

In-medium heavy quarkonium spectral properties from lattice QCD effective field theories

Alexander Rothkopf Institute for Theoretical Physics Heidelberg University

in collaboration with S. Kim (Sejong-U.) and P. Petreczky (BNL)

References:

with S.Kim and P. Petreczky PRD91 (2015) 054511, NPA956 (2016) 713 arXiv:1704.05221

International Mini-Workshop on "Lattice and Functional Techniques for Exploration of Phase Structure and Transport Properties in Quantum Chromodynamics" – JINR, Dubna, Russian Federation – July 10th 2017

D

00000

Motivation: Heavy-Ion Collisions

Hard probes: susceptible to medium but distinguishable from it Q_{probe} > T_{med}

Bound states of $c\bar{c}$ or $b\bar{b}$: Heavy quarkonium $M_Q > T_{med}$

In vacuum: m^{γ} =9.460GeV, Γ^{γ} = 54(1)keV; $m^{J/\psi}$ =3.096 GeV, $\Gamma^{J/\psi}$ = 93(3)keV

Goal: First principles insight into heavy quarkonium in heavy-ion collisions

A first-principles scenario

T. Matsui and H. Satz: Phys.Lett. B178 (1986) 416

Kinetically equilibrated heavy quarks presence of in-medium bound eigenstates? answered by inspecting spectral functions 48³x12 m_π=161MeV T_{PC}=159MeV Fixed box: β =6.664-7.825

T = [140 – 407] MeV

T=0 configs for calibration 48³x48,64

HotQCD PRD85 (2012) 054503, PRD90 (2014) 094503

Heavy Quarks on the Lattice

 $\bar{q}(x), q(x), A^{\mu}(x)$

Effective field theory from scale separation:

QCD

Dirac fields

Relativistic thermal

field theory

Brambilla et. al. Rev.Mod.Phys. 77 (2005) 1423

 $\frac{\Lambda_{\rm QCD}}{m_{\rm O}} \ll 1, \quad \frac{T}{m_{\rm O}} \ll 1, \quad \frac{p}{m_{\rm O}} \ll 1$ NRQCD $L_{NRQCD} =$ Pauli fields $\bar{Q}(x), Q(x)$ $\chi^{\dagger}(x), \chi(x)$ $\chi^{\dagger} \big(i D_t + \frac{D_i^2}{2M_0} + \dots \big) \chi + \xi^{\dagger} \big(\dots \big) \xi$ $\xi^{\dagger}(\mathbf{x}), \xi(\mathbf{x})$ $-\frac{1}{4}F^{\mu\nu}F_{\mu\nu}+\bar{q}(\ldots)q$

- Individual Q or anti-Q in a medium background: Initial value problem $G(\tau) = \langle \chi(\tau) \chi^{\dagger}(0) \rangle$ $\begin{aligned} G(\mathbf{x}, \tau + a) &= U_4^{\dagger}(\mathbf{x}, \tau) \left(1 - \frac{\mathbf{p}_{lat}^2}{4M_O an} + \dots\right)^n G(\mathbf{x}, \tau) \\ \text{Davies, Thacker Phys.Rev. D45 (1992)} \end{aligned}$ adaptive discretization in time with Lepage parameter n
- $^{3}S_{1}(\Upsilon)$ and $^{3}P_{1}(\chi_{b1})$ channel correlators D(τ) from products of heavy quark propagators G(τ) $D(\tau) = \sum \langle O(\mathbf{x}, \tau) G_{\mathbf{x}\tau} O^{\dagger}(\mathbf{x}_{0}, \tau_{0}) G_{\mathbf{x}\tau}^{\dagger} \rangle_{med} \qquad O(^{3}S_{1}; \mathbf{x}, \tau) = \sigma_{i}, \quad O(^{3}P_{1}; \mathbf{x}, \tau) = \stackrel{\leftrightarrow}{\Delta_{i}} \sigma_{j} - \stackrel{\leftrightarrow}{\Delta_{j}} \sigma_{i}$ Thacker, Lepage Phys.Rev. D43 (1991)
- Applicability of NRQCD differs for heavier and lighter flavors (bb: n=4, cc:n=8) M_ba= [2.759 – 0.954] - T= [140 – 407] MeV M_a= [0.757 – 0.42] - T= [140 – 251] MeV

T=0 correlators in NRQCD

For both Bottomonium and Charmonium clear ground state signal at T=0

Accessing spectral functions

Inversion of Laplace transform required to obtain spectra from correlators

$$D(\mathbf{D})_{i} = \sum_{\ell=1}^{N} \exp[-\mathbf{d}_{\mathcal{U}} \mathbf{e}_{i}] \mathcal{P}_{l}^{\omega} \mathbf{A}(\mathbf{e}_{\ell})$$

I. N_{ω} parameters $\rho_I >> N_{\tau}$ datapoints

2. data D_i has finite precision

Give meaning to problem by incorporating prior knowledge: Bayesian approach M. Jarrell, J. Gubernatis, Physics Reports 269 (3) (1996)

Bayes theorem: Regularize the naïve χ^2 functional P[D|ho] through a prior P[ho|I] $P[
ho|D,I]\propto P[D|
ho]$ P[ho|I]

• New prior enforces: ρ positive definite, smoothness of ρ , result independent of units

$$P[\rho|I] \propto e^{S} \qquad S = \alpha \sum_{l=1}^{N_{\omega}} \Delta \omega_l \Big(1 - \frac{\rho_l}{m_l} + \log \Big[\frac{\rho_l}{m_l} \Big] \Big) \qquad \begin{array}{c} \text{Y.Burnier, A.R.} \\ \text{PRL III (2013) 18, 182003} \end{array}$$

Different from Maximum Entropy Method: S not entropy, no more flat directions

$$\frac{\delta}{\delta\rho} \mathsf{P}[\rho|\mathsf{D},\mathsf{I}] \bigg|_{\rho=\rho^{\mathsf{B}\mathsf{R}}} = \mathsf{0}$$

An improved Bayesian strategy

ISOQUANT SFB1225

First lever: improve the data on which inverse problem is based

$$D(\tau) = \int_{-2M_Q}^{\infty} d\omega e^{-\tau \omega} \rho(\omega) \qquad \text{Fourier} \qquad D(\mu) = \int_{0}^{\infty} d\omega \frac{2\omega}{\omega^2 + \mu^2} \rho(\omega)$$

Improvement: incorporate both Euclidean and imaginary frequency data in unfolding

Second lever: develop improved regulators to better assess systematics

Standard BR method (BRFT)

 $S_{BR} = \alpha \int d\omega \big(1 - \frac{\rho}{m} + \log \big[\frac{\rho}{m}\big]\big)$

 Resolves narrow peaked structures with high accuracy

Y. Burnier, A.R. PRL 111 (2013) 182003

 Ringing in broad structures if reconstructed from small # of datapoints *New* low ringing BR method

$$\log\left[\frac{\rho}{m}\right]$$

- $S_{BR}^{lr} = \alpha \int d\omega \left(\left(\frac{\partial \rho}{\partial \omega} \right)^2 + 1 \frac{\rho}{m} + \log \left[\frac{\rho}{m} \right] \right)$
- Introduces penalty on arc length of reconstruction (dL/dw)²=I+(dp/dw)²
- Efficiently removes ringing but may lead to overestimated peak widths

Calibrating Bayesian spectra at T=0

International Mini-Workshop – JINR, Dubna, Russian Federation – July 10th 2017

S.Kim, P.Petreczky, A.R. in preparation

— β=7.280 $\beta = 6.740$ — β=7.373 - *β*=6.800 β=6.880 — β=7.596 .950 β=7.825 030 $\chi_b {}^3P_1$ 12 13 15 11 14 16 ω [GeV] $\chi_b({}^{3}P_1) @ T \simeq 0, n=4$ *m*_{χ_b}=9.9147±0.0013GeV NRQCD Bayes NRQCD Bayes Fit PDG 9.86 6.8 7.0 7.6 7.8 7.2 7.4 β 8

ISOQUANT

— β=7.150

χ_b (³*P*₁) BRFT @ T≈0, n=4

β=6.664

SFB1225

Taking control of systematics I

The "high-gain" BR method resolves the T=0 ground state very well from N_τ=48-64 points

Bow does accuracy suffer from limited available information at T>0 (N_{τ} =12)?

Systematic shift of peaks to higher frequencies, as well as broadening. needs to be accounted for when analyzing T>0 spectra

ISOQUANT Taking control of systematics II Free β =6.664 Bottomonium T=0 β =6.664 Bottomonium 10r BRF1B**'Ro**₩T–gain' 2.0 "high-gain" BRFT Analytic 8 "low-gain" BRFT $\rho_{\gamma}^{\text{free BRFTNL}}(\omega)$ 1.5 $ho_{ extsf{BRFT}}^{Tst 0}(\omega)$ 6 1.0 0.5 2 0.0 2 6 8 8 10 4 12 14 10 16 ω [GeV] ω [GeV]

Standard "high-gain" BR on small (N_{τ} =12) simulation datasets suffers from ringing

- New "low-gain" BR removes ringing from reconstructed analytic free spectra at low ω
- New "low-gain" BR method still identifies presence of peaks encoded in data
- Strategy: Test with "low-gain" reconstruction whether peaks are genuine - Use "high-gain" reconstruction to extract peak features, e.g. position

T>0 effects in $Q\bar{Q}$ correlators

- Upsilon shows non-monotonous behavior around T~T_C (bb 3SI channel contains most excited states)
- Hierarchical T>0 modification w.r.t. vacuum binding energy

 E_{bind} (T=0)~640MeV 1.07₁ 1.06 1.05 6.5% =251MeV 0^{1.04} ^{0¹/₄X</sub> 0^{1.03} ^{0⁴/₄X</sub> 1.03}} 1.01 1.00 $\chi_b({}^{3}P_1)$ @ T>0, n=4 0.8 1.2 1.4 0.0 0.2 0.6 1.0 0.4 τ [fm] 1.07 1.06 **5%** @ 1.05 T=251№ 0^{2⊥}*D*/0^{1.04} *m*//*D*/0^{1.03} 1.02 1.01 1.00 J/ψ(³S₁) @ T>0, n=8 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

τ [fm]

E_{bind} (T=0)~200MeV

NRQCD S-wave spectra at T>0

Ground state well resolved and well separated from higher lying structures

- Combining Euclidean and imaginary frequency data reduces ringing at large ω
- Gradual broadening and shifting of lowest lying peak visible

Presence of ground state signals?

New "low-gain" BR method shows gradual weakening of ground state signal

At highest temperature in individual channels: weak ground state remnants remain visible

Upsilon signal up to T=407MeV Faint J/ ψ signal up to T=251MeV

In-medium S-wave mass shifts

Naïve inspection of in-medium modification appears to show increasing masses

BR method systematics: Low number of datapoints introduces shifts to larger masses

Actual in-medium effect: lowering of bound state mass, consistent with potential studies International Mini-Workshop – JINR, Dubna, Russian Federation – July 10th 2017 NRQCD P-wave spectra at T>0

- Lower signal to noise ratio in underlying correlators makes reconstruction less precise
- Ground state well resolved and well separated from higher lying structures
- Gradual broadening and shifting of lowest lying peak visible

International Mini-Workshop – JINR, Dubna, Russian Federation – July 10th 2017

ISOQUANT

SFB1225

Survival of ground state signals?

New "low-gain" BR method shows gradual weakening of ground state signal

Genuine bound state signal lost at intermediate temperatures

 χ_b signal up to T=273MeV χ_c signal up to T=185MeV

In-medium P-wave mass shifts

- Naïve inspection of in-medium modification appears to show increasing masses
- BR method systematics: Low number of datapoints introduces shifts to larger masses

Actual in-medium effect: lowering of bound state mass, consistent with potential studies International Mini-Workshop – INR, Dubna, Russian Federation – July 10th 2017 17

- B Heavy-ion experiments: Intricate quarkonium phenomenology
- Direct access to in-medium quarkonium from first principles: lattice NRQCD S.Kim, P. Petreczky, A.R.: Phys.Rev. D91 (2015) 54511, Nucl.Phys. A956 (2016) 713 and arXiv:1704.05221
 - Progress I: HotQCD lattices provide higher statistics and larger temperature range
 - Progress II: Improved Bayesian spectral reconstruction reduces methods uncertainties
 - **Progress III:** Extension of our previous study to charmonium at finite temperature
- Updated in-medium results for quarkonium in lattice NRQCD:
 - Verified sequential in-medium modification of correlators according to vacuum E_{bind}
 - First quantitative determination of in-medium shifts to lower masses

Thank you for your attention - Благодарю вас за внимание

Previous lessons from the lattice $V_{Q\bar{Q}}$

QQ states suffer from a hierarchical in-medium modification w.r.t. vacuum binding energy

- In-medium states take on lower masses and show increased thermal widths
- Quarkonium melting is a gradual process: defining T_{melt} is ambiguous, popular E_{bind}=Γ_{therm}
- Deservables from in-medium spectra: ψ' / J/ψ ratio and P-wave feed-down estimated Y.Burnier, O.Kaczmarek, A.R. JHEP 1512 (2015) 101, JHEP 1610 (2016) 032

ψ to J/ ψ ratio from T>0 spectra

- "How many vacuum states do the in-medium peaks correspond to?"
- Number density: divide in-medium by T=0 dimuon emission rate:

$$\frac{N_{\Psi'}}{N_{J/\Psi}} = \frac{R_{\ell\bar{\ell}}^{\Psi'}}{R_{\ell\bar{\ell}}^{J/\Psi}} \frac{M_{\Psi'}^2 |\Phi_{J/\Psi}(0)|^2}{M_{J/\Psi}^2 |\Phi_{\Psi'}(0)|^2}$$

Y.Burnier, O. Kaczmarek, A.R.
JHEP 1512 (2015) 101

- Assume instantaneous freezeout: T>0 states convert to real vacuum particles at around T_C
- In-medium dilepton emission from area under spectral resonance peaks

$$R_{\ell\bar{\ell}} \propto \int dp_0 \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \frac{\rho(P)}{P^2} n_B(p_0)$$
(to leading order $\rho(P) = \rho(p_0^2 - \mathbf{p}^2)$)

First preliminary ALICE data

