QCD phase structure

and

Heavy Ion Collisions

V. Bornyakov, D. Boyda, V. Goy, H.Iida, A. Molochkov, A.Nakamura, A. Nikolaev, M.Wakayama and V. I. Zakharov

Lattice and Functional Techniques for Exploration of Phase Structure and Transport Properties in Quantum Chromodynamics

Dubna, 10-14 July 2017
V. Bornyakov, D. Boyda, V. Goy, A. Nikolaev

H.Iida

M.Wakayama
A.Nakamura

V. I. Zakharov

Main Message

that I want to show in this Talk

your idea is understood.
But I use
only Statistical Mechanics !?

Because your Approach is
L.M.
different

Lattice QCD simulations provide
the fundamental information as a first principle calculation. However, Sign Problem in Finite Density lattice QCD prevents our mission.

Monte Carlo

 Impossibe ?!
QCD at finite density

μ : Chemical Potential

$$
\begin{gathered}
Z=\operatorname{Tr} e^{-\beta(H-\mu N)}=\int \mathcal{D} U \mathcal{D} \bar{\psi} \mathcal{D} \psi e^{-\beta S_{G}-\bar{\psi} \Delta \psi} \\
=\int \mathcal{D} U \prod_{f} \operatorname{det} \Delta(\mu) e^{-\beta S_{G}}
\end{gathered}
$$

$$
\Delta(\mu)=D_{\nu} \gamma_{\nu}+m+\mu \gamma_{0}
$$

$$
\Delta(\mu)^{\dagger}=-D_{\nu} \gamma_{\nu}+m+\mu^{*} \gamma_{0}=\gamma_{5} \Delta\left(-\mu^{*}\right) \gamma_{5}
$$

$$
(\operatorname{det} \Delta(\mu))^{*}=\operatorname{det}_{6 / 59} \Delta(\mu)^{\dagger}=\operatorname{det} \Delta\left(-\mu^{*}\right)
$$

$(\operatorname{det} \Delta(\mu))^{*}=\operatorname{det} \Delta(\mu)^{\dagger}=\operatorname{det} \Delta\left(-\mu^{*}\right)$
For $\mu=0$

$$
\begin{aligned}
(\operatorname{det} \Delta(0))^{*} & =\operatorname{det} \Delta(0) \\
\operatorname{det} \Delta & \square \text { Real }
\end{aligned}
$$

For $\mu \neq 0 \quad$ (in general)

$$
\begin{aligned}
& \operatorname{det} \Delta \square \text { Complex } \\
& Z=\int \mathcal{D} U_{1}^{i} \prod_{f-\cdots \cdots} \operatorname{det} \Delta\left(m_{f}, \mu_{f}\right)^{\prime} e^{-\beta S_{G}} \\
& \text { Complex }
\end{aligned}
$$

$$
\langle O\rangle=\frac{1}{Z} \int \mathcal{D} U O \operatorname{det} \Delta e^{-\beta S_{G}}
$$

In Monte Carlo simulation, configurations are generated according to the Probability:

$$
\begin{gathered}
\operatorname{det} \Delta e^{-\beta S_{G}} / Z \\
\operatorname{det} \Delta: \text { Complex }
\end{gathered}
$$

Monte Carlo Simulations very difficult !

$$
\begin{gathered}
\langle O\rangle=\frac{\int D U O \operatorname{det} \Delta e^{-S_{G}}}{\int D U \operatorname{det} \Delta e^{-S_{G}}} \\
\operatorname{det} \Delta=|\operatorname{det} \Delta| e^{i \theta} \\
\langle O\rangle=\frac{\int D U O|\operatorname{det} \Delta| e^{i \theta} e^{-S_{G}}}{\int D U|\operatorname{det} \Delta| e^{-S_{G}}} \times \frac{\int D U|\operatorname{det} \Delta| e^{-S_{G}}}{\int D U|\operatorname{det} \Delta| e^{i \theta} e^{-S_{G}}} \\
=\frac{\left\langle O e^{i \theta}\right\rangle_{|\operatorname{det}|}}{\left\langle e^{i \theta}\right\rangle_{|\operatorname{det}|}}
\end{gathered}
$$

Origin of the Sign Problem

Wilson Fermions $\Delta=I-\kappa Q$

KS(Staggered) Fermions $\quad \Delta=m-Q_{1}^{\prime}$ $=m\left(I-\frac{1}{m} Q\right)$

$$
Q=\sum_{i=1}^{3}\left(Q_{i}^{+}+Q_{i}^{-}\right)+\left(e^{+\mu} Q_{4}^{+}+e^{-\mu} Q_{4}^{-}\right)
$$

$$
\begin{aligned}
Q_{\mu}^{+} & =* * U_{\mu}(x) \delta_{x^{\prime}, x+\hat{\mu}} \\
Q_{\mu}^{-} & =* * U_{\mu}^{\dagger}\left(x^{\prime}\right) \delta_{10} x^{\prime}, x-\hat{\mu}
\end{aligned}
$$

$\operatorname{det} \Delta=e^{\operatorname{Tr} \log \Delta}=e^{\operatorname{Tr} \log (I-\kappa Q)}$

$$
=e^{-\sum_{n} \frac{1}{n} \kappa^{n} \operatorname{Tr} Q^{n}}
$$

Hopping Parameter expansion or 1/(Large Mass) expansion

Only closed loops remain.
The lowest μ dependent terms

$$
\kappa^{N_{t}} e^{\mu N_{t}} \operatorname{Tr}\left(Q^{+} \ldots Q^{+}\right)
$$

$$
\begin{gathered}
=* * \kappa^{N_{t}} e^{\mu / T} \operatorname{Tr} L \\
\kappa^{N_{t}} e^{-\mu N_{t}} \operatorname{Tr}\left(Q^{-} \cdots Q^{-}\right) \\
=* * \kappa^{N_{t}} e^{-\mu / T} \operatorname{Tr} L^{\dagger}
\end{gathered}
$$

$\operatorname{Tr} L$: Polyakov Loop
Add the both

There are several cases where no Sign Problem occurs

© Pure Imaginal chemical potential
$Q(\operatorname{det} \Delta(\mu))^{*}=\operatorname{det} \Delta\left(-\mu^{*}\right)$
${ }_{\text {\& }} \underset{\text { Color }}{\mu=i}=$
$\left(\operatorname{det} \Delta\left(\mu_{I}\right)\right)^{*}=\operatorname{det} \Delta\left(\mu_{I}\right)$
(9) $U_{\mu}^{*}=\sigma_{2} U_{\mu} \sigma_{2}$
$\operatorname{det} \Delta\left(U, \gamma_{\mu}\right)^{*}=\operatorname{det} \Delta\left(U^{*}, \gamma_{\mu}^{*}\right)=\operatorname{det} \sigma_{2} \Delta\left(U, \gamma_{\mu}^{*}\right) \sigma_{2}$ $=\operatorname{det} \Delta\left(U, \gamma_{\mu}\right)$
$\$$ Finite iso-spin

$$
\begin{aligned}
& \mu_{d}=-\mu_{u} \\
& \operatorname{det} \Delta\left(\mu_{u}\right) \operatorname{det} \Delta\left(\mu_{d}\right)=\operatorname{det} \Delta\left(\mu_{u}\right) \operatorname{det} \Delta\left(-\mu_{u}\right) \\
& =\operatorname{det} \Delta\left(\mu_{u}\right) \operatorname{det} \Delta\left(\mu_{u}\right)^{*}=\left|\operatorname{det} \Delta\left(\mu_{u}\right)\right|^{2}
\end{aligned}
$$

Pion-Condensation Problem

Phase Quench = Finite-Isospin

$$
\begin{gathered}
\int|\operatorname{det} \Delta(\mu)|^{2} e^{-S_{G}}=\int \operatorname{det} \Delta(\mu) \operatorname{det} \Delta(\mu)^{*} e^{-S_{G}} \\
=\int \operatorname{det} \Delta(\mu) \operatorname{det} \Delta(-\mu) e^{-S_{G}} \\
=\int \operatorname{det} \Delta\left(\mu_{u}\right) \operatorname{det} \Delta\left(\mu_{d}\right) e^{-S_{G}} \\
\mu_{u}=\mu, \quad \mu_{d}=-\mu
\end{gathered}
$$

$$
\text { For } \mu>\frac{m_{\pi}}{2}
$$

Objective of

Vladivostok Group

We assume the Fireballs created in High Energy Nuclear Collisons are described as a Statistical System.

with μ (chemical Potential) and T (Temperature)

$$
Z(\mu, T)
$$

Grand Canonical
Partition Function

This Statistical Description is good at least as a first approximation
with Two Parameters Chemical Potential, μ and Temperature, T
$Z_{G C}(\mu, T)$ Grand Canonical Partition Function

Alternative: Number, n and Temperature, T
$Z_{C}(n, T) \quad$ Canonical Partition Function

Our Tool

Canonical Approach Not so well-known

From

Experiments

Advantage to use

IWe can construct (approximate) Z_{n} from experimental Baryon number and Charge Distributions.
We can circumvent the sign problem in Lattice QCD.
\&We can construct Grand Partition Function $Z(\mu, T)$ from Z_{n}
§New approach, i.e., Challenging!

They are equivalent and related as

$$
\begin{aligned}
Z(\xi, T) & =\sum_{n} Z_{n}(T) \xi^{n} \\
& \xi \equiv e^{\mu / T} \text { Fugacity }
\end{aligned}
$$

Quick Proof of

Fugacity Expansion

$$
Z(\mu, T)=\sum Z_{n}(T)\left(e^{\mu / T}\right)^{n}
$$

(Left Hand Side) $=\operatorname{Tr} e^{-(H-\mu N) / T}$

This is a very useful relation.

The partition function stands for the Probability

$$
Z_{G C}(\mu, T)=\sum_{n} Z_{n}(T) \xi^{n}
$$

System with μ and T

Probability to find (net-)baryon number= n

We extract Z_{n} from experimental multiplicity at RHIC

$P_{n}=Z_{n} \xi^{n}$
(ξ) unknown
$\left(\xi \equiv e^{\mu / T}\right)$

$$
Z_{n}=P_{n} / \xi^{n}
$$

Z_{n} satisfies

$$
Z_{+n}=Z_{-n}
$$

(Particle-AntiParticle Symmetry)

$$
\left\{\begin{array}{l}
P_{n}=c Z_{n} \xi^{n} \\
P_{-n}=c Z_{-n} \xi^{-n}
\end{array}\right.
$$

$$
P_{n} P_{-n}=c^{2} Z_{n} Z_{-n} \xlongequal{=z_{+n}^{2} Z_{n}^{2}}
$$

$$
\text { or } \sqrt{P_{n} P_{-n}}=c Z_{n}
$$

$$
\xi^{n}=\frac{P_{n}}{c Z_{n}}=\frac{P_{n}}{\sqrt{P_{n} P_{-n}}} \quad \xi \xi=\left(\sqrt{\frac{P_{n}}{P_{-n}}}\right)^{1 / n}
$$

Here we demand $Z_{+n}=Z_{-n}$

25/59

Fitted ξ are very consistent with those by Freeze-out Analysis.

Z_{n} from RHIC data

Very useful relation, because

$$
Z(\xi, T)=\sum_{n} Z_{n}(T) \xi^{n}
$$

$$
\left(\xi \equiv e^{\mu / T}: \text { Fugacity }\right)
$$

$$
Z(\xi, T)
$$

$$
\text { at some } \xi \text { and } T
$$

$$
Z(\xi, T) \text { at ANY } \xi
$$

for both Experiments and Lattice

