Confinement-deconfinement transition in dense SU(2) QCD (Part II)

V. Braguta, V. Bornyakov, A. Kotov, I. Kudrov, A. Molochkov, A. Nikolaev

JINR, Dubna

12 July, 2017

Potential of static charges ($T \simeq 0$)

• We observe deconfinement in dense medium!

Braguta V.V. Study of dense SU(2) QCD

String tension

• The Cornell potential: $V(r) = A + \frac{B}{r} + \sigma r$

• The Cornell potential fit can be trusted for the $a\mu \leq 0.1$

Debye screening

$a\mu_q$	μ_q , MeV	B	$m_D a$	χ^2/dof
0.00	0.00	0.5307(89)	-0.1091(48)	10.689
0.05	135.14	0.4532(72)	-0.0380(46)	5.178
0.08	216.22	0.458(10)	0.0324(65)	3.889
0.09	243.25	0.4712(97)	0.0127(61)	3.316
0.10	270.27	0.4249(76)	0.0628(51)	2.753
0.15	405.41	0.474(13)	0.2355(81)	1.218
0.20	540.55	0.542(21)	0.390(12)	2.666
0.25	675.68	0.4662(89)	0.3645(56)	0.246
0.30	810.82	0.638(18)	0.6411(88)	0.316
0.35	945.96	0.641(21)	0.764(10)	0.135
0.40	1081.1	0.590(19)	0.8479(98)	0.153
0.45	1216.23	0.404(15)	0.742(11)	0.033
0.50	1351.37	0.2851(92)	0.5847(94)	0.047

- Debye potential $V(r) = A + \frac{B}{r}e^{-m_D r}$
- The Debye potential fit is good for the $a\mu \geq 0.25$

Spatial potential V(r)

Braguta V.V. Study of dense SU(2) QCD

Spatial string tension

• Deconfimenent at $a\mu > 0.25 - 0.3?$

- We observe deconfinement in dense medium
- Difficult to determine critical chemical potential
 - From Debye screening $a\mu \ge 0.25$
 - From spatial string tension $a\mu \ge 0.25 0.3$
- It is not possible to determine the critical chemical potential from susceptibilities

- We observe deconfinement in dense medium
- Difficult to determine critical chemical potential
 - From Debye screening $a\mu \ge 0.25$
 - From spatial string tension $a\mu \ge 0.25 0.3$
- It is not possible to determine the critical chemical potential from susceptibilities

Is this really deconfinement rather than string breaking?

- We observe deconfinement in dense medium
- Difficult to determine critical chemical potential
 - From Debye screening $a\mu \ge 0.25$
 - From spatial string tension $a\mu \ge 0.25 0.3$
- It is not possible to determine the critical chemical potential from susceptibilities

Is this really deconfinement rather than string breaking?

We are going to study Abelian Monopoles

Details of the simulation (present study):

- Tree-level improved gauge action
- a = 0.073 fm ($\sqrt{\sigma} = 440$ MeV) present study: $\sqrt{\sigma}a = 0.16$ previous study: $\sqrt{\sigma}a = 0.29$ \Rightarrow closer to continuum limit
- $m_{\pi} = 434(24)$ MeV $(m_{\pi}L_s \simeq 5)$ new study: $m_{\pi}L_s \simeq 5$ previous study: $m_{\pi}L_s \simeq 3$ \Rightarrow Smaller final volume effects
- Lattices

•
$$32^3 \times 32 \ (T \simeq 0)$$

•
$$32^3 \times 24$$
 ($T \simeq 115$ MeV)

- $32^3 imes 16$ ($T \simeq 180$ MeV)
- $32^3 \times 8$ ($T \simeq 350$ MeV)

• Fixed λ parameter

Preliminary results!

Maximal Abelian gauge

- SU(2) QCD $\hat{A} = A_1\hat{\sigma}_1 + A_2\hat{\sigma}_2 + A_3\hat{\sigma}_3$, $\sigma_{1,2,3}$ -Pauli matrices
- Choose \hat{A} maximally diagonal: max_{Ω} $R(A^{\Omega}), \quad R(A) = -\int d^4x (A_1^2 + A_2^2)$
- $\Omega_0 = diag(e^{-i\alpha(x)}, e^{i\alpha(x)})$ does not change R(A)
- Gauge transformation: $A_{\pm} \rightarrow e^{\pm 2i\alpha}A_{\pm}$ $(A_{\pm} = A_1 \pm iA_2)$, $A_3 \rightarrow A_3 - \frac{1}{g}\partial\alpha$
- Substitute $\hat{A} \rightarrow A_3$
- Instead of the SU(2) we study U(1)
- In U(1) monopoles can be defined

Abelian dominance

Model of dual superconductor

Condensation of monopoles

Basic facts about Abelian monopoles:

- Percolation cluster (confinement/deconfinement transition)
- Small monopole loops (virtual particles)
- Wrapped monopole trajectories (real particles)
- Wrapped monopoles at high temperature are connected with spatial string tension

One can use Abelian monopoles to study confinement/deconfinement transition

The length of percolation cluster

- Percolation cluster disappears in the region $a\mu \in (0.2, 0.3)$
- Deconfinement transition $a\mu \in (0.2, 0.3)$

Total length of nonpercolation clusters

- Total length is practically insensitive to the value of chemical potential
- Physics at small distances does not feel density

Magnetic screening mass

- In perturbative QCD there is no magnetic screening mass
- There is nonperturbative magnetic screening mass at high temperature $(m_M \sim g^2 T)$
- One can expect that there is no magnetic mass in dense medium (D. T. Son, Phys. Rev. D59, 094019)
- The question of (non)existence of magnetic mass is important

•
$$m_M \neq 0$$
: $\Delta \sim \Lambda \exp\left(-\frac{3\pi^2 \Lambda^2}{2\mu^2 g^2}\right)$

•
$$m_M = 0$$
: $\Delta \sim \mu g^{-5} \exp\left(-\frac{3\pi^2}{\sqrt{2}g}\right)$

Density of wrapped clusters rises (Why?)

• Density of wrapped clusters rises (Why?)

At large temperatures monopoles are static (magnetic!)

- Density of wrapped clusters rises (Why?)
- At large temperatures monopoles are static (magnetic!)
- Characteristic size of moopoles $\langle r^2
 angle \leq 1/m_M^2$ (m_M^2 magnetic screening mass)

- Density of wrapped clusters rises (Why?)
- At large temperatures monopoles are static (magnetic!)
- Characteristic size of moopoles $\langle r^2 \rangle \leq 1/m_M^2$ (m_M^2 magnetic screening mass)

•
$$m_M^2 = c_1(g^2T)^2 + c_2(g^n\mu)^2 \Rightarrow c_2 = 0$$

- Density of wrapped clusters rises (Why?)
- At large temperatures monopoles are static (magnetic!)
- Characteristic size of moopoles $\langle r^2
 angle \leq 1/m_M^2$ (m_M^2 magnetic screening mass)

•
$$m_M^2 = c_1 (g^2 T)^2 + c_2 (g^n \mu)^2 \Rightarrow c_2 = 0$$

There is no magnetic mass in dense medium!

- Density of wrapped clusters rises (Why?)
- At large temperatures monopoles are static (magnetic!)
- Characteristic size of moopoles $\langle r^2
 angle \leq 1/m_M^2$ (m_M^2 magnetic screening mass)

•
$$m_M^2 = c_1(g^2T)^2 + c_2(g^n\mu)^2 \Rightarrow c_2 = 0$$

- There is no magnetic mass in dense medium!
- Why density rises?

- Density of wrapped clusters rises (Why?)
- At large temperatures monopoles are static (magnetic!)
- Characteristic size of moopoles $\langle r^2
 angle \leq 1/m_M^2$ (m_M^2 magnetic screening mass)

•
$$m_M^2 = c_1(g^2T)^2 + c_2(g^n\mu)^2 \Rightarrow c_2 = 0$$

- There is no magnetic mass in dense medium!
- Why density rises? $m_M^2 = c_1(g^2T)^2 \rightarrow m_M^2 = c_1(g^2(\mu)T)^2$

- Density of wrapped clusters rises (Why?)
- At large temperatures monopoles are static (magnetic!)
- Characteristic size of moopoles $\langle r^2
 angle \leq 1/m_M^2$ (m_M^2 magnetic screening mass)

•
$$m_M^2 = c_1(g^2T)^2 + c_2(g^n\mu)^2 \Rightarrow c_2 = 0$$

- There is no magnetic mass in dense medium!
- Why density rises? $m_M^2 = c_1(g^2T)^2 \rightarrow m_M^2 = c_1(g^2(\mu)T)^2$
- Rise of density is connected with asymptotic freedom

- Manifistation of the deconfimenent in the region $a\mu\sim 0.3$
- Decrease of the monopole density for $a\mu \ge 0.3$
- No magnetic screening mass, but there is electric screening mass $m_E^2 = c_3 (g \mu)^2$
- One can expect that monopole trajectories become more static

• Monopole trajectories become more static

- We observe few manifestations of deconfinement in the region $a\mu \in (0.2, 0.3)$
 - Disappearence of percolation cluster
 - Density of wrapped clusters
- Confirmation of zero magnetic screening mass

- We observe few manifestations of deconfinement in the region $a\mu \in (0.2, 0.3)$
 - Disappearence of percolation cluster
 - Density of wrapped clusters
- Confirmation of zero magnetic screening mass

Confirmation confinement/deconfinement transition in dense medium!