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electronic properties of graphene

• compare lattice simulations with  
   functional methods and effective models 

where there’s no sign problem

QCD at finite isospin density

graphene

• apply to ultracold fermi gases
exploit analogies and  
more experimental data

• strongly correlated fermions in 2+1 dimensions
Figure 23: The phase diagram of the homogeneous two-component Fermi mixture in the
unitarity limit, containing the superfluid Sarma (S) and BCS phases, the normal phase (N)
and a forbidden region (FR). The solid black line is the result of the RG calculations. The
dots with error bars are experimental data along the phase boundaries as determined by Shin
et al. [72]. The dashed and dashed-dotted lines are only guides to the eye.

polarizations than the one from mean-field theory. As a result, the RG calcu-
lation is in much better agreement with experiments. We believe that the RG
captures two main shortcomings of the mean-field theory, namely it takes into
account fermionic self-energy e⇥ects and screening e⇥ects. Actually, the level
of agreement with experiment is rather remarkable considering the simplicity of
our RG. To some extent this is a coincidence, since there are many couplings
whose renormalization we have ignored here although they could have a quan-
titative influence, such as e.g. the e⇥ective mass of the fermions. In Ref. [190],
we for example also included the center-of-mass frequency dependence of the
interaction and found Pc3 = 0.24 and Tc3 = 0.063 TF+. Moreover, the results of
the RG are also sensitive to the precise way in which we flow, so that the results
depend for example on the intermediate cut-o⇥ ~��

0. We pick ��
0 such that the

high-energy two-body physics has been integrated out to a large extent, but the
many-body physics not yet. This means that we take ��

0 to be a few times the
Fermi wavevector. However, this procedure has some arbitrariness, and in an
exact treatment the results should be fully independent of ��

0. We note that
in Fig. 23, the dashed and dashed-dotted lines have the same meaning as in
the homogeneous phase diagram of Fig. 12. However, with our current RG for
the normal phase these lines cannot be calculated, since for this a treatment of
the superfluid phase would be required. Finally, we mention that at zero tem-
perature, the Monte-Carlo treatment of Lobo et al. predicts a quantum phase
transition from the equal-density superfluid to the polarized normal phase at
a critical imbalance of p = 0.38, as was discussed in Section 4.3.2 [150]. This
value seems to be in reasonably good agreement with experiments as seen from
Fig. 23.

72

polarised fermi gas at unitarity
Gubbels, Stoof, arXiv:1205.0568 
Shin et al., Nature 451 (2008) 689

Detmold, Orginos & Shi, Phys. Rev. D86 (2012) 054507 
Kamikado, Strodthoff, LvS, PLB 718 (2013) 1044
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• except if:

T 2 = 1

T 2 = �1

T 2 = ±1(b) anti-unitary symmetry TD(µ)T�1 = D(µ)⇤

(ii) real

 two-color QCD

adjoint QCD, or G2-QCD 

fermion color representation:

(i) pseudo-real

 Det
�
D(µI)D(�µI)

�
(a) two degenerate flavors with isospin chemical potential

fermion determinant

 QCD at finite isospin density

� = 4

� = 1

Dyson index:

� = 2

sign problem: �
DetD(µf )

�⇤
= DetD(�µf )
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Strodthoff & LvS, PLB 731 (2014) 350

• Quark-Meson-Diquark model:
Strodthoff, Schaefer & LvS, 
Phys. Rev. D85 (2012) 074007

• Lattice simulations:10 Tamer Boz et al.: Phase transitions in 2-colour matter
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Fig. 12. Multimodal fits of the form eq. (10) for the magnetic
(top) and electric (bottom) gluon propagators at aµ = 0.5 and
aj = 0.04 on the 163 × 24 lattice. Note that the functions are
plotted versus four-momentum q on the abscissa.

QC2D, in particular no sign problem, a direct analysis
serves to identify possible technical limitations in either
method, stemming from finite size and finite volume arte-
facts in the lattice formulation, or from inevitably neces-
sary truncations in the continuum description. We are also
in the process of computing the quark propagator, which
will give further input to these studies.

We are currently extending our study of QC2D to
smaller lattice spacings, which will enable us to perform a
controlled extrapolation to the continuum limit and clar-
ify the possible role of lattice artefacts at large µ.

This work is carried out as part of the UKQCD collaboration
and the DiRAC Facility jointly funded by STFC, the Large Fa-
cilities Capital Fund of BIS and Swansea University. We thank
the DEISA Consortium (www.deisa.eu), funded through the
EU FP7 project RI-222919, for support within the DEISA Ex-
treme Computing Initiative. The simulation code was adapted
with the help of Edinburgh Parallel Computing Centre funded
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Fig. 13. Phase diagram of QC2D with mπ/mρ = 0.8. The
black circles denote the superfluid to normal phase transi-
tion; the green band the deconfinement crossover. The blue
diamonds are the estimates for the deconfinement line from
[7].
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SU(Nf )⇥ SU(Nf )⇥ U(1) becomes SU(2Nf )

Nf = 2: connects pions and �-meson with scalar (anti)diquarks.

• extended flavor symmetry (Pauli-Gürsey), at µ = 0 

• color-singlet diquarks  
   (bosonic baryons)

SU(4) ! Sp(2)

SO(6) ! SO(5)
or

Coset: S5
5 Goldstone bosons: pions

and scalar (anti)diquarks

• Dirac mass (quark condensate)

Strodthoff, Schaefer & LvS, PRD 85 (2012) 074007

msc2
! ¼ "m2 þ 3"!2 þ!!ð0; TÞ;

msc2
# ¼ "m2 þ "!2 þ!#ð0; TÞ;

msc2
& ¼ "4$2 "m2 þ "!2 þ!&ð0; TÞ:

(37)

This is true at all temperatures in the normal phase. Note
also that because !þð0; TÞ ¼ !"ð0; TÞ, the baryon-
chemical potential $B ¼ 2$ never splits the diquark and
antidiquark screening masses msc

þðT;$Þ ¼ msc
"ðT;$Þ.

At any temperature we further verify for $ ¼ 0 that
!#ð!; TÞ ¼ !&ð!; TÞ, i.e., masses are degenerate as
they must from SOð5Þ symmetry. Moreover, the gap equa-
tion for the chiral condensate reduces in the chiral limit
c ! 0 to the condition for massless pions, as usual, and
both these observations likewise hold for screening and
pole masses.

Finally, but perhaps most importantly, the gap equation
for the diquark condensate reads

@

@d
" ¼ d

!
"m2 þ "!2 " 4$2 þ 2

@

@d2
"qðT;$Þ

"
¼! 0;

(38)

and the critical line $cðTÞ is defined by the condition that
the terms in brackets vanish for d ¼ 0 so that a second zero
develops there. This is equivalent to the diquark pole
masses being m" ¼ 0 and mþ ¼ 4$. While their screen-
ing masses msc

& both vanish at $ ¼ $c, for the pion and
diquark pole masses we have the general exact zero-
temperature relation

!&ð!; 0Þ ¼ !#ð!& 2$; 0Þ ) m& ¼ m# & 2$ (39)

in the normal phase, where m# ¼ m#;0 remains indepen-
dent of $ until 2$ ¼ m#;0 as required by the Silver Blaze
property.

In contrast, the same relation entails for the degenerate
diquark screening masses (!# is an even function of !)

msc2
& ¼ msc2

# " 4$2 þ!#ð2$; 0Þ "!#ð0; 0Þ; (40)

which reiterates that diquark and pion screening masses are
also degenerate at $ ¼ 0, but that both diquark screening
masses msc

& vanish as 2$ approaches the ($-independent)
pion pole mass m# from below.

The bottom line is that the onset of diquark condensation
at $B ¼ 2$ ¼ 2$cð0Þ, whatever the screening mass may
be, defines the physical zero-temperature pion mass. We
will make use of this property to fix the pion mass in the
Renormalization Group (RG) calculation, where the cal-
culation of the pole mass is more involved.

In the diquark-condensation phase the sigma-meson
mixes with the two diquark modes, i.e., the respective
masses have to be determined from the zeroes of the
determinant of the corresponding 3' 3 submatrix in
#ð2Þð!Þ. As in the NJL model [28,39], one can verify exact

results from the mass formulas at T ¼ 0. Also, in the QMD
model at mean-field-RPA level the in-medium pion pole
mass is equal to m# ¼ 2$ above the onset of diquark
condensation at 2$ ¼ m#;0. Moreover, one verifies explic-
itly that one of the three modes in the diquark-sigma sector
remains exactly massless in the superfuid phase, also at
finite temperature. This is, of course, the Goldstone boson
corresponding to the spontaneously broken Uð1ÞB baryon
number. Another one becomes degenerate with the pions
for large values of the chemical potential, eventually re-
flecting the restoration of chiral symmetry. They combine
into an SOð4Þ multiplet as the chiral condensate vanishes
for large chemical potentials.
This is all nicely reflected in the numerical results shown

in Fig. 5. As the RPA pole-mass formulas imply, the meson
masses stay constant in the normal phase, whereas, the
diquark masses are split up from the constantmB ¼ m# by
the terms &$B due to their coupling to the baryon-
chemical potential $B ¼ 2$.
The diquark and sigma masses in the diquark-

condensation phase show a considerable dependence on
the inclusion of the vacuum-term. This can be seen, for
example, by comparing the QMD model results with
vacuum-term cutoff $ ¼ 600 MeV to those from the
linear-sigma model, which are identical to the ones in the
no-sea-approximation ($ ¼ 0). In the linear-sigma model,
the pole masses can simply be calculated from the curva-
ture of the potential. In the normal phase they are simply
given by the expected constant m# ¼ m#;0, m! ¼ m!;0,
and m& ¼ m#;0 & 2$. In the phase with diquark conden-
sation ($>$c), on the other hand, for the linear-sigma
model masses we obtain

FIG. 5 (color online). Pole-mass spectrum at T ¼ 0: mean-
field/RPA QMD model results (with vacuum-term cutoff $ ¼
600 MeV), for comparison also shown without the effect of
diquark/sigma-meson mixing in the superfluid phase vs linear-
sigma model.

STRODTHOFF, SCHAEFER, AND VON SMEKAL PHYSICAL REVIEW D 85, 074007 (2012)

074007-10
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Hands et al., EPJC 17 (2000) 285; 
EPJC 22 (2001) 451

zero temperature condensates

hq̄qi

hqqi

hq̄qi = 2NfG cos↵

hqqi = 2NfG sin↵

nB = 8NfF 2µ sin2 ↵

�PT:

hq̄qi

hqqi

T [MeV]
µ/m⇡

normalised quark and diquark condensates

Mq
⌧

µ:

BC
S-l

ike

Mq
>

µ:

BE
C-l

ike

• QMD model phase diagram

Kogut, Stephanov, Toublan, Verbaarschot 
& Zhitnitsky, Nucl. Phys. B 582 (2000) 477

Taylor expansions in !2, one has to use one expansion
order less for the 2-point function than for the effective
potential. In this way we can compute an estimate of the
pion pole mass from a given UV potential.

Table I shows a comparison of screening and pole
masses as obtained from the Taylor and grid methods.
All calculations here were performed at T ¼ " ¼ 0. As
explained in Sec. III C and Appendix A, we have adjusted
the start parameters for the flow in our two-dimensional
grid code to fix the onset of diquark condensation to occur
at 2"c " 138 MeV, which defines the physical pion mass
in the normal phase. The exact same parameters were used
to obtain the UV forms of effective potential and inverse
propagators for the one-dimensional Taylor expansion
method at " ¼ 0. The results from one- and two-
dimensional grid computations at " ¼ 0 are indistinguish-
able at this level of accuracy, as are the screening masses
from Eq. (61) and from the effective potential. The slight
deviations in f# and the masses in Table I between the grid
and Taylor methods are an indication of the small residual
uncertainties.

With the onset at half the physical pion mass fixed, we
then observe that the standard screening masses generally
overestimate the pion mass by about 30%. In contrast, our
pion pole mass estimates, based on solving Eqs. (58) and
(59), lie within 11%, but they are smaller than the physical
one.

The extrapolation from zero-pion momentum in the
leading-order derivative expansion to the pion pole in the
propagator from our consistent truncation scheme appears
to be too large, so that it overcompensates the difference
between onset and screening mass. In order to disentangle
the effect of bosonic and fermionic contributions to the
flow Eq. (58) for the pion 2-point function, we have also
solved this equation with ! ¼ 0 in the bosonic and in the
fermionic parts, separately. The resulting pole masses are

denoted by m#; pole; ferm: only and m#; pole; bos: only in Table I,
respectively. Both contributions reduce the screening
masses, but the fermions clearly generate the dominant
effect. This suggests that one might have to go beyond
the leading-order derivative expansion employed here and
allow for an RG flow of the Yukawa couplings by including
field renormalizations and anomalous dimensions [77].

D. Phase diagram of the QMD model for two-color
QCD with mesonic and baryonic fluctuations

In Fig. 9 we show once more the dependence of the
chiral and diquark condensates on the chemical potential at
zero temperature as in Fig. 3, but this time with our results
from the full RG solution to Eq. (49) on a two-dimensional
grid in field space with ! ¼ 1.
The final effect of baryonic-diquark degrees of freedom

is illustrated in Fig. 10, where we compare the phase
diagram from the one-dimensional RG flow solution to
the SOð6Þ-symmetric Eq. (50) from Sec. IVB, with that
from the full two-dimensional one for an effective potential
with the reduced SOð4Þ % SOð2Þ symmetry.
This clearly illustrates the effect of the competing dy-

namics of the collective mesonic and baryonic fluctuations.
As before, the dashed lines in Fig. 10 indicate the chiral-
crossover by tracing the half-value of the chiral conden-
sate. Both one and the two-dimensional results agree for
quark-chemical potentials near zero. The crossover in this
region leads to mesonic freeze-out as usual, and the results
are unambigously determined by the Oð6Þ symmetry-
breaking pattern, see Sec. IVA. Allowing additional inter-
actions with lower symmetry has no effect on the flow here.
Once the quark-chemical potential approaches half the

baryon mass, corresponding to mB=Nc, however, the rap-
idly increasing baryon density equally rapidly suppresses
the chiral condensate. With the proper inclusion of the

TABLE I. Comparison of RG screening vs pole masses;
‘‘ferm. only’’ (‘‘bos. only’’) refers to maintaining only the
constant ! ¼ 0 contributions in the bosonic (fermionic) contri-
bution to the flow of the pion 2-point function, Eq. (58).

Method Quantity Value [MeV]

Grid f# 76.0
m#; scr 178.8
m$; scr 551.7
2"c 137:8

m#; pole 122:45
m#; pole; ferm: only 124.9
m#; pole; bos: only 171.6

Taylor f# 75.0
m#; scr 180.0
m$; scr 550.8
m#; pole 122:6

m#; pole; ferm: only 125.0
m#; pole; bos: only 172.6

FIG. 9 (color online). Zero temperature condensates from full
flow compared to mean-field results (and the lattice data from
[17]).

STRODTHOFF, SCHAEFER, AND VON SMEKAL PHYSICAL REVIEW D 85, 074007 (2012)

074007-16
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• T = 0 isospin density - FRG vs. lattice QCD:

Detmold, Orginos & Shi, Phys. Rev. D86 (2012) 054507
Kamikado, Strodthoff, LvS, PLB 718 (2013) 1044
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Figure 10: Quasiparticle dispersions for a) the BCS superfluid phase and b) the Sarma
superfluid phase. The upper branch gives the dispersion for the spin-down quasiparticles,
that consist of spin-down particles and spin-up holes. The lower branch gives the dispersion
for the spin-up quasiparticles, that consist of spin-up particles and spin-down holes. These
dispersions have their minima given by |�| ± h at wavevectors for which �k = µ. In the
BCS case the quasiparticle spectra are gapped. In the Sarma case, a part of the spin-up
quasiparticle branch is below zero, such that its filling lowers the ground-state energy. As a
result, additional spin-down holes and spin-up particles enter the ground state leading to a
polarized superfluid.

also be a local minimum, so that there is both a local maximum and a global
minimum at values of � unequal to zero. As is seen in Figs. 9(c) and (d), this
can cause a discontinuous, or first-order, phase transition. The extrema of the
thermodynamic potential density can be found by di⇥erentiating with respect
to �⇥ and equating the result to zero. As the above discussion implies, there
is always one solution given by � = 0. The other solutions are found from the
so-called BCS gap equation

1

V
⇤

k

�
1� f(~⇥+,k)� f(~⇥�,k)

2~⇥k
� 1

2�k

⇥
= 0 , (29)

which thus has either one or two solutions. The study of the extrema of the
thermodynamic potential allows for a determination of the phase diagram as a
function of the chemical potentials and the temperature, which we perform in
Section 3.4.

3.3. Sarma phase

But first, let us briefly discuss in more detail the homogeneous superfluid
phases that we encounter in the spin-imbalanced case. Below the critical tem-
perature Tc, we have that |�| ⇥= 0, in which case we distinguish between two
possibilities. Namely, we have either that h < |�|, or that h > |�|. The first
case we call a BCS superfluid, because, as we see next, it corresponds to the
fully-gapped situation known from ordinary BCS superconductivity in metals
[2]. The second case leads to a so-called Sarma superfluid, which gives rise to
a gapless quasiparticle dispersion for the majority spin species ~⇥k,+, as was
first discussed by Sarma [84]. The Sarma phase is sometimes also referred to

32
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Figure 10: Quasiparticle dispersions for a) the BCS superfluid phase and b) the Sarma
superfluid phase. The upper branch gives the dispersion for the spin-down quasiparticles,
that consist of spin-down particles and spin-up holes. The lower branch gives the dispersion
for the spin-up quasiparticles, that consist of spin-up particles and spin-down holes. These
dispersions have their minima given by |�| ± h at wavevectors for which �k = µ. In the
BCS case the quasiparticle spectra are gapped. In the Sarma case, a part of the spin-up
quasiparticle branch is below zero, such that its filling lowers the ground-state energy. As a
result, additional spin-down holes and spin-up particles enter the ground state leading to a
polarized superfluid.
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function of the chemical potentials and the temperature, which we perform in
Section 3.4.

3.3. Sarma phase

But first, let us briefly discuss in more detail the homogeneous superfluid
phases that we encounter in the spin-imbalanced case. Below the critical tem-
perature Tc, we have that |�| ⇥= 0, in which case we distinguish between two
possibilities. Namely, we have either that h < |�|, or that h > |�|. The first
case we call a BCS superfluid, because, as we see next, it corresponds to the
fully-gapped situation known from ordinary BCS superconductivity in metals
[2]. The second case leads to a so-called Sarma superfluid, which gives rise to
a gapless quasiparticle dispersion for the majority spin species ~⇥k,+, as was
first discussed by Sarma [84]. The Sarma phase is sometimes also referred to
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Figure 12: a) The phase diagram of the homogeneous two-component Fermi mixture in the
unitarity limit, consisting of the gapless superfluid Sarma phase (S), the gapped superfluid
BCS phase and the normal phase (N). The transition from superfluid to normal can be either
continuous (full line) or discontinuous (dashed line), and the two possibilities meet at the
tricritical point (TCP). Between the BCS regime and the Sarma regime of superfluidity there
is a crossover (dash-dotted line). Both the temperature T and half the chemical potential
di�erence h are scaled with the average chemical potential µ. b) The same diagram but now
as a function of the polarization p = (n+ � n�)/(n+ + n�) and with the temperature scaled
by the Fermi temperature of the majority species TF+ = �F+/kB. Due to the discontinuous
nature of the transition below the tricritical point there is a jump in the polarization, causing a
forbidden region (FR) in the phase diagram where the gas is unstable against phase separation.
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Gubbels, Stoof, 2012

• compare:
Imbalanced Fermi Gases

Boettcher, Herbst, Pawlowski, Strodthoff, LvS & Wetterich, 
PLB 742 (2015) 86
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Lattice MC Simulations

Hands, Montvay, Scorzato & Skullerud,  
Eur. Phys. J. C 22 (2001) 451
Hands, Kenny, Kim & Skullerud,  
Eur. Phys. J. A 47 (2011) 60, …
Kogut, Toublan, Sinclair,  
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10. Numerical Results

Figure 10.3.: The quark number density.

These results look very similar to the expectations from leading order chiral per-
turbation theory (see section {9.2}). We see a non-vanishing diquark condensate at
µ = 0 due to the explicit symmetry breaking of the included diquark source term.
The diquark condensate and the quark number density begin to increase at a critical
value of the chemical potential µc, where the chiral condensate begins to decrease.
To obtain the according value of µc, we fitted our numerical data to the expecta-
tions from leading order chiral perturbation theory, equations (9.2.6)-(9.2.8). The
resulting fits for both diquark sources � are shown in figure (10.4) and the results
for the fit parameters are shown in table (10.1).

0.1 0.2 0.3 0.4 0.5 0.6
μ

0.1

0.2

0.3

0.4

<ψψ>/Nf <ψψ>/Nf <n>/Nf

Figure 10.4.: Fits to leading order chiral perturbation theory for � = 0.0025
(left panel) and � = 0.005 (right panel).

� 2G 8F 2 µc m �2/DOF

0.0025 0.41135(88) 0.3430(68) 0.18889(45) 0.02527(13) 1.93

0.0050 0.41235(73) 0.3335(46) 0.18931(47) 0.02547(15) 3.64

Table 10.1.: The resulting fit parameters.
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10.2. Simulating inside the Bulk Phase

Lastly, we measured the correlation functions for the four channels from section
{8} in dependence of the chemical potential and extracted the according particle
masses. We were not able to extract the masses of the anti-diquarks from channel
3 and 4 from the double-cosh fits (8.3.10) as their contribution becomes suppressed
with increasing chemical potential according to the factor of e�aµ and mixes with
higher excitations. To have good statistics, we generally used Nq = 16 point sources
randomly distributed over the t = 0 timeslice. In the case that this still was not
enough, we increased to Nq = 32 or even Nq = 48 point sources. We will now present
the results for both values of the diquark source in parallel and later compare them
to each other. We start with an overview of the four channels with masses extracted
from single-cosh fits in figure (10.8), here we only show the total error for better
visibility.

Figure 10.8.: An overview of the masses of the four channels in dependence of the
chemical potential for � = 0.0025 (left panel) and � = 0.0050 (right
panel).

We see that the masses of the pseudoscalar modes ⇡ and ✏qq behave very similar.
They stay constant until the critical chemical potential is reached and then start to
decrease. The masses of the scalar modes f

0

and qq are nearly degenerated until
the mass of the f

0

meson begins to increase at the critical chemical potential. This
can be understood by remembering table (7.1). If we suppose that the Goldstone
modes induced from the chiral condensate rotate into the respective Goldstone mode
induced from the diquark condensate, just like the condensate themselves do (see
equation (9.2.1)), we can introduce the following two linear combinations of the
correlators of our four channels [1]:

f
0

/qq: 1

2

�

�T ⌧
2

�+ �̄⌧
2

�̄T
�

cos↵+ �̄� sin↵

⇡/✏qq: �̄✏� cos↵+ 1

2

�

�T ⌧
2

✏�+ �̄⌧
2

✏�̄T
�

sin↵

The angle ↵ depends on the chemical potential and is given by solving equation
(9.2.4). Note that we were able to apply a double-cosh-fit to the f

0

/qq mode, where
the lower mass was equal to the mass of the pure qq mode, so that we plot only the

75

• mixing at finit density:

10. Numerical Results

higher mass in the following. In figure (10.9) we show the results along with the
leading order chiral perturbation theory predictions of the Ps, Q̃ and Q̃† mode from
section {9.3}.
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Figure 10.9.: The masses of the linear combinations and the scalar diquark mode
in dependence of the chemical potential for � = 0.0025 (left panel)
and � = 0.0050 (right panel) along with their respective leading order
chiral perturbation theory prediction.

Before we discuss these results, let us show the comparisons between the results for
� = 0.0025 and � = 0.0050 as they give a better insight at the separate channels, see
figure (10.10) to (10.12). We find that the deviations from the leading order chiral
perturbation theory predictions become larger for increasing chemical potential. It
can be found that the term proportional to µ2 in the e↵ective Lagrangian, which
gives the quark number density, also enters in the predictions of the Goldstone
modes, thus the deviations of the quark number density at large µ in figure (10.4)
is connected to the deviations of the Goldstone modes seen here [1]. The obtained
masses for the scalar diquark match their predictions quite well until the deviations
become significant. Same goes for the pseudoscalar diquark and the pion. The pion
decrease is a little bit too late, which might be corresponding to the neglecting of
disconnected diagrams. The combined ⇡/✏qq mode shows a better agreement around
the critical chemical potential as it here begins to be dominated by the contribution
of the pseudoscalar diquark. The combined f

0

/qq mode is very similar for both
values of the diquark source, as also the prediction is, but for both � from the
critical chemical potential on it deviates hugely from the prediction. Again, this
might be due to the neglecting of the disconnected diagrams for the purely f

0

mode
which dominates the combined f

0

/qq mode at large chemical potential.

76

Nf = 2, � = 1.5, m = 0.025, � = 0.0025, 123 ⇥ 24 lattice
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10. Numerical Results

10.3. A First Step for Leaving the Bulk Phase

After noticing the large value of the Z(2) monopole density for the used parameters
of the last section, we wanted to run a simulation outside the artificial bulk phase.
For this, we will now use the improved gauge action (2.4.11) as we saw in section
{2.7} that it suppresses the Z(2) monopole density. Furthermore, we need to increase
the inverse coupling � to further reduce the Z(2) monopole density and increase the
lattice volume to suppress finite volume e↵ects, as explained in section {2.7}. We
decided to use a lattice volume of 163⇥32 and a quark mass of m = 0.01 to keep the
computing time endurable. At this lattice size and quark mass, we found the inverse
coupling of � = 1.7 to be a good compromise as for µ = 0 the Z(2) monopole density
is about 0.27 and the lattice volume is large enough so that the scalar meson and the
pion are not degenerated due to finite size e↵ects (see figure 10.13). Furthermore,
the pion and the scalar meson, as well as the ⇢ meson and the a

1

meson, are not
degenerate at this inverse coupling, meaning that chiral symmetry is broken. Hence
at vanishing chemical potential we simulate inside the confined regime.
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Figure 10.13.: The meson masses in dependence of the inverse coupling � [6].

This time, we used three values of the diquark source � = 0.001, 0.0025, 0.005 to be
able to do a meaningful extrapolation � ! 0. See figure (10.14) and (10.15) for the
resulting flavor-normalized condensates and quark number density.
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10.3. A First Step for Leaving the Bulk Phase
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Figure 10.14.: The diquark condensate (left panel) and the chiral condensate
(right panel).

Figure 10.15.: The quark number density.

First, notice that the quark number density saturates at µ = 1.1. Saturation is
a lattice artifact, here the maximal number of quarks possible on the lattice is
reached, given by ns = 2NcNfV . Due to our normalization factor of the quark
number density, it saturates at one, see equation (6.3.2). In the continuum there is
no limit on the rise of the quark number density with the chemical potential. Thus,
starting from the inflection point of the lattice quark number density, the physical
behaviour of the lattice system is greatly disturbed and simulations in this regime
are not meaningful. This explains the rapid fall of the diquark condensate, starting
at µ = 1.0. Notice the strange decrease of the chiral condensate, starting around
µ = 0.3, which we expect to be due to a UV-divergent contribution to the chiral
condensate. Remember, a larger inverse coupling e↵ects a smaller lattice spacing,
that is why we did not see this e↵ect in the simulations of the previous section
at a smaller value of �. Hence we now need to investigate a renormalized chiral
condensate without the UV-divergent contribution. It has been shown in [35] that
renormalization can be achieved with the help of the chiral susceptibility. The chiral
condensate and the chiral susceptibility are expected to behave like
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Notice that both quantities also contain an additional constant c
2

, next to the UV-
divergent contribution with constant cUV . Both constants can be removed from the
chiral condensate by defining the subtracted chiral condensate

⌃ =
⌦

 ̄ 
↵

m
q

�mq�m
q

. (10.3.3)

The susceptibility splits up in a connected and a disconnected contribution, where it
has been found that the UV-divergent contribution mainly belongs to the connected
part [35]. Thus, here we only calculate the connected chiral susceptibility, given by
[6]

�con =
1

V

Nf

4
tr
�

D�2

�

, (10.3.4)

and investigate the connected susceptibility subtraction

⌃con =
⌦

 ̄ 
↵

�m�con. (10.3.5)

Notice that in this initial study we neglect a possible explicit dependence of the
connected chiral susceptibility on the diquark source �. It only depends on � through
the used gauge configurations. In figure (10.16) we show the results for the diquark
source of � = 0.005 over the whole range of the chemical potential. Notice the large
fluctuations in the chiral susceptibility due to the double inversion of the Dirac
matrix in its calculation. Starting from µ > 0.2, the chiral susceptibility is very
close to the chiral condensate, leading to a renormalized condensate consistent with
zero. For µ < 0.2, we expected to see the decrease of the chiral condensate according
to chiral perturbation theory predictions which can not be seen really good in this
results.

Figure 10.16.: The chiral condensate and mass times the connected chiral suscep-
tibility (left panel) and the resulting renormalized chiral condensate
(right panel) for � = 0.005.
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10.3. A First Step for Leaving the Bulk Phase

it follows that the peak height should increase when the diquark source � is reduced.
Due to the large errorbars, we can neither refute nor confirm this, which might also
be due to the neglecting of the explicit dependence on �. In a finite volume the
peak height of the chiral susceptibility at a phase transition is restricted by a spatial
volume dependent factor. Thus, for smaller spatial volumes the observed bump of
the chiral susceptibility should vanish, if this bump really comes from the singular
part of the scaling function. In figure (10.21) the results for the chiral susceptibility
and the chiral condensate are shown for di↵erent spatial lattice sizes Ns, where again
points have been joined for a better visualisation. The vanishing of the bump in the
chiral susceptibility is visible, confirming our suggestion.
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Figure 10.21.: Spatial volume dependence of the connected chiral susceptibility
(left panel) and the chiral condensate (right panel). The value of
µc for rescaling the x-axis was determined by measuring the pion
correlator at µ = 0 and extracting the pion mass: µc =

m
⇡

2

.

At Ns = 8 the chiral susceptibility sharply drops already before the critical chemical
potential is reached, which we think is due to large volume e↵ects at this small spatial
volume. Before we discuss the behavior of the chiral condensate in dependence of
the spatial volume, we stress the decrease of the pion mass with increasing spatial
volume, see table (10.3).

Ns 8 12 14 16

m⇡ 0.817(32)(45) 0.418(28)(35) 0.319(10)(11) 0.2856(51)(61)

Table 10.3.: The pion mass in dependence of the spatial lattice size Ns.

Generally, the smearing of the sharpness of a phase transition is driven by a Boltz-
mann factor, which in this case is given by

exp

✓

m⇡ � 2µ

T

◆

= exp

✓

m⇡

T

✓

1�
µ

µc

◆◆

, (10.3.6)

where (1 � µ/µc) is the distance from the transition point and the temperature

83

volume



13 July 2017  |  Lorenz von Smekal  |  p.

Diquark Condensate & Density

18

10.3. A First Step for Leaving the Bulk Phase

Figure 10.14.: The diquark condensate (left panel) and the chiral condensate
(right panel).
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Figure 10.15.: The quark number density.

First, notice that the quark number density saturates at µ = 1.1. Saturation is
a lattice artifact, here the maximal number of quarks possible on the lattice is
reached, given by ns = 2NcNfV . Due to our normalization factor of the quark
number density, it saturates at one, see equation (6.3.2). In the continuum there is
no limit on the rise of the quark number density with the chemical potential. Thus,
starting from the inflection point of the lattice quark number density, the physical
behaviour of the lattice system is greatly disturbed and simulations in this regime
are not meaningful. This explains the rapid fall of the diquark condensate, starting
at µ = 1.0. Notice the strange decrease of the chiral condensate, starting around
µ = 0.3, which we expect to be due to a UV-divergent contribution to the chiral
condensate. Remember, a larger inverse coupling e↵ects a smaller lattice spacing,
that is why we did not see this e↵ect in the simulations of the previous section
at a smaller value of �. Hence we now need to investigate a renormalized chiral
condensate without the UV-divergent contribution. It has been shown in [35] that
renormalization can be achieved with the help of the chiral susceptibility. The chiral
condensate and the chiral susceptibility are expected to behave like
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Figure 10.15.: The quark number density.

First, notice that the quark number density saturates at µ = 1.1. Saturation is
a lattice artifact, here the maximal number of quarks possible on the lattice is
reached, given by ns = 2NcNfV . Due to our normalization factor of the quark
number density, it saturates at one, see equation (6.3.2). In the continuum there is
no limit on the rise of the quark number density with the chemical potential. Thus,
starting from the inflection point of the lattice quark number density, the physical
behaviour of the lattice system is greatly disturbed and simulations in this regime
are not meaningful. This explains the rapid fall of the diquark condensate, starting
at µ = 1.0. Notice the strange decrease of the chiral condensate, starting around
µ = 0.3, which we expect to be due to a UV-divergent contribution to the chiral
condensate. Remember, a larger inverse coupling e↵ects a smaller lattice spacing,
that is why we did not see this e↵ect in the simulations of the previous section
at a smaller value of �. Hence we now need to investigate a renormalized chiral
condensate without the UV-divergent contribution. It has been shown in [35] that
renormalization can be achieved with the help of the chiral susceptibility. The chiral
condensate and the chiral susceptibility are expected to behave like
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10.3. A First Step for Leaving the Bulk Phase

For further investigation, we measured the chiral susceptibility for all three values
of the diquark source up to µ = 0.3 to check its implicit dependence on � and
exploring if the expected behaviour of the renormalized condensate in the � ! 0
limit can be seen. The results are shown in figures (10.17) to (10.19), where we
also show the condensates and the quark number density for this limited range of
the chemical potential. We only include the linear extrapolation to � = 0 for the
diquark condensate as for the other observables it is consistent with the result for
� = 0.001.

Figure 10.17.: The diquark condensate (left panel) and the chiral condensate
(right panel).
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Figure 10.18.: The quark number density.
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Figure 10.24.: The resulting fit of the � = 0 diquark condensate to the chiral
perturbation theory prediction.

The obtained results for the Polyakov loop and the Z(2) monopole density are shown
in figure (10.25).

Figure 10.25.: The Polyakov loop (left panel) and the Z(2) monopole density
(right panel).

The Z(2) monopole density increases with µ and saturates at µ = 1.1, as the quark
number density. We suppose that in the saturated regime the system corresponds to
that obtained by pure gauge theory as there are no fermionic degrees of freedom any
more. Thus, the di↵erence in the Z(2) monopole density between µ = 1.1� 1.3 and
µ = 0 is the same as between pure gauge theory and including dynamical fermions at
µ = 0, which we confirmed with the data of figure (2.3). Again, the Polyakov loop is
constant within the errorbars over the whole range of µ. In comparison, it has been
seen in simulations with Wilson fermions [37] and also in an e↵ective Polyakov loop
model study [38], that the Polyakov loop has a peak at the reflection point of the
quark number density. As the Z(2) monopole does, we expected the Polyakov loop
to show quenching e↵ects, too, but these are not visible. To obtain more insight,
we also measured the local Polyakov loop distribution. We show the distribution for
three values of the chemical potential, but it is consistent at all values of µ, see figure
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pure gauge

also seen by Braguta et al., arXiv:1605.04090
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10.3. A First Step for Leaving the Bulk Phase
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Figure 10.28.: Comparing the scalar diquark, the scalar anti-diquark and the pion
to their leading order chiral perturbation theory predictions for
� = 0.0050 (top), � = 0.0025 (middle) and � = 0.0010 (bottom).
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Figure 10.28.: Comparing the scalar diquark, the scalar anti-diquark and the pion
to their leading order chiral perturbation theory predictions for
� = 0.0050 (top), � = 0.0025 (middle) and � = 0.0010 (bottom).
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10.3. A First Step for Leaving the Bulk Phase
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Figure 10.28.: Comparing the scalar diquark, the scalar anti-diquark and the pion
to their leading order chiral perturbation theory predictions for
� = 0.0050 (top), � = 0.0025 (middle) and � = 0.0010 (bottom).
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10. Numerical Results

higher mass in the following. In figure (10.9) we show the results along with the
leading order chiral perturbation theory predictions of the Ps, Q̃ and Q̃† mode from
section {9.3}.
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Figure 10.9.: The masses of the linear combinations and the scalar diquark mode
in dependence of the chemical potential for � = 0.0025 (left panel)
and � = 0.0050 (right panel) along with their respective leading order
chiral perturbation theory prediction.

Before we discuss these results, let us show the comparisons between the results for
� = 0.0025 and � = 0.0050 as they give a better insight at the separate channels, see
figure (10.10) to (10.12). We find that the deviations from the leading order chiral
perturbation theory predictions become larger for increasing chemical potential. It
can be found that the term proportional to µ2 in the e↵ective Lagrangian, which
gives the quark number density, also enters in the predictions of the Goldstone
modes, thus the deviations of the quark number density at large µ in figure (10.4)
is connected to the deviations of the Goldstone modes seen here [1]. The obtained
masses for the scalar diquark match their predictions quite well until the deviations
become significant. Same goes for the pseudoscalar diquark and the pion. The pion
decrease is a little bit too late, which might be corresponding to the neglecting of
disconnected diagrams. The combined ⇡/✏qq mode shows a better agreement around
the critical chemical potential as it here begins to be dominated by the contribution
of the pseudoscalar diquark. The combined f

0

/qq mode is very similar for both
values of the diquark source, as also the prediction is, but for both � from the
critical chemical potential on it deviates hugely from the prediction. Again, this
might be due to the neglecting of the disconnected diagrams for the purely f

0

mode
which dominates the combined f

0

/qq mode at large chemical potential.

76

unimproved - bulk phase improved - continuum
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10.3. A First Step for Leaving the Bulk Phase

0.0 0.5 1.0 1.5 2.0
μ/μc

0.2

0.4

0.6

0.8

qq
qq
π

Figure 10.28.: Comparing the scalar diquark, the scalar anti-diquark and the pion
to their leading order chiral perturbation theory predictions for
� = 0.0050 (top), � = 0.0025 (middle) and � = 0.0010 (bottom).

89

improved staggered
msc2

! ¼ "m2 þ 3"!2 þ!!ð0; TÞ;
msc2

# ¼ "m2 þ "!2 þ!#ð0; TÞ;
msc2

& ¼ "4$2 "m2 þ "!2 þ!&ð0; TÞ:
(37)

This is true at all temperatures in the normal phase. Note
also that because !þð0; TÞ ¼ !"ð0; TÞ, the baryon-
chemical potential $B ¼ 2$ never splits the diquark and
antidiquark screening masses msc

þðT;$Þ ¼ msc
"ðT;$Þ.

At any temperature we further verify for $ ¼ 0 that
!#ð!; TÞ ¼ !&ð!; TÞ, i.e., masses are degenerate as
they must from SOð5Þ symmetry. Moreover, the gap equa-
tion for the chiral condensate reduces in the chiral limit
c ! 0 to the condition for massless pions, as usual, and
both these observations likewise hold for screening and
pole masses.

Finally, but perhaps most importantly, the gap equation
for the diquark condensate reads

@

@d
" ¼ d

!
"m2 þ "!2 " 4$2 þ 2

@

@d2
"qðT;$Þ

"
¼! 0;

(38)

and the critical line $cðTÞ is defined by the condition that
the terms in brackets vanish for d ¼ 0 so that a second zero
develops there. This is equivalent to the diquark pole
masses being m" ¼ 0 and mþ ¼ 4$. While their screen-
ing masses msc

& both vanish at $ ¼ $c, for the pion and
diquark pole masses we have the general exact zero-
temperature relation

!&ð!; 0Þ ¼ !#ð!& 2$; 0Þ ) m& ¼ m# & 2$ (39)

in the normal phase, where m# ¼ m#;0 remains indepen-
dent of $ until 2$ ¼ m#;0 as required by the Silver Blaze
property.

In contrast, the same relation entails for the degenerate
diquark screening masses (!# is an even function of !)

msc2
& ¼ msc2

# " 4$2 þ!#ð2$; 0Þ "!#ð0; 0Þ; (40)

which reiterates that diquark and pion screening masses are
also degenerate at $ ¼ 0, but that both diquark screening
masses msc

& vanish as 2$ approaches the ($-independent)
pion pole mass m# from below.

The bottom line is that the onset of diquark condensation
at $B ¼ 2$ ¼ 2$cð0Þ, whatever the screening mass may
be, defines the physical zero-temperature pion mass. We
will make use of this property to fix the pion mass in the
Renormalization Group (RG) calculation, where the cal-
culation of the pole mass is more involved.

In the diquark-condensation phase the sigma-meson
mixes with the two diquark modes, i.e., the respective
masses have to be determined from the zeroes of the
determinant of the corresponding 3' 3 submatrix in
#ð2Þð!Þ. As in the NJL model [28,39], one can verify exact

results from the mass formulas at T ¼ 0. Also, in the QMD
model at mean-field-RPA level the in-medium pion pole
mass is equal to m# ¼ 2$ above the onset of diquark
condensation at 2$ ¼ m#;0. Moreover, one verifies explic-
itly that one of the three modes in the diquark-sigma sector
remains exactly massless in the superfuid phase, also at
finite temperature. This is, of course, the Goldstone boson
corresponding to the spontaneously broken Uð1ÞB baryon
number. Another one becomes degenerate with the pions
for large values of the chemical potential, eventually re-
flecting the restoration of chiral symmetry. They combine
into an SOð4Þ multiplet as the chiral condensate vanishes
for large chemical potentials.
This is all nicely reflected in the numerical results shown

in Fig. 5. As the RPA pole-mass formulas imply, the meson
masses stay constant in the normal phase, whereas, the
diquark masses are split up from the constantmB ¼ m# by
the terms &$B due to their coupling to the baryon-
chemical potential $B ¼ 2$.
The diquark and sigma masses in the diquark-

condensation phase show a considerable dependence on
the inclusion of the vacuum-term. This can be seen, for
example, by comparing the QMD model results with
vacuum-term cutoff $ ¼ 600 MeV to those from the
linear-sigma model, which are identical to the ones in the
no-sea-approximation ($ ¼ 0). In the linear-sigma model,
the pole masses can simply be calculated from the curva-
ture of the potential. In the normal phase they are simply
given by the expected constant m# ¼ m#;0, m! ¼ m!;0,
and m& ¼ m#;0 & 2$. In the phase with diquark conden-
sation ($>$c), on the other hand, for the linear-sigma
model masses we obtain

FIG. 5 (color online). Pole-mass spectrum at T ¼ 0: mean-
field/RPA QMD model results (with vacuum-term cutoff $ ¼
600 MeV), for comparison also shown without the effect of
diquark/sigma-meson mixing in the superfluid phase vs linear-
sigma model.

STRODTHOFF, SCHAEFER, AND VON SMEKAL PHYSICAL REVIEW D 85, 074007 (2012)

074007-10

effective chiral model
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Two-Color QCD in two dimensions 9 / 16

Setup

Two flavour SU(2)-QCD in 2d

Nt ⇥ 16 lattice with Nt = 2 . . . 128 at fixed � and 

Physical scale set by pion mass m⇡ = 200 MeV at Nt = 32

) a = 0.26(4) fm ⇠ 0.0013MeV�1

) T = 6 . . . 385MeV

) µ = 0 . . . 885MeV

) diquark massmd+

0

= 200MeV

) vector diquark massmd+

1

= 177MeV

) ameson massma = 254MeV
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Two-Color QCD in two dimensions 10 / 16
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Two-Color QCD in two dimensions 10 / 16
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Two-Color QCD in two dimensions 10 / 16
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Two-Color QCD in two dimensions 10 / 16
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Two-dimensional QCD-like theories Björn H. Wellegehausen

4. Two-Color QCD in two dimensions

The simulations for two-color QCD have been performed on a Nt ⇥ 16 lattice with Nt = 2 . . .128
at fixed gauge coupling b/Nc = 1.9 and hopping parameter k = 0.273. Physical units are set
by the pion mass mp = 200 MeV at Nt = 32, leading to a lattice spacing of a = 0.26(4) fm.
This corresponds to temperatures between T ⇡ 6 MeV and T ⇡ 385 MeV. For this ensemble, the
lightest bound state is the positive parity vector diquark with mass md+

1
⇡ 177 MeV, followed by the

scalar diquark with mass md+
0
= 200 MeV and the a-meson with mass ma ⇡ 254 MeV. The results

for the quark number and chiral condensate are shown in Figure 3. With decreasing temperature
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Figure 3: Quark number per flavour (left) and chiral condensate (right) for two-color QCD on a Nt ⇥ 16
lattice.

the onset transition to diquark matter at half of the mass of the lightest baryon becomes more
pronounced. The chiral condensate decreases significantly and we expect a diquark condensate to
be formed. The first onset transition is followed by various transitions where the quark number
always increases by two. In contrast to free fermions, we can put diquarks with different relative
momenta or different kinds of diquarks on the lattice. All these transitions show also up as a
small drop in the chiral condensate. When the lattice saturates at Nq = Ns Nc = 32, the chiral
condensate decreases to its quenched value. The phase diagram for the Polyakov loop and the
chiral condensate are shown in Figure 4 (left and center). Qualitatively, they agree with the phase
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Figure 4: Polyakov loop (left) and chiral condensate (center) for two-color QCD on a Nt ⇥ 16 lattice and
diquark and meson masses in two-color QCD at finite chemical potential (right)

diagram obtained in four dimensions, but at very low temperatures, the Polyakov loop is always
zero in contrast to results with Wilson fermions at the smallest temperatures in four dimensions

4

quark number quark condensate
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• ensembles with fixed particle number k mod N:

ZN (k) =
1

N

N�1X

n=0

e
2⇡i
N kn Z

⇣
µ� 2⇡i

N
Tn
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• N = 2, k = 0:
Zeven(k) =

1

2

⇣
Z(µ) + Z(µ� i⇡T )

⌘

Two-dimensional QCD-like theories Björn H. Wellegehausen

QCD calculations [8]. The quark number Nq for our smallest temperature T ⇡ 36 MeV (Fig. 1,
center) shows an onset transition to Nq = 2 close to half of the mass of the lightest diquark fol-
lowed by various transitions at larger values of chemical potential. Most of these transition lead to
a plateau in the quark number that can possibly be mapped to an appropriate distribution of baryons
on the finite number of lattice sites. The first two transitions at µ ⇡ 110 MeV and µ ⇡ 170 MeV are
related to diquarks with positive and negative parity and the quark number seems to be a continuous
function. At µ ⇡ 230 MeV we observe probably a first order transition in the quark number which
can be seen as a jump in the density and a phase coexistence in the corresponding histograms of
the quark number (Fig. 1, right). Unfortunately within given statistical errors, we cannot decide
whether the jump in the quark number is even or odd and therefore related to bosonic or fermionic
baryons. This is the reason why we investigate two-dimensional QCD-like theories where we can
perform high-precision simulations that may help to understand the behaviour in four dimensions.

3. Free lattice fermions

First we show some results for free lattice Wilson fermions in two dimensions. In order to mimic
diquark bound states, we project the partition function for free fermions Z(µ) onto an ensemble
with even quark number,

Zeven(µ) =
1
2
(Z(µ)+Z(µ � ipT )) . (3.1)

This corresponds to the sum of ensembles with periodic and anti-periodic boundary conditions in
temporal direction. The quark number and the chiral condensate, shown in Figure 2, are given by
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Figure 2: Quark number (left) and chiral condensate (right) for free Wilson fermions and different temporal
lattice sizes. The k parameter is tuned such that the first onset transition takes place at µ = 100 MeV.

derivatives with respect to µ and m,

Nq = T
d lnZeven(µ)

dµ
, S =

1
V

d lnZeven(µ)
dm

. (3.2)

In the zero temperature limit, the quark number increases by steps of two until the lattice is com-
pletely filled with 8 diquarks with increasing relative momentum. The length of the plateaus is
related to the spatial size of the lattice such that in the infinite volume limit the quark number is
continuously increasing. Whenever a diquark is put on the lattice, the chiral condensate decreases.

3
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• change spatial b.c.’s to probe momenta
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Introduction - G
2

-QCD 5 / 16

G
2

gauge theory with fundamental fermions, T = C�
5

⌦
7 colors, 14 gluons

bound states with integer quark number (fermionic and bosonic baryons)

n
q

=1 ⇠ Hybrid(H) ⇠ qggg

n
q

=1 ⇠ �̃ , Ñ ⇠ (q̄q)q

n
q

=2 ⇠ diquarks(d) ⇠ qTq

n
q

=3 ⇠ � ,N ⇠ (qTq)q

gluodynamic very similar to SU(3) (first order deconfinement transition)

n
q

Particle d $ T�
5

d̄T Particle n
q

1 H $ H 1
1 Ñ $ N 3
1 �̃++,+,� $ �̃++,+,� 1
1 �̃0 $ �0 3
3 �++,+,� $ �++,+,� 3
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• simulate af finite density
250 M core hours → 

Wellegehausen, Maas, Wipf & LvS, Phys. Rev. D 89 (2014) 056007
Maas, LvS, Wellegehausen & Wipf, Phys. Rev. D 86 (2012) 111901(R)
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Ensemble β κ md(0+)a mNa md(0+) [MeV] a [fm] a−1 [MeV] MC

Heavy 1.05 0.147 0.59(2) 1.70(9) 326 0.357(33) 552(50) 7K

Light 0.96 0.159 0.43(2) 1.63(13) 247 0.343(45) 575(75) 5K

Table 3: Parameters for the two different ensembles. All results are from 83 × 16 lattices.

between parity even and odd states as well as between scalar and vector diquarks. Especially the

Goldstone boson becomes the lightest state, with the η also being somewhat heavier. For the nu-

cleons we also observe different masses for parity even and odd states and the spin 1/2 and spin

3/2 representations. In particuclar, we find three clearly different scales in the light spectrum: a

pseudo-Goldstone scale, an intermediate boson scale set by the remaining diquarks, and the nu-

cleon scale set by the N and ∆ masses. This mass hierarchy of the spectrum seems to be reflected

in various structures of the quark density at zero temperature which one might thus attribute to

different bosonic and fermionic phases at finite density, see Figure 3. With increasing chemical

potential, the quark number density first remains consistent with zero until it very quickly rises

to a very small but nonzero value. When we compare the critical chemical potential µc for this

onset transition to the mass of the lightest baryon md(0+), the pseudo-Goldstone 0+ diquark in our

case, we find that numerically very good agreement with the expectation from the Silver Blaze

property, i.e. µc = md(0+)/2. The ground state changes from the vacuum to a finite-density ground

state only when the quark chemical potential reaches the mass of the lightest baryon divided by its

quark number so that the corresponding excitation energy vanishes. For bosonic excitations one

might expect Bose-Einstein-condensation in a continuous second-order quantum phase transition

at µc = md(0+)/2, without binding energy, and our data is certainly consistent with that. For larger

values of the chemical potential plateaus develop where the quark number density remains almost

constant. Especially in the light ensemble, the step towards the second plateau conicides with the

mass of the heavier bosonic diquark states divided by their quark number. It appears that the two

bosonic baryon mass scales are not sufficiently separated from each other to resolve these two

distinct transitions in the heavier ensemble.

At around aµ = 0.6 for the heavy ensemble and aµ = 0.55 for the light ensemble the quark
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Figure 2: Mass spectrum for the heavy (left) and light (right) ensemble in G2-QCD.
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• simulate af finite density
250 M core hours → 
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FIG. 14: Quark number density heavy ensemble
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FIG. 15: Quark number density light ensemble
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FIG. 16: Chiral condensate heavy ensemble
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FIG. 17: Chiral condensate light ensemble
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4. Evidence of a first order nuclear matter transition

In both ensembles we observe a strong transition at aµ ≈ 0.52 (heavy ensemble) and aµ ≈ 0.38

(light ensemble) that does not appear to correpond to any of our spectroscopic states. In Figure 4

we show the vicinity of this transition in the light ensemble in more detail. The quark number

density rises between aµ = 0.36 and aµ = 0.40 from a lower value nq ≈ 0.010 to a higher value

nq ≈ 0.025. In Figure 5 we show the quark number density as a function of Monte-Carlo time and

observe tunneling between these two states. This might indicate that there is a first-order phase

transition at aµ ≈ 0.38 in the phase diagram at zero temperature. Whether this phase transition is

indeed the analogue of the liquid-gas transition of nuclear matter as expected in QCD remains to

be shown by further simulations. If this is the case, then either the binding energy per nucleon is

comparatively large or the masses of nucleon and ∆ change with density in the regime of the finite

bosonic baryon density in the ground state before this transition which is not possible in QCD.
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Figure 5: Quark number density as a function of Monte-Carlo time for different values of chemical potential.

From left to right in the upper row aµ = 0.36, aµ = 0.37 and aµ = 0.38 and in the lower row aµ = 0.39,

aµ = 0.40 and aµ = 0.41.

5. Simulations of G2-QCD with Majorana fermions

In the present section we discuss the introduction of diquark sources in G2-QCD for two reasons:

First, on larger lattices and especially for values of the chemical potential in the vicinity of the

first order transition the simulations become more and more expensive. An obvious reason for this

might be the presence of very light diquark excitations in the simulations in this region of the phase

diagram. With the introduction of diquark source terms simulations should become more feasible.

Secondly, we would eventually like to resolve the complete diquark spectrum in order to investigate

chiral symmetry breaking at finite density. Any diquark source necessarily consists of an operator

7

aµ = 0.36

aµ = 0.41

Wellegehausen, Maas, Wipf & LvS, Phys. Rev. D 89 (2014) 056007
Maas, LvS, Wellegehausen & Wipf, Phys. Rev. D 86 (2012) 111901(R)
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• effective theory for heavy quarks
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G
2

-QCD in two dimensions 14 / 16
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very preliminary results indicate that nucleon / delta mass decreases above
diquark onset
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• Two-Color QCD with Two Flavors of Staggered Quarks

• Two-Color QCD in Two Dimensions

• Effective Lattice Theory for Heavy Quarks

• G2-QCD

improved action, away from bulk phase ➟ continuum Goldstone spectrum

qualitative understanding from statistical confinement

strong-coupling / hopping expansion ➟ continuous transition to finite diquark density

G2-nuclear matter, effective theory for heavy quarks with nucleons, understand 
generic features in two dimensions (way cheaper to simulate)    

Thank you for your attention!


