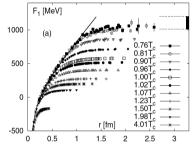

Meson mass at high temperatures and densities from lattice QCD

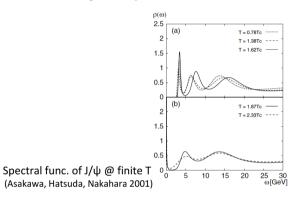
Hideaki Iida (FEFU, iTHES RIKEN, Keio U.)

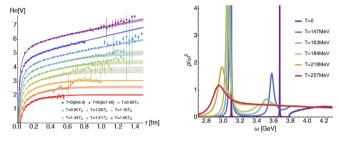
Mini-Workshop on "Lattice and Functional Techniques for Exploration of Phase Structure and Transport Properties in Quantum Chromodynamics", Dubna, 10-14 July, 2017

Explore the phase diagram of QCD

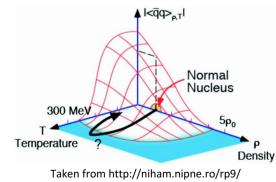


The properties of the phases ... reflected in the excitations of the system.


Seek for the properties of hadrons @ finite T & μ


Mesonic (or Baryonic) excitations of QCD in extreme systems

Heavy quark sector (e.g., suppression of J/ψ, Y...)


Temperature dependence of qq^{bar} potential (O.Kaczmarek, F.Zantow, PRD71, 114510 (2005))

Real part of static potential from lattice QCD (left) Spectral func. of J/ ψ from NR-QCD (A.Rothkopf, lattice 2016)

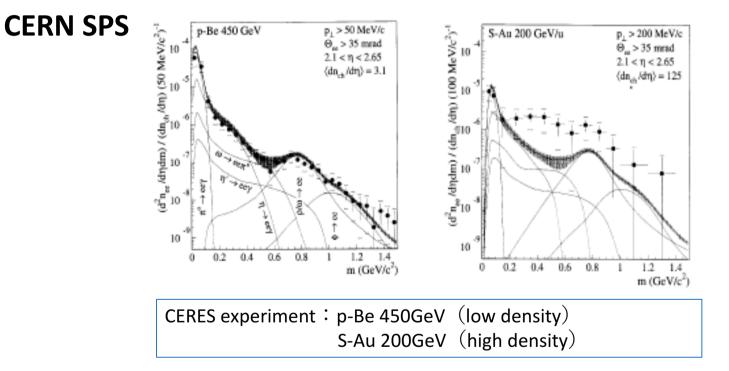
Light quark sector (π,σ,<u>vector mesons</u>):

 detector for chiral symmetry restoration reflected in mass modification, width broadening

cf) Brown-Rho scaling, QCD sum rules for vector mesons @ finite μ

Search for the properties of mesons @ finite μ ...Today's topic

Experimental status of properties of vector mesons @ finite density ...related to NICA

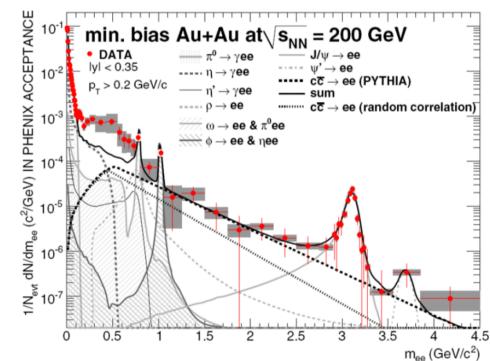

* lepton-pair ($e^+e^- \& \mu^+\mu^-$) observation ... appropriate because they have negligible final state int.

• High-energy heavy ion

- Bevalac, DLS
- HADES, SIS
- CERES, HELIOS/3, NA60, CERN SPS
- STAR, PHENIX, RHIC
- LHC

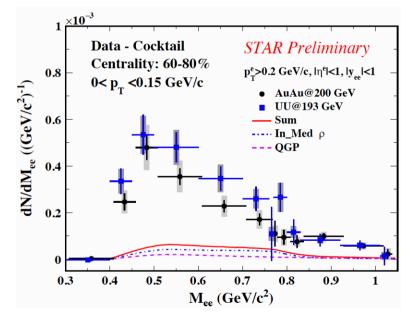
• Mesons produced in nuclei ("put mesons softly in nuclei")

- TAGX, INS (University of Tokyo)
- E325, KEK
- CLAS, JLAB
- CBELSA/TAPS, electron stretcher accelerator in Bonn
- LEPS @ Spring-8
- ANKE-COSY

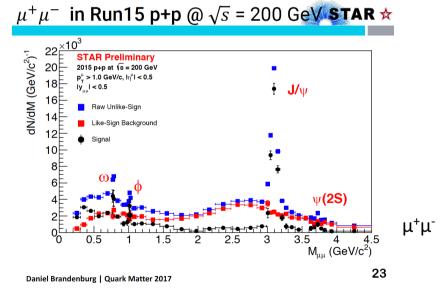


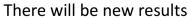
... shows the modification of vector mesons in medium (width broadening)

further analysis by NA60

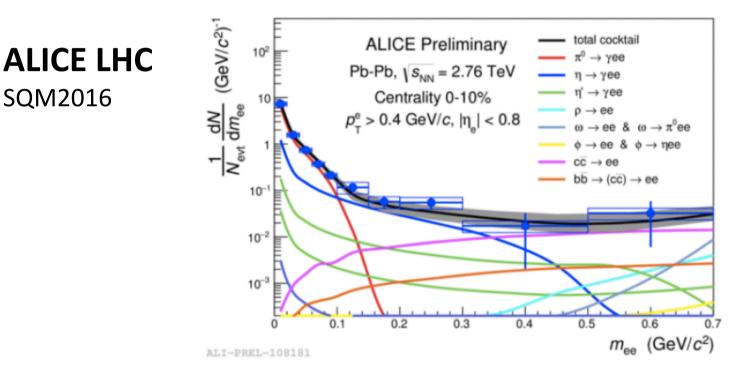

PHENIX, RHIC:

Axel Drees, NPA

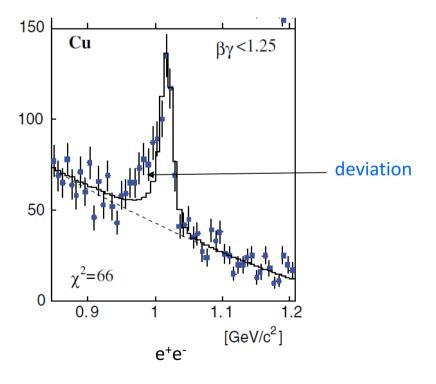



STAR, RHIC

QuarkMatter2017



Not due to the hadronic cont. , which is modified in medium Coherent photoproduction?


SQM2016

No significant enhancement?? ...still uncertainty is large...

• KEK PS-375

- ρ , ω : 9% mass reduction, no width broadening
 - Φ : 3.4% mass reduction, 3.6 times width broadening

• CLAS, J-LAB

No modification of mesons due to finite density effect is seen

"Brown & Rho (scaling analysis),

Hatsuda & Lee (QCD sum rule) are ruled out..."

Target		$\Gamma_{ ho}$
$^{2}\mathrm{H}$	773.0 ± 3.2	185.2 ± 8.6 176.4 ± 9.5 217.7 ± 14.5
\mathbf{C}	726.5 ± 3.7	176.4 ± 9.5
Fe, Ti	779.0 ± 5.7	217.7 ± 14.5

*The table is taken from Hayano & Hatsuda (2010)

Summary table of experiments for mesons @ finite µ (V. Metak, API Conf. Proc.1322, 73 (2010))

			-	-
experiment	momentum acceptance	ρ	ω	φ
KEK-E325 pA 12 GeV	<i>p</i> > 0.6 GeV/c	$\frac{\Delta m}{m} = -9\%$ $\Delta \Gamma \approx 0$	$\frac{\Delta m}{m} = -9\%$ $\Delta \Gamma \approx 0$	$\frac{\Delta m}{m} = -3.4\%$ $\frac{\Gamma_{\phi}(\rho_0)}{\Gamma_{\phi}} = 3.6$
CLAS γA 0.6-3.8 GeV	<i>p</i> > 0.8 GeV/c	$\begin{array}{c} \Delta m \approx 0\\ \Delta \Gamma \approx 70 \text{ MeV}\\ (\rho \approx \rho_0/2) \end{array}$		
CBELSA /TAPS γA 0.9-2.2 GeV	p > 0 MeV/c		$\begin{array}{c c} \Delta m \text{ insensitive} \\ p_{\omega} < 0.5 \text{ GeV/c} \\ \hline \Delta \Gamma(\rho_0) \approx 130 \text{ MeV} \\ \langle p_{\omega} \rangle = 1.1 \text{ GeV/c} \end{array}$	
SPring8 γA 1.5-2.4 GeV	p > 1.0 GeV/c			$\Delta\Gamma(\rho_0) \approx 70 \text{ MeV}$ $\langle p_{\phi} \rangle = 1.8 \text{ GeV/c}$
CERES Pb+Au 158 AGeV	$p_t > 0 \text{ GeV/c}$	broadening favoured over mass shift		
NA60 In+In 158 AGeV	$p_t > 0 \text{ GeV/c}$	$\Delta m \approx 0$ strong broadening		

So far, for light meson sector, it seems that no clear answer is obtained by experiments.

Our study: Hadron properties at finite temperature and density with two-flavorWilson fermions

In collab. with Y.Maezawa and K.Yazaki (H.Iida, Y.Maezawa and K.Yazaki, PoS LATTICE2010)

Lattice QCD at finite density

Approaches to overcome sign problem

- Imaginary chemical potential
- Isospin chemical potential
- N_c=2 "QCD"
- Taylor expansion by quark chemical potential...expansion by μ/T
- Reweighting
- Density-of-state method
- Complex Langevin
- Lifschetz thimble
- Canonical approach
- Histogram method
- ...

Method

• QCD Taro (2002)

... second response of meson masses to the chemical potential

in <u>Staggered fermion</u> by Taylor expansion method

Ref.) S.Choe et al., PRD65, 054501 (2002)

$$\langle \mathcal{O} \rangle = \frac{\int \mathcal{D}U e^{-S} (\det D(\mu))^2 \mathcal{O}}{\int \mathcal{D}e^{-S} (\det D(\mu))^2} = \frac{\langle (\mathcal{O} + \dot{\mathcal{O}}\mu + \frac{1}{2}\ddot{\mathcal{O}}\mu^2 + O(\mu^3))(1 + \frac{\dot{\Delta}}{\Delta}\mu + \frac{\ddot{\Delta}}{\Delta}\mu^2 + O(\mu^3)) \rangle}{1 + \langle \frac{\dot{\Delta}}{\Delta} \rangle \mu + \frac{1}{2} \langle \frac{\ddot{\Delta}}{\Delta} \rangle \mu^2 + O(\mu^3)} \qquad (\Delta \equiv (\det D(\mu))^2|_{\mu=0})$$

– taking ${\mathcal O}$ the meson correlator G at finite density:

$$G \equiv \operatorname{tr}(D_{x0}^{-1}(\mu)\Gamma D_{0x}^{-1}(\mu)\Gamma^{\dagger}) = \operatorname{tr}(D_{x0}^{-1}(\mu)\Gamma\gamma_{5}(D^{-1}(-\mu))_{x0}^{\dagger}\gamma_{5}\Gamma^{\dagger})$$

$$\Rightarrow \text{ 2nd order}: \langle \dot{G}\frac{\dot{\Delta}}{\Delta} \rangle + \frac{1}{2}\langle \ddot{G} \rangle + \frac{1}{2}\langle G\frac{\ddot{\Delta}}{\Delta} \rangle - \frac{1}{2}\langle G \rangle \langle \frac{\ddot{\Delta}}{\Delta} \rangle \qquad \text{(Note: } \langle \frac{\dot{\Delta}}{\Delta} \rangle = 0, \ \langle G\frac{\dot{\Delta}}{\Delta} \rangle = 0$$

% 1st order vanishes for mesons

Method

• Leading:

 $\langle G \rangle|_{\mu=0} = \langle \operatorname{tr}[D_{x0}^{-1}\Gamma\gamma_5(D^{-1})_{x0}^{\dagger}\gamma_5\Gamma^{\dagger}] \rangle$

• Second derivative:

$$\begin{aligned} \frac{d^2}{d\mu^2} \operatorname{Re}\langle G \rangle|_{\mu=0} =& 4\langle \operatorname{Retr}[(D^{-1}\dot{D}D^{-1}\dot{D}D^{-1})_{x0}\Gamma\gamma_5(D^{-1})^{\dagger}_{x0}\gamma_5\Gamma^{\dagger}] \rangle \\ &- 2\langle \operatorname{Retr}[(D^{-1}\ddot{D}D^{-1})_{x0}\Gamma\gamma_5(D^{-1})^{\dagger}_{x0}\gamma_5\Gamma^{\dagger}] \rangle \\ &- 2\langle \operatorname{Retr}[(D^{-1}\dot{D}D^{-1})_{x0}\Gamma\gamma_5(D^{-1}\dot{D}D^{-1})^{\dagger}_{x0}\gamma_5\Gamma^{\dagger}] \rangle \\ &+ 8\langle \operatorname{Imtr}[(D^{-1}\dot{D}D^{-1})_{x0}\Gamma\gamma_5(D^{-1})^{\dagger}_{x0}\gamma_5\Gamma^{\dagger}] \cdot \operatorname{ImTr}(D^{-1}\dot{D}) \rangle \\ &+ 2\operatorname{Re}\{\langle \operatorname{tr}[D^{-1}_{x0}\Gamma\gamma_5(D^{-1})^{\dagger}_{x0}\gamma_5\Gamma^{\dagger}](2(\operatorname{Tr}(D^{-1}\dot{D}))^2 - \operatorname{Tr}(D^{-1}\dot{D}D^{-1}\dot{D}) + \operatorname{Tr}(D^{-1}\ddot{D})) \rangle \\ &- \langle \operatorname{tr}[D^{-1}_{x0}\Gamma\gamma_5(D^{-1})^{\dagger}_{x0}\gamma_5\Gamma^{\dagger}] \rangle \langle 2(\operatorname{Tr}(D^{-1}\dot{D}))^2 - \operatorname{Tr}(D^{-1}\dot{D}D^{-1}\dot{D}) + \operatorname{Tr}(D^{-1}\ddot{D}) \rangle \end{aligned}$$

Noise method:
$$\operatorname{Tr}(A) \simeq \frac{1}{N_{\text{noise}}} \sum_{i=1}^{N_{\text{noise}}} \sum_{it,a,\alpha}^{N_{t},i,a,\alpha} \eta_{i,it,a,\alpha}^{\dagger} A \eta_{i,it,a,\alpha}$$
$$\frac{1}{N_{\text{noise}}} \sum_{i=1}^{N_{\text{noise}}} \eta(i,x) \eta^{*}(i,y) \simeq \delta_{x,y}$$

Our study

 Calculation using RG improved gauge action & clover-improved Wilson quark action with Nf=2

...using configurations generated by WHOT QCD

In collab. with Y.Maezawa and K.Yazaki (H.Iida, Y.Maezawa and K.Yazaki, PoS LATTICE2010)

Setup of lattice calculation

 Action: RG improved gauge action & clover-improved Wilson quark action

- Lattice size & quark masses: $16^3 \times 4$, m_{PS}/m_V=0.65, 0.80
- Temperature: 0.82-4.02 ($m_{PS}/m_V=0.65$) 0.76-3.01 ($m_{PS}/m_V=0.80$)
- Number of configurations: 100 confs.

m _{PS} /m _V =0.65				m _{PS} /m _V =0.80			
β	К	Т/Трс	Traj.	β	К	Т/Трс	Traj.
1.50	0.150290	0.82(3)	5000	1.50	0.143480	0.76(4)	5500
1.60	0.150030	0.86(3)	5000	1.60	0.143749	0.80(4)	6000
1.70	0.148086	0.94(3)	5000	1.70	0.142871	0.84(4)	6000
1.75	0.146763	1.00(4)	5000	1.80	0.141139	0.93(5)	6000
1.80	0.145127	1.07(4)	5000	1.85	0.140070	0.99(5)	6000
1.85	0.143502	1.18(4)	5000	1.90	0.138817	1.08(5)	6000
1.90	0.141849	1.32(5)	5000	1.95	0.137716	1.20(6)	6000
1.95	0.140472	1.48(5)	5000	2.00	0.136931	1.35(7)	5000
2.00	0.139411	1.67(6)	5000	2.10	0.135860	1.69(8)	5000
2.10	0.137833	2.09(7)	5000	2.20	0.135010	2.07(10)	5000
2.20	0.136596	2.59(9)	5000	2.30	0.134194	2.51(13)	5000
2.30	0.135492	3.22(12)	5000	2.40	0.133395	3.01(15)	5000
2.40	0.134453	4.02(15)	5000				

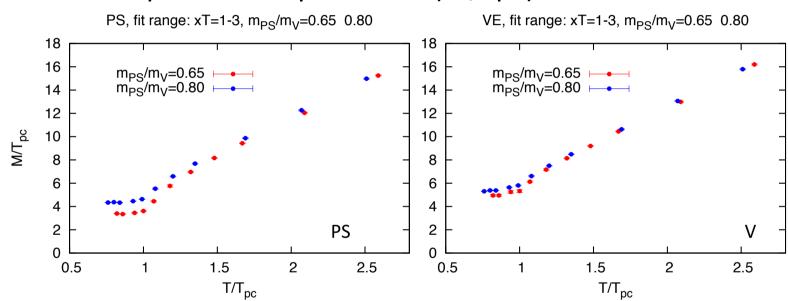
Method

• Leading:

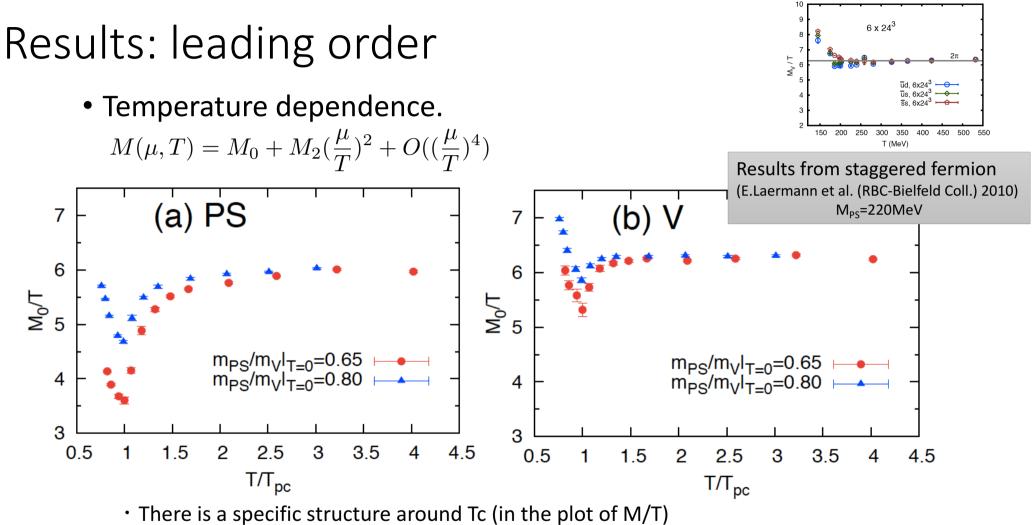
 $\langle G \rangle|_{\mu=0} = \langle \operatorname{tr}[D_{x0}^{-1}\Gamma\gamma_5(D^{-1})_{x0}^{\dagger}\gamma_5\Gamma^{\dagger}] \rangle$

• Second derivative:

$$\begin{aligned} \frac{d^2}{d\mu^2} \operatorname{Re}\langle G \rangle|_{\mu=0} =& 4\langle \operatorname{Retr}[(D^{-1}\dot{D}D^{-1}\dot{D}D^{-1})_{x0}\Gamma\gamma_5(D^{-1})^{\dagger}_{x0}\gamma_5\Gamma^{\dagger}] \rangle \\ &- 2\langle \operatorname{Retr}[(D^{-1}\ddot{D}D^{-1})_{x0}\Gamma\gamma_5(D^{-1})^{\dagger}_{x0}\gamma_5\Gamma^{\dagger}] \rangle \\ &- 2\langle \operatorname{Retr}[(D^{-1}\dot{D}D^{-1})_{x0}\Gamma\gamma_5(D^{-1}\dot{D}D^{-1})^{\dagger}_{x0}\gamma_5\Gamma^{\dagger}] \rangle \\ &+ 8\langle \operatorname{Imtr}[(D^{-1}\dot{D}D^{-1})_{x0}\Gamma\gamma_5(D^{-1})^{\dagger}_{x0}\gamma_5\Gamma^{\dagger}] \cdot \operatorname{ImTr}(D^{-1}\dot{D}) \rangle & \swarrow \frac{1}{2} \left(\langle G^{\dot{\Delta}}_{\Delta} \rangle - \langle G \rangle \langle \dot{\Delta}_{\Delta} \rangle \right) \\ &+ 2\operatorname{Re}\{\langle \operatorname{tr}[D^{-1}_{x0}\Gamma\gamma_5(D^{-1})^{\dagger}_{x0}\gamma_5\Gamma^{\dagger}](2(\operatorname{Tr}(D^{-1}\dot{D}))^2 - \operatorname{Tr}(D^{-1}\dot{D}D^{-1}\dot{D}) + \operatorname{Tr}(D^{-1}\ddot{D})) \rangle \\ &- \langle \operatorname{tr}[D^{-1}_{x0}\Gamma\gamma_5(D^{-1})^{\dagger}_{x0}\gamma_5\Gamma^{\dagger}] \rangle \langle 2(\operatorname{Tr}(D^{-1}\dot{D}))^2 - \operatorname{Tr}(D^{-1}\dot{D}D^{-1}\dot{D}) + \operatorname{Tr}(D^{-1}\ddot{D}) \rangle \} \end{aligned}$$


Noise method:

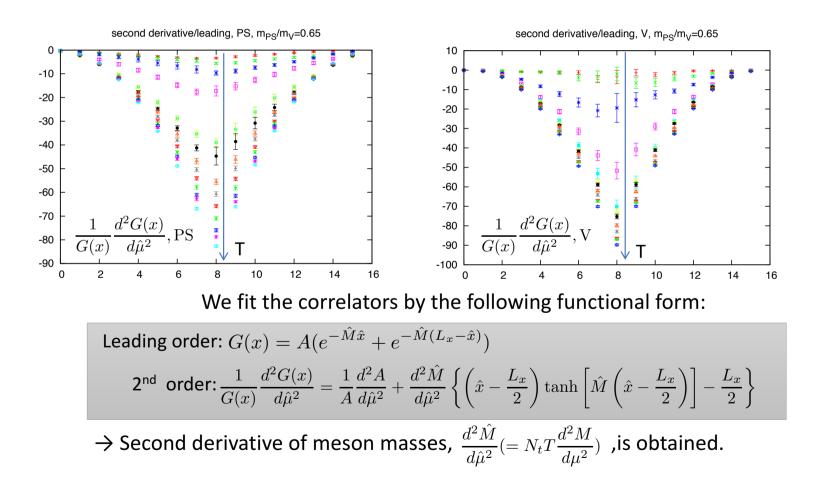
$$\operatorname{Tr}(A) \simeq \frac{1}{N_{\text{noise}}} \sum_{i=1}^{N_{\text{noise}}} \sum_{it,a,\alpha}^{N_{t},3,4} \eta_{i,it,a,\alpha}^{\dagger} A \eta_{i,it,a,\alpha}$$
$$\frac{1}{N_{\text{noise}}} \sum_{i=1}^{N_{\text{noise}}} \eta(i,x) \eta^{*}(i,y) \simeq \delta_{x,y} \quad \dots 100 \text{ U(1) noises}$$


Leading order

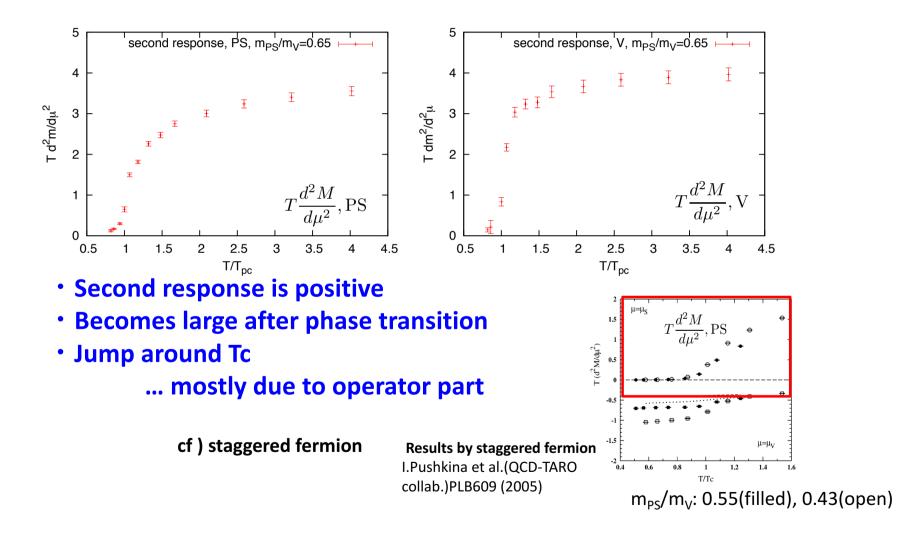
Results: leading order

• Temperature dependence (M/Tpc).

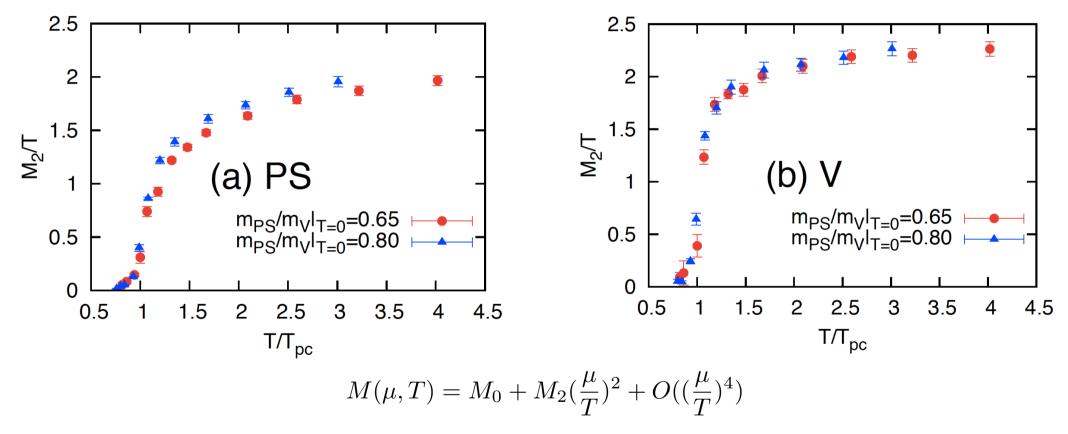
• Meson screening mass increases very slowly below Tc, and rapidly above Tc.



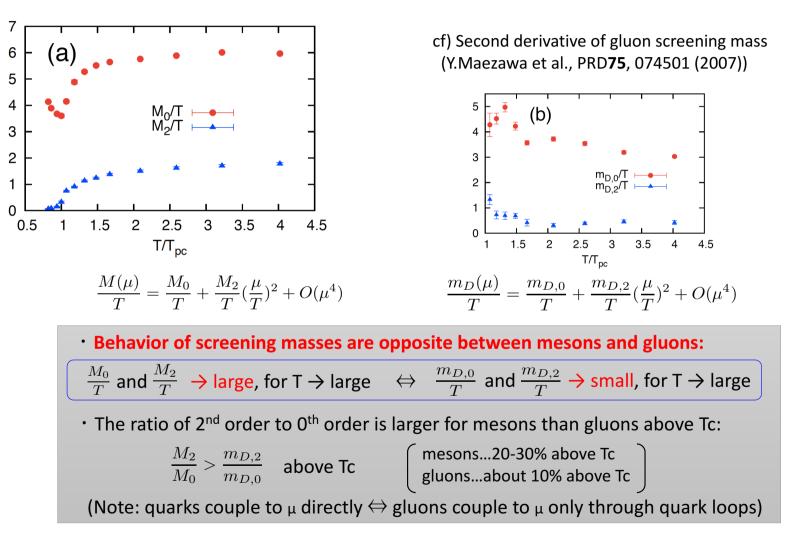
- Meson masses become $2\pi T$ at high temperature
- Quark mass dependence of meson masses is larger in PS channel than V channel


Results

2nd order


Results: second order

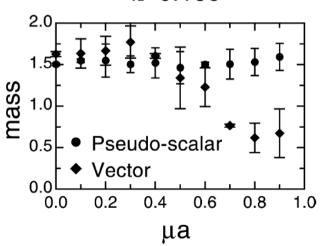
Second derivative of meson mass



Second derivative of meson mass

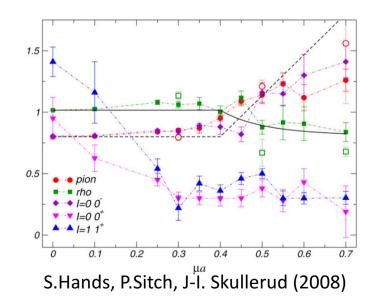
... The response becomes slightly large as quark mass becomes large

Comparison with gluon screening mass

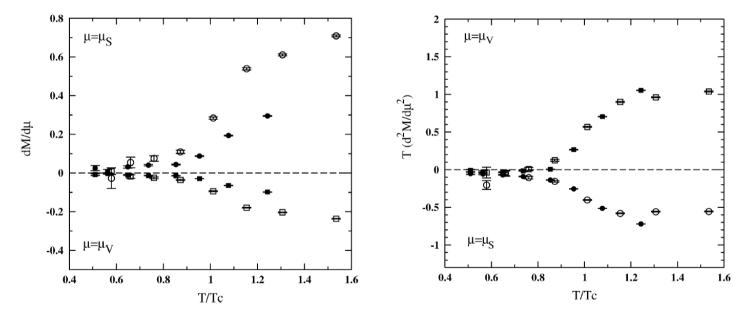

Summary

- We have studied meson screening masses (PS and V) at finite temperature and density in lattice QCD with two-flavor Wilson fermion generated by WHOT-QCD collaboration.
- Finite temperature, μ =0:
 - Below and around Tc : meson masses increase very slowly.
 - Above Tc: increase rapidly and approach to $2\pi T$, where the mesons may become two free quarks.
- Finite µ:
 - $T \frac{d^2 M}{d\mu^2}$ is very small below Tc
 - $T \frac{d^2 M}{du^2}$ is positive and increases above Tc
 - Meson screening masses have qualitatively different behavior compared to gluon screening mass, which feels μ effect only through quark loops.

Other studies of mesons @ finite μ


 Direct measurement of mesons @ finite μ in SU(2) gauge theory S.Hands et al., Muroya et al.

S.Muroya, A.Nakamura, C.Nonaka (2003) $\kappa = 0.160$


Strong modification of vector meson

S.Hands, J.B.Kogut, M-P. Lombardo, S.E.Morriso (1999); S.Hands, P.Sitch, J-I. Skullerud (2008)

Baryons @ finite µ

• I.Pushkina et al.(QCD-TARO collab.)PLB609 (2005)

· 1st order exists for baryons ... positive (for μ_s)

· 2nd order is negative (for $\mu_{s})$

Comment on unsatisfactory things

- Taylor exp. ... not applicable to zero temperature systems direct comp. w/ experiment would not be appropriate
- Quark mass is still large

it is doubtful that the calculations respect chiral symmetry restoration

- It is desired to extract spectral func.
- Low energy excitation @ finite μ is not investigated for the search of CEP, soft mode around it is important

Soft mode around CEP

 \rightarrow NOT qq^{bar}, but the linear combination of

 qq^{bar} and ρ_B , s (entropy density) when quark mass is finite (Z₂CP)

Fujii (2003); Fujii & Ohtani (2004) FRG in quark-meson model: Yokota, Kunihiro, Morita (2016)

If we can overcome these things, that's good.

Thank you for your attention!