Physics Letters B 702 (2011) 43
- Perturbative QCD: P. Arnold, C. Dogan, G. Moore, Physical Review D 74, 085021 (2006)

Low energy theorems of QCD

Previous lattice works (SU(3) gluodynamics)

A. Nakamura, S. Sakai Phys. Rev. Lett. 94, 072305 (2005)
 H. B. Meyer, Phys.Rev.Lett. 100 (2008) 162001

Correlation functions (bulk viscosity)

Correlation functions (shear & bulk viscosity)

Spectral function

$$C_b(t) = \int_0^\infty d\omega \rho_b(\omega) \frac{ch\left(rac{\omega}{2T} - \omega t
ight)}{sh\left(rac{\omega}{2T}
ight)}$$

Properties of the spectral function:

•
$$ho(\omega) \geq 0$$
, $ho(-\omega) = -
ho(\omega)$

- Asymptotic freedom: $\rho(\omega)|_{\omega \to \infty}^{NLO} = d_A \left(\frac{11\alpha_s}{(4\pi)^2}\right)^2 \omega^4$ compare with shear channel $\sim d_A \frac{1}{10(4\pi)^2} \omega^4$
- Hydrodynamics: $\rho(\omega)|_{\omega \to 0} = \frac{9}{\pi} \zeta \omega$

Perturbative part vs hydrodynamical part

In the region τ/a ~ β/2 hydrodynamics is dominant
 In the region τ/a ~ few perturbative contribution is dominant

Hydrodynamical approximation

$$C_{h}(\tau) = \int_{0}^{\infty} d\omega \rho_{h}(\omega) \frac{ch\left(\frac{\omega}{2\tau} - \omega\tau\right)}{sh\left(\frac{\omega}{2\tau}\right)}, \quad \rho_{h}(\omega) = \frac{9}{\pi} \zeta \omega \theta(\omega_{0} - \omega)$$

Middle point estimation of bulk viscosity

In the vicinity of the phase transition hydrodynamics works very well!

$$C_h\left(\frac{\beta}{2}\right) = \frac{9}{\pi} \zeta \int_0^{\omega_0} d\omega \frac{\omega}{sh\left(\frac{\omega}{2\tau}\right)}$$

ω₀ is varied within the interval 1.5 – 3 GeV

30

Backus-Gilbert method

Resolution function $\delta(0,\omega)$ ($T/T_c = 1.5, \lambda = 0.1$)

 \blacktriangleright Width of the resolution function $\omega/\mathit{T}\sim 5$

Removal of the ultraviolet contribution

Take ultraviolet contribution in the form:

$$\rho_{\textit{ultr}} = A \rho_{\textit{lat}}(\omega) \theta(\omega - \omega_0)$$

- Determine the value of the constant A from the $C(\tau/a=2)$
- Subtract ultraviolet contribution and obtain ζ/T^4 as a function of ω_0

Bulk viscosity vs ω_0

Bulk viscosity ζ/T^4 vs T (preliminary!)

Bulk viscosity ζ/s vs T (preliminary!)

Comparison with other approaches

- Agreement with other lattice studies
- Large deviation from perturbative results

Is QGP weakly or strongly coupled?

- \blacktriangleright Weakly coupled system $\zeta/\eta \sim (1-3 v_s^2)^2~(\chi^2/dof \sim 4)$
- ▶ Strongly coupled system $\zeta/\eta \sim (1 3v_s^2) \; (\chi^2/dof \sim 1)$
- $\blacktriangleright \zeta/\eta \geq rac{2}{3}(1-3
 u_s^2)$ (A. Buchel, Physics Letters B663, 286 (2008))

Results and Conclusions

- We calculated η/s & ζ/s for set of temperatures $T/T_c \in (0.9, 1.5)$
- Agreement with previous lattice results
- Large deviation from perturbative calculation
- QGP reveals the properties of strongly coupled system