

QCD-like theories at finite density

Jonas Wilhelm, Lukas Holicki, Philipp Scior, Dominik Smith, Björn Wellegehausen, Lorenz von Smekal

Dubna, 13 July 2017

Outline

- Intro & Motivation
- Two-Color QCD with 2 Flavors of Staggered Quarks
- Effective Lattice Theory for Heavy Quarks
- Two-Color QCD in Two Dimensions
- G₂-QCD
- Conclusion

Introduction

13 July 2017 | Lorenz von Smekal | p. 3

UNIVER DARMS

QCD-like Theories

- compare lattice simulations with functional methods and effective models where there's no sign problem
- apply to ultracold fermi gases exploit analogies and more experimental data

Helmholtz International Center

• strongly correlated fermions in 2+1 dimensions electronic properties of graphene

Fermion-Sign Problem

sign problem:

$$\left(\operatorname{Det} D(\mu_f)\right)^* = \operatorname{Det} D(-\mu_f)$$

• except if:

(a) two degenerate flavors with isospin chemical potential

 $\sim \rightarrow$

Dyson index:

JUSTUS-LIEBIG-

'FRSITÄT

fermion determinant

$$Det(D(\mu_I)D(-\mu_I)) \qquad \beta = 2$$

QCD at finite isospin density

(b) anti-unitary symmetry $TD(\mu)T^{-1} = D(\mu)^*$ $T^2 = \pm 1$

fermion color representation:(i) pseudo-real $T^2 = 1$ two-color QCD $\beta = 1$ (ii) real $T^2 = -1$ adjoint QCD, or G2-QCD $\beta = 4$

Phase Diagram of QC₂D

Helmholtz International Center

Goldstone Spectrum - QC₂D

• extended flavor symmetry (Pauli-Gürsey), at $\mu = 0$

 $SU(N_f) \times SU(N_f) \times U(1)$ becomes $SU(2N_f)$

 $N_f = 2$: connects pions and σ -meson with scalar (anti)diquarks.

 $SU(4) \to Sp(2)$

or $SO(6) \rightarrow SO(5)$

Coset: S^5 5 Goldstone bosons: pions and scalar (anti)diquarks

• color-singlet diquarks (bosonic baryons)

Strodthoff, Schaefer & LvS, PRD 85 (2012) 074007

Vacuum Realignment

Hands et al., EPJC 17 (2000) 285; EPJC 22 (2001) 451 χ PT: $\langle \bar{q}q
angle = 2N_f G \cos lpha$

$$\langle qq \rangle = 2N_f G \sin \alpha$$

$$n_B = 8N_f F^2 \mu \sin^2 \alpha$$

Kogut, Stephanov, Toublan, Verbaarschot & Zhitnitsky, Nucl. Phys. B 582 (2000) 477

QMD model phase diagram

13 July 2017 | Lorenz von Smekal | p. 8

QCD with Isospin Chemical Potential

• *T* = 0 isospin density - FRG vs. lattice QCD:

Kamikado, Strodthoff, LvS, PLB 718 (2013) 1044

Detmold, Orginos & Shi, Phys. Rev. D86 (2012) 054507

Baryon & Isospin Chemical Potential

Quark Meson Model

isospin chemical potential

Up-Antidown Imbalance

UNIVERSITÄT GIESSEN

Two Color QCD - QC₂D

Lattice MC Simulations

Hands, Montvay, Scorzato & Skullerud, Eur. Phys. J. C 22 (2001) 451 Hands, Kenny, Kim & Skullerud, Eur. Phys. J. A 47 (2011) 60, ... Kogut, Toublan, Sinclair, Phys. Rev. D 68 (2003) 054507 Braguta, Ilgenfritz, Kotov, Molochkov & Nicolaev, Phys. Rev. D 94 (2016) 114510

$N_f = 2$ Flavors of Staggered Quarks

Validate - Previous Results

13 July 2017 | Lorenz von Smekal | p. 13

GIESSEN

Helmholtz International Center

Goldstone Spectrum - QC₂D

• mixing at finit density: f_0/qq : $\frac{1}{2} \left(\chi^T \tau_2 \chi + \bar{\chi} \tau_2 \bar{\chi}^T \right) \cos \alpha + \bar{\chi} \chi \sin \alpha$ $\pi/\epsilon qq$: $\bar{\chi} \epsilon \chi \cos \alpha + \frac{1}{2} \left(\chi^T \tau_2 \epsilon \chi + \bar{\chi} \tau_2 \epsilon \bar{\chi}^T \right) \sin \alpha$

 $N_f=$ 2, eta=1.5, m=0.025, $\lambda=0.0025$, $12^3 imes24$ lattice

Bulk Phase of SU(2)

Improved <u>Action - Simulation</u> Parameters

► Compromise:

$$eta = 1.7$$
, $rac{m_\pi}{m_
ho} = 0.5816(27)$

•
$$N_s = 16, N_t = 32$$

 standard rooted staggered quarks (N_f = 2), improved gauge action

D. Scheffler, PhD thesis, TU Darmstadt (2015)

Quark Condensate

• additive renormalization:

Diquark Condensate & Density

Staggered vs. Wilson

Polyakov Loop & Monopole Density

also seen by Braguta et al., arXiv:1605.04090

Goldstone Spectrum

 $\lambda = 0.0025$

 $\lambda = 0.0001$

J. Wilhelm, MSc thesis, JLU Giessen (2016)

Goldstone Spectrum

J. Wilhelm, MSc thesis, JLU Giessen (2016)

Goldstone Spectrum

Heavy Quarks

Ph. Scior & LvS, PRD 92 (2015) 094504

Heavy Quarks

Ph. Scior & LvS, PRD 92 (2015) 094504

Heavy Quarks

• effective lattice theory: systematic expansion in inverse coupling and inverse quark mass

QCD, simulate despite mild sign problem

 \rightarrow evidence of liquid-gas transition to nuclear matter

• characteristic differences, 2 ↔ 3 colors?

Setup

- Two flavour SU(2)-QCD in 2d
- $N_t imes 16$ lattice with $N_t = 2 \dots 128$ at fixed eta and κ
- Physical scale set by pion mass $m_{\pi}=200$ MeV at $N_t=32$

$$\Rightarrow$$
 $a=0.26(4)$ fm ~ 0.0013 MeV $^{-1}$

- \Rightarrow $T = 6 \dots 385 \text{ MeV}$
- $\Rightarrow \mu = 0 \dots 885 \text{ MeV}$
- \Rightarrow diquark mass $m_{d_0^+} = 200 \, {
 m MeV}$
- \Rightarrow vector diquark mass $m_{d_1^+} = 177 \, \text{MeV}$
- \Rightarrow a meson mass $m_a = 254 \text{ MeV}$

T = 385 MeV

T = 192 MeV

T = 128 MeV

T = 96 MeV

T = 77 MeV

T = 64 MeV

T = 55 MeV

T = 48 MeV

T = 32 MeV

T = 24 MeV

T = 16 MeV

T = 12 MeV

T = 6 MeV

32 30 28 26 24 22 20 T = 128 MeV1.8 T = 64 MeVT = 48 MeV1.7 T = 24 MeVT = 128 MeV18 1.6 T = 16 MeVΣ N_{q} 16 T = 64 MeV14 T = 12 MeV12 T = 48 MeV1.5 10 T = 24 MeV8 6 1.4 T = 16 MeV4 2 0 T = 12 MeV1.3 100 200 300 400 500 600 700 800 900 0 100 200 300 400 500 600 700 800 900 0 μ in MeV μ in MeV

quark condensate

Free Lattice Fermions

• ensembles with fixed particle number k mod N:

$$Z_N(k) = \frac{1}{N} \sum_{n=0}^{N-1} e^{\frac{2\pi i}{N}kn} Z\left(\mu - \frac{2\pi i}{N}Tn\right)$$

• N = 2, k = 0:
$$Z_{\text{even}}(k) = \frac{1}{2} \left(Z(\mu) + Z(\mu - i\pi T)\right)$$

13 July 2017 | Lorenz von Smekal | p. 42

Free Lattice Fermions

• change spatial b.c.'s to probe momenta

G₂-QCD

G_2 gauge theory with fundamental fermions, $T = C\gamma_5 \otimes \mathbb{1}$

- 7 colors, 14 gluons
- bound states with integer quark number (fermionic and bosonic baryons)

$$\begin{split} n_{q} =& 1 \sim \mathsf{Hybrid}(H) \sim qggg \\ n_{q} =& 1 \sim \tilde{\Delta} \,, \tilde{N} \, \sim (\bar{q}q)q \\ n_{q} =& 2 \sim \mathsf{diquarks}(d) \sim q^{\mathsf{T}}q \\ n_{q} =& 3 \sim \Delta \,, N \, \sim (q^{\mathsf{T}}q)q \end{split}$$

• gluodynamic very similar to SU(3) (first order deconfinement transition)

G₂-QCD

• simulate af finite density

250 M core hours \rightarrow

Wellegehausen, Maas, Wipf & LvS, Phys. Rev. D 89 (2014) 056007 Maas, LvS, Wellegehausen & Wipf, Phys. Rev. D 86 (2012) 111901(R)

Wellegehausen, Maas, Wipf & LvS, Phys. Rev. D 89 (2014) 056007 Maas, LvS, Wellegehausen & Wipf, Phys. Rev. D 86 (2012) 111901(R)

 nucleon / delta mass decreases above diquark onset (preliminary)
 Wellegehausen & LvS, in preparation (Lattice 2016)

Conclusions

- Two-Color QCD with Two Flavors of Staggered Quarks improved action, away from bulk phase → continuum Goldstone spectrum
- Effective Lattice Theory for Heavy Quarks

strong-coupling / hopping expansion → continuous transition to finite diquark density

• Two-Color QCD in Two Dimensions

qualitative understanding from statistical confinement

• G₂-QCD

G₂-nuclear matter, effective theory for heavy quarks with nucleons, understand generic features in two dimensions (way cheaper to simulate)

Thank you for your attention!

