Topology
 in hot QCD with a dynamical charm (and axion physics)

INFN

Istituto Nazionale di Fisica Nucleare

M.P. Lombardo

in collaboration with
A. Trunin, F. Burger, E.-M. Ilgenfritz, M. Muller-Preussker

Temperatures:

$150 \mathrm{MeV}<\mathrm{T}<500 \mathrm{MeV}$

> ..and beyond

Quark Gluon Plasma:

E.-M. Ilgenfritz's talk.

Time from Big Bang

Temperatures

$150 \mathrm{MeV}<\mathrm{T}<500 \mathrm{MeV}$
..and beyond

Quark Gluon Plasma: E.-M. Ilgenfritz's talk.

The Equation of State of the Quark Gluon Plasma paves the way to Cosmology
Cold Dark Matter candidates might have been created after the inflation
Several CDM candidates are highly speculative - but one, the axion, is
Theoretically well motivated in QCD
Amenable to quantitative estimates once QCD topological properties are known:

Post-inflationary axions

$$
\mathrm{m}_{\mathrm{a}}(\mathrm{~T})=\sqrt{\chi(T)} / f_{a}
$$

The two faces of QCD topology

Window to Axions
Property of Quark Gluon Plasma

Friday's talk
Today's talk

QCD topology, long standing focus of strong interaction:
-learning about the structure of the (s)QGP
-fundamental symmetries, strongCP problem $->$ axions -hampered by technical difficulties

Recent developments:
-methodological progress: gradient flow, chiral fermions -first results for dynamical fermions at high temperature:

Trunin et al. J.Phys.Conf.Ser. 668 (2016) no.1, 012123
Bonati et al. JHEP 1603 (2016) 155
Borsany et al. Nature 539 (2016) no.7627, 69-71
Petreczky et al. Phys.Lett. B762 (2016) 498-505

+ work in progress
Burger et al. Nucl. Phys. A, in press
Taniguchi et al. Phys.Rev. D95 (2017) no.5, 054502

Outline
 - Lattice setup

- Results:
$\chi_{\text {top }}$ - Gluonic operator and gradient flow
$\chi_{t o p}$ - Fermionic operator
-Comments/outlook

Our setup at a glance

Talk by E.M. Ilgenfritz Hot QCD and Nf 2+1+1 twisted mass

Why $N f=2+1+1$? Why Wilson twisted?

QCD Symmetries, lattice and the real world

Why $\mathrm{Nf}=2+1+1$?

Quark Gluon Plasma @ Colliders

Analytic studies suggest that a dynamical charm becomes relevant above 400 MeV , well within the reach of LHC

Laine Schroeder 2006

Fixed varying scale	For each lattice spacing we explore	Setup						
	temperatures 150 MeV - 500	$\begin{gathered} T=0(\text { ETMC }) \\ \text { nomenclature } \end{gathered}$	β	$a[\mathrm{fm}][6]$	N_{σ}^{3}	N_{τ}	$T[\mathrm{MeV}]$	\# confs.
	MeV by varying Nt					5 6	$422(17)$ $351(14)$	$\begin{gathered} \hline 585 \\ 1370 \end{gathered}$
	MeV by varying Nt					7	301 (12)	341
					24^{3}	8	263(11)	970
	We repeat this for	A60.24			24^{4}	9	234(10)	577
	three different lattice	A60.24	1.90	0.0936(38)		10	211(9)	525
	three different lattice					11	192(8)	227
	spacings following					12	$176(7)$ $162(7)$	1052
	ETMC T=0				32^{3}	13 14	$162(7)$ $151(6)$	294 1988
Four pion masses	simulations	B55.32	1.95	0.0823(37)	32^{3}	5	479(22)	595
	simulations.					6	400(18)	345
						7	342 (15)	327
	Advantages: we rely on the setup of ETMC T=0 simulations. Scale is set once for all.					8	300 (13)	233
						9	266(12)	453
						10	240(11)	295
						11	218(10)	667
						12	200(9)	1102
						13	184(8)	308
Number of flavours $m_{\pi^{ \pm}}$						14 15	$171(8)$ $160(7)$	1304 456
flavours ${ }^{\text {a }}$						16	150(7)	823
$N_{f}=2+1+1$	Disadvantages: mismatch of temperatures - need interpolation before taking the	D45.32	2.10	0.0646(26)	32^{3}	6	509(20)	403
						7	436(18)	412
						8	$382(15)$	416
						10	$305(12)$	420
$\begin{array}{ll} \\ N_{f}=2 & 360 \\ & 430\end{array}$						12 14	$255(10)$ $218(9)$	380
						16	191(8)	626
					40^{3} 48^{3}	18	170(7)	599
					48^{3}	20	153(6)	582

Gluonic (butterfly) operator

$+$
Gradient Flow Method

$$
\begin{aligned}
& \mathcal{L}_{\theta}=\frac{1}{4} F_{\mu \nu}^{a}(x) F_{\mu \nu}^{a}(x)-i \theta \frac{Q}{\frac{g^{2}}{64 \pi^{2}} \epsilon_{\mu \nu \rho \sigma} F_{\mu \nu}^{a}(x) F_{\rho \sigma}^{a}(x)} \\
& \exp [-V F(\theta)]=\int[d A] \exp \left(-\int d^{4} x \mathcal{L}_{\theta}\right)
\end{aligned}
$$

Gradient flow

Evolve the link variables in a fictitious flow time:
$\dot{V}_{x, \mu}(t)=-g_{0}^{2}\left[\partial_{x, \mu} S_{\mathrm{Wilson}}(V(t))\right] V_{x, \mu}(t)$,
Monitor $\langle E\rangle=\frac{1}{2 N_{\tau} N_{\sigma}^{3}} \sum_{x, \mu, \nu} \operatorname{Tr}\left[F_{\mu \nu}(x) F^{\mu \nu}(x)\right]$ as a function of t
Stop flowing when $\left.\quad t^{2}\langle E\rangle\right|_{t=t_{0}}=0.3$
Observables $<O(t)>$ renormalized at $\quad \mu=1 / \sqrt{8 t}$
Continuum limit of $\langle O(t)>$ is independent on the chosen reference value

Distribution of the topological charge $P(Q)$

cluster around integers as cooling proceeds (results for $\mathrm{a}=0.06 \mathrm{fm}$)

In practice only the first

two cumulants are accessible:

$$
\begin{aligned}
& F(\theta, T)=1 / 2 \chi(T) \theta^{2} s(\theta, t) \\
& s(\theta, T) 1+b_{2}(T) \theta^{2}+\ldots \\
& b_{2}=-\frac{\leq Q^{4}>-3<Q^{2}>^{2}}{12<Q^{2}>}
\end{aligned}
$$

Taylor coefficients of $F(\theta, T)$
DIGA - at very high temperature - predicts
$F(\theta, T)-F(0, T)=\chi(T)(1-\cos (\theta)) \longrightarrow b_{2}=-1 / 12$

Flowing towards the plateau

On finer lattices, plateau is almost reached:
Gradient method coincides with cooling

Reference value

Reference value

Results for the topological susceptibility for $M_{\pi}=270 \mathrm{MeV}$

Continuum limit:

- in principle independent on flow limit
- we need to interpolate results at fixed scale to match T

$$
\begin{aligned}
& \chi\left(T, m_{\pi}\right)=\lim _{a \rightarrow 0} \chi^{1 / 4}\left(T, a, m_{\pi}, t_{x}\right) \\
& \chi^{1 / 4}\left(T, a, m_{\pi}, t_{x}\right)=\chi^{1 / 4}\left(T, m_{\pi}\right)+a^{2} k\left(T, t_{x}\right)
\end{aligned}
$$

Continuum results for $m_{\pi}=370 \mathrm{MeV}$

Detailed analysis for T > 200 MeV (use approx. linearity) - 1

(In)dependence of continuum limit on flow's limit: 0.3 OK

Detailed analysis for $\mathrm{T}>200 \mathrm{MeV}$
Interpolation ok.

Detailed analysis for T > 200 MeV -
A mass rescaling appears to work nicely
Bonati et al. 2016

However: there is

no mass

 dependence..

Possible explanation : strong scaling violations

Comparison with BNL results
numerical data courtesy S. Sharma

Comparison with BNL results (contn'd) numerical data courtesy S. Sharma

Consistent trend for other temperatures: on our finer lattice the corrections to $a^{\wedge} 2$ scaling seem moderate

Instanton potential - cumulants' ratio b2

DIGA predicts

$$
F(\theta, T)-F(0, T)=\chi(T)(1-\cos (\theta)) \longrightarrow b_{2}=-1 / 12
$$

b2 $=-1 / 12$
DIGA limit for $\mathrm{T}>350 \mathrm{MeV}$

Consistent with Bonati et al.

Results II

Fermionic operator

$$
\begin{aligned}
n_{L}-n_{R} & =Q_{t o p} \\
m \int d^{4} x \bar{\psi} \gamma_{5} \psi & =Q_{t o p}
\end{aligned}
$$

Topological and chiral susceptibility
Kogut, Lagae, Sinclair 1999
HotQCD, 2012

$$
\chi_{t o p}=<Q_{t o p}^{2}>/ V=m_{l}^{2} \chi_{5, d i s c}
$$

$$
\chi_{t o p}=<Q_{t o p}^{2}>/ V=m_{l}^{2} \chi_{d i s c}
$$

$$
T>T_{U(1)_{A}} \simeq T_{c}
$$

$$
\begin{aligned}
& \chi_{5, \text { con }} \pi: \overline{\mathbf{q}} \gamma_{5} \frac{\tau}{2} \mathbf{q} \xrightarrow{\mathrm{SU}(2) \mathrm{L}^{\mathrm{xSU}(2)} \mathrm{R}} \sigma: \overline{\mathbf{q}} \mathbf{q} \quad \chi_{\text {con }}+\chi_{\text {disc }} \\
& U(1)_{A} \\
& \chi_{\text {nan }} \quad \delta: \overline{\mathbf{a}} \frac{\tau}{-} \mathbf{a} \longleftrightarrow n: \overline{\mathbf{a}} \gamma_{-\mathbf{a}} \quad \chi_{5 \mathrm{mnn}}-\chi_{5 \text { dice }} \\
& \chi_{\pi}-\chi_{\delta}=\chi_{\text {disc }}=\chi_{5, \text { disc }}, \quad \text { for } \quad T \geq T_{c}, m_{l} \rightarrow 0
\end{aligned}
$$

Chiral susceptibility

Within errors, no discernable spacing dependence

Results for physical pion mass

Comparison with BNL results including fermionic results

numerical data courtesy S. Sharma

dotted lines to guide the eye

Effective exponent : $\quad d(T)=-T \frac{d}{d T} \ln \chi^{0.25}(T)$

$$
\chi^{0.25}(T)=a T^{-d(T)}
$$

Faster decrease before DIGA sets in

Effective exponent :

Same DIGA onset seen in b2 $\approx 350 \mathrm{MeV}$

$$
\chi_{t o p}^{1 / 4}=a T^{-d(T)}
$$

Effective exponent d(T):

Comparisons with other results :

$$
\chi_{t o p}^{1 / 4}=a T^{-d(T)}
$$

Summary and open points I

-Gluonic operator with gradient flow method:
Strong lattice artifacts for $\mathrm{a}>0.06 \mathrm{fm}$. The results for $\mathrm{a}=0.06$ compare well with
BNL results, where $a^{\wedge} 2$ corrections are still visible. No reliable continuum limit for the topological susceptibility.
b2 is approaching the DIGA value for $\mathrm{T}>300 \mathrm{MeV}$ on all the lattices, possibly due to a cancellation of lattice artifacts
-Fermionic operator:
Residual lattice artifacts below statistical errors, allowing a continuum limit estimate. The results for $\mathrm{T}>300$ are broadly consistent with others once rescaled to the physical pion mass, and confirm the DIGA behavior

We observe a faster decrease closer to Tc , in agreement with recent instanton-dyons predictions. This feature has not been seen in other studies

Summary and open points II

-What next for Topology and QGP phenomenology
All in all, there is an emerging evidence that the QGP behaves as a DIGA for $\mathrm{T}>300 \mathrm{MeV}$, but such evidence only comes from the exponent and b2.Can this agreement be accidental?

The behavior around Tc is still under scrutiny, and should be clarified to better understand the approach to DIGA, and the nature of the medium produced at the LHC.
-What next for the lattice
Twisted mass Wilson fermions seem to perform well for topology: very little spacing effects for the fermionic operator, access to the cumulants even on coarse lattices.

Needless to say, simulations for smaller masses, and finer lattices would be most useful, and in view of the positive features of these fermions very worthwhile.The disconnected susceptibilities should be measured as well.

