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Physics questions

Current quasiparticle models e.g. PHSD 

Quasi-particle descriptions of the (Q)GP

Early on: ideal gas of massive gluons 

The integration constant B0 resembles somewhat the bag
constant. Note that the previous approaches @8,9# used
p(T) with B(T)[0, and that, consequently, neither the en-
tropy density nor the energy density take the structure of an
ideal gas.
To determine the functional dependence of m(T) on tem-

perature let us first consider the perturbative regime. The
thermodynamical properties of the gluon plasma depend pre-
dominantly on the transverse part of the gluon self-energy
@11,12#. In the weak coupling regime the transverse gluon
self-energy in a gluon plasma with Nc colors results in a
dispersion relation which can be approximated @11,12# by
v25ak21bv0

2 , with a 5 1 ( 65) and b 5 3
2 ~1! at large

~small! momenta and gauge-invariant plasma frequency
v0
25(Nc/9)g2T2 ~here, g2 denotes the perturbative QCD

coupling constant!. By studying numerically the known inte-
gral representation of the polarization operators, we find that
the large momentum approximation to the full transverse
one-loop dispersion relation @13# holds at k/T.2ANc/9g;
longitudinal excitations are there overdamped. Otherwise,
the large momentum region dominates the statistical inte-
grals in Eqs. ~2!–~4!, e.g., more than 96.5% of the contribu-
tion to the energy density comes from k/T>1. The error
caused by the use of Eq. ~1!, instead of the exact one-loop
dispersion relation, for k,gT can be estimated as }g4.
Therefore, Eq. ~1! represents an excellent approximation of
QCD properties, relevant for evaluating Eqs. ~2!–~4!, and
m2(T)5bv0

2 with b5 3
2 is supported within this approxima-

tion. Hence, m2(T)5(1/G)g2(T)T2, with G56/Nc ,
emerges approximately from perturbative QCD.
Let us now compare the obtained pressure potential ~3! at

high temperature with the corresponding pressure
obtained within first-order QCD. The high-temperature ex-
pansion ~i.e., m/T!1) of Eq. ~3! with B(T)
52pSB(15/8p2)@m(T)/T#21••• reads

p5pSBF12
15
8p2 Sm~T !

T D 21••• G , ~6!

where pSB5(dp2/90)T4. From QCD it is known @11# that
the perturbative pressure is

pPQCD5
2~Nc

221 !p2

90 T4F12
5Nc

16p2 g21••• G . ~7!

Comparing the leading terms in Eqs. ~6! and ~7!, one reveals
that, despite massive quasiparticles, one needs to include
only the two transverse degrees of freedom, i.e.,
d52(Nc

221). The next-to-leading order terms in the paren-
theses confirm our above ansatz for m2(T).
Finally, we specify the coupling constant in accordance

with perturbative QCD as

G2~T !5
48p2

11NclnS l
T
Tc

1
Ts
Tc

D 2 , ~8!

with Ts /Tc as phenomenological regularization as in Ref. @8#
and limT!`G2(T)!g2(T); Tc /l represents the usual regu-
larization scale parameter L . In the following we utilize in
Eqs. ~1!–~5! the thermal mass

m2~T !5
1
G
G2~T !T2, G5

6
Nc
. ~9!

III. ANALYSIS OF LATTICE DATA

We apply our model now to the SU~3! lattice data @4#. In
addition to l , Ts , and B0 , we also do not constrain the
degeneracy d in order to get an optimum fit. In Fig. 1 we
demonstrate that our model, defined by Eqs. ~1!–~5!, ~8!, and
~9!, describes very well the continuum-extrapolated data. As
fit parameters we obtain l54.17, Ts /Tc522.96; d517.2 is
surprisingly near to the above anticipated value for the two
transverse degrees of freedom of gluons. @Maybe this simple
multiplicative deviation from 16 accounts for higher order
corrections or some longitudinal contribution. Indeed, re-
placing Eq. ~8! by the two-loop expression we find d516.6
for the best fit.# B050.16Tc

4 turns out as an optimum choice
for the present data. As seen in Fig. 1 the function B(T),
which becomes small at T.1.5Tc , changes its sign at 2Tc ~a
similar observation was made in Ref. @10# for the older data
@3#!.
Figure 2 displays the interaction measure (e23p)T24,

which is a sensitive quantity related to the temperature de-
pendence of the gluon condensate. One observes that for
T.1.2Tc , the 32336 and 32338 lattice data are nicely re-

FIG. 1. Comparison of our model ~thin lines! with continuum-
extrapolated lattice data ~symbols, from @4#! of scaled energy den-
sity ē5e/T4, pressure p̄53p/T4, and entropy density s̄5 3

4s/T3.
The dash-dotted curve depicts the function B̄5B(T)/T4.

FIG. 2. The interaction measure as function of temperature
~heavy full line: our model; symbols: lattice data @4#.!
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Lattice QCD setup

Nf=2+1+1	
  flavors	
  of	
  twisted	
  Mass	
  Wilson	
  fermions	
  in	
  the	
  thermal	
  QCD	
  medium
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with (c0 = 3.648 and c1 = �0.331), where the sum (P )
contains all plaquettes and the sum (R) all planar rect-
angles.

The light doublet �
l

= (�
u

,�
d

) in the twisted basis
is related by a chiral rotation to the doublet  phys

=

( 
u

, 
d

) in the physical basis

 phys

l

= ei!l�5⌧3/2�
l

 
phys

l

= �
l

ei!l�5⌧3/2

with the twisting angle !
l

. Twisted mass light fermions
are taken at maximal twist, if the bare untwisted mass
m0,l is tuned to its critical value mcrit. When |m0,l �
mcrit| ! 0, the twisting angle !

l

! ⇡

2 (maximal twist).
This fixes the twisted basis.

A similar rotation

 phys

h

= ei!h�5⌧3/2�
h

 
phys

h

= �
h

ei!h�5⌧3/2

relates the two bases in the heavy sector. 
h

= (2am0,h+

8r)�1 (with r = 1) is the hopping parameter for heavy
quarks. Again, !

h

! ⇡

2 if |m0,h �mcrit| ! 0.
An economic procedure dealing with the N

f

= 2+1+1

case consists in the choice am0,l = am0,h =

1
2 � 4 with

a common hopping parameter. Tuning to maximal twist
means tuning  = crit(�). The critical  corresponds to
the vanishing of the PCAC light quark mass mPCAC and
is determined as function of � at zero temperature [48].

The bare light-quark (µ
l

) twisted-mass parameter (in
the first doublet) and the two bare heavy-quark twisted-
mass parameters µ

�

and µ
�

(in the second doublet) also
need to be tuned (as functions of �) at zero tempera-
ture to stay on a line of constant physics, defined by the
“pion mass” and by matching masses of hadrons contain-
ing strange and charm quarks. For light hadrons this
has been performed for the first time for � = 1.90 and
� = 1.95 in Ref. [48].

The bare twisted-mass parameters µ
�

and µ
�

are
related to the renormalized strange and charm quark
masses

(m
s

)

R

= Z�1
P

(µ
�

� Z
P

Z
S

µ
�

)(m
c

)

R

= Z�1
P

(µ
�

+

Z
P

Z
S

µ
�

)

with the renormalization constants Z
P

and Z
S

of the
pseudoscalar and scalar quark densities.

For a more detailed description of the simulation setup
see Ref. [48, 49].

The tmfT collaboration has adopted three parameter
sets for their finite temperature studies from the zero-
temperature ensembles used by the ETMC collaboration
(under the names A60.24, B55.32 and D45.32 defined in
Ref. [49]). In Ref. [50] these ensembles have been cal-
ibrated with the help of the baryon spectrum, and we
adopt these results for the lattice spacing. The set of
� values is fixed (according to the fixed-scale approach)
and has been extended to include � = 1.90 (A), � = 1.95
(B) and � = 2.10 (D). For example, the T = 0 nomen-
clature “A60.24” indicates, besides the � value, a lattice
size 24

3 ⇥ 48 for zero temperature and a light twisted-
mass parameter aµ

l

= 0.0060. The corresponding physi-
cal lattice spacings and pion masses m

⇡

± , together with

the resulting deconfinement crossover temperatures are
listed in Tab. I. The tmfT nomenclature refers to (apart
from the � value) to the approximate pion mass only.
The temperature is varied by changing N

⌧

.

ETMC ens. (T = 0) A60.24 B55.32 D45.32
tmfT ens. (T 6= 0) A370 B370 D370

� 1.90 1.95 2.10
a [fm] 0.0936 0.0823 0.0646

m⇡ [MeV] 364(15) 372(17) 369(15)

T
deconf

[MeV] 202(3)(0) 201(6)(0) 193(13)(2)

N⌧ = Nq4 range 4-14 10-14 4-20

TABLE I. Properties of the three sets of finite-temperature
ensembles used in our study, among them the deconfinement
cross-over temperature T

deconf

(defined by the Polyakov loop
susceptibility).

To compute the gluon correlation functions (5) and (6),
each generated configuration needs to be fixed to Landau
gauge. This corresponds to the following discretized local
condition

r
µ

A
µ

=

4X

µ=1

(A
µ

(x+ µ̂/2)�A
µ

(x� µ̂/2)) = 0 (13)

on the gauge fields defined from the link variables as

A
µ

(x+ µ̂/2) =
1

2iag0
(U

xµ

� U†
xµ

) |
traceless

. (14)

This condition may be fulfilled by iteratively applying
local gauge transformations g

x

U
xµ

g7! Ug

xµ

= g†
x

U
xµ

g
x+µ

, g
x

2 SU(3) , (15)

in order to maximize the functional

F
U

[g] =
1

3

X

x,µ

ReTr
�
g†
x

U
xµ

g
x+µ

�
. (16)

We consider a configuration to have reached a (local)
extremum if the the global deviation is less than

max

x

ReTr[r
µ

A
xµ

r
⌫

A†
x⌫

] < 10

�13 . (17)

This procedure has been carried out by means of the
cuLGT library [51], which we have adapted for the use
with lattice configurations in the ILDG format.

Subsequently we transform the gauge fields (14) into
Fourier space, where the lattice momenta are defined as

k
µ

a =

⇡n
µ

N
µ

, n
µ

2 (�N
µ

/2, N
µ

/2] . (18)

They are related to physical momenta via

q
µ

(n
µ

) =

2

a
sin

✓
⇡n

µ

N
µ

◆
. (19)
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FIG. 3. The longitudinal gluon propagators at � = 2.10 evaluated along imaginary frequencies for the ten available temperatures
among the ensembles of D370, i.e. T = 152 . . . 762MeV. The left panel contains correlators at |~q| ⇡ 0.6GeV while the right
panel shows those at |~q| ⇡ 1.5GeV.

FIG. 4. The longitudinal gluon propagators for � = 2.10 evaluated at T = 254MeV. (left) Shown are correlators vs. spatial
momenta at the first four available imaginary frequencies q

4

= 0 � 4.31GeV. The orange curve represents a naive spline
interpolation D̃L(|~q|) of DL(q4 = 0, |~q|). The dark orange and red curve corresponds to the interpolation evaluated using
the assumption of O(4) invariance: D̃L(

p
q2
4

+ |~q|2). (right) Use of the interpolation D̃L(|~q|) in order to reproduce the finite
imaginary frequency behavior of the propagator (blue points) . The solid curves show the O(4) evaluation D̃L(

p
q2
4

+ |~q|2). We
can see that while for small imaginary frequencies the O(4) ansatz works quite well, it starts to degrade as one approaches the
boundary of the Brillouin zone due to breaking of rotational symmetry on the lattice.

D370 N⌧ 4 6 8 10 11 12 14 16 18 20
T MeV 762 508 381 305 277 254 218 191 170 152
Ns 32 32 32 32 32 32 32 32 40 48

N
meas

310 400 120 410 420 380 790 610 590 280

TABLE II. Grid sizes and temperatures in the D370 ensembles
used for the computation of the correlation functions below.
N

meas

refers to the number of available correlator measure-
ments.

perature. At higher momenta (right) the agreement of
the data points above q4 ⇡ 2⇡T , as expected, is even
more pronounced than at low spatial momenta.

As last step we investigate the validity of the O(4)

scaling assumption for the longitudinal correlator. It
states that the values of the correlator at finite imag-

inary frequencies may be obtained by evaluating the
correlator at zero imaginary frequencies while appropri-
ately shifting the finite spatial momentum D(q4, |~q|) ⇡
D(0,

p
q24 + |~q|2). Using a spline interpolation along spa-

tial momenta, this ansatz has been verified in contin-
uum computations at zero and finite temperature to ap-
ply with less than 10% error up to the first Matsubara
frequency and with even less error at the higher frequen-
cies. This experience in continuum has motivated use of
the O(4) ansatz also for reconstructions of lattice spectral
functions in previous studies [14].

In the left panel of Fig.4 we set up a spline interpola-
tion ˜D

L

(solid yellow line) of the longitudinal correlator
D

L

for � = 2.10 at T = 254MeV at vanishing imaginary
frequencies (topmost points) along spatial momenta |~q|.
The orange and red curves then correspond to this inter-
polation, evaluated according to ˜D

L

(0,
p
q24 + |~q|2) at the

Minimize                                                      via gauge transf.

Gluon correlator                                      requires gauge fixing (e.g.                  )

At T>0 separation into longitudinal (electric) & transversal (magnetic) mode

R.  Baron  et  al.  PoS LAT2010,  123  (2010)  and F.  Burger  et  al.  (tmft)  PoS LAT2013  (2013)  153
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The challenge of gluon spectra

Already perturbation theory predicts Landau gauge spectra non-positive definite
Alkofer,  von  Smekal,  Phys.  Rept.  353  (2001),  Cornwall  MPL  A28  (2013)

� � � � ω[���]

-�

-�

�

ρ����

Mock

UV asymptotics
perturbative

IN-MEDIUM LANDAU GAUGE GLUON SPECTRAL FUNCTIONS FROM LATTICE QCD 

4



ISOQUANT 

SFB1225 

ISOQUANT 

SFB1225 

International Mini-Workshop – JINR, Dubna, Russian Federation – July 13th 2017

Unfolding of real-time information

Inversion	
  of	
  integral	
  transform	
  required	
  to	
  obtain	
  spectra	
  from	
  correlators

D(⌧) =

Z
d!K(⌧,!) ⇢(!)D⇢

i =
N!X

l=1

�!l Kij ⇢l
1. Nω parameters ρl >> Nτ datapoints

2. data Di has finite precision

One possibility: direct projection methods (Pade, Cuniberti, …)

Project Di onto a finite set of basis functions: analytically continue the basis functionsY. Burnier et al.: A test on analytic continuation of thermal imaginary-time data 5
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Fig. 3. ρ̂test/ω̃ ≡ ρtest/(ω̃T
3) as a function of ω̃ = ω/(2πT ), for various relative accuracies σ, as well as ℓmax chosen from

“windows of opportunity” in which
∑ℓmax

ℓ=0
âℓ approximately vanishes, cf. fig. 2 (results are shown for one random configuration).

The thick solid line is the correct (input) result. The case σ = 10−3 with N = 48 shows a “failed” example: there is a minimum
in

∑ℓmax

ℓ=0
âℓ but it is not near zero (cf. fig. 2).

statistical analysis, we note that, in general, the output
function depends non-linearly on input data, because the
value of ℓmax varies and affects significantly the result. Er-
ror estimation should therefore be carried out with e.g.
jackknife or bootstrap methods, perhaps with blocked
configurations (the effect of blocking has been shown to
be beneficial in connection with the Maximum Entropy
Method, see e.g. ref. [23]).

7 Conclusions

The algorithm of ref. [13] possesses a number of attractive
features: it can be fully specified in a small number of ex-
plicit steps; it requires no priors; it does not necessitate a
positive-definite spectral function; and it projects out the
Matsubara zero-mode contribution whose handling has
been considered a problem in certain contexts.

Unfortunately, from a practical point of view, the
algorithm of ref. [13] cannot be guaranteed to yield a
quantitatively accurate analytic continuation of thermal
imaginary-time data. In some sense, the situation is akin
to the sign problem hampering simulations of QCD with a
finite baryon number density: there are significant cancel-
lations taking place, particularly if a spectral function at
a small frequency ω ≪ 2πT needs to be determined. Also,
short-distance divergences need to be subtracted from the
Euclidean correlator G(τ, ·), which constitutes a signifi-
cance loss of its own.

Nevertheless, we have demonstrated that in a lucky
case with a structureless spectral function and precise data
(with relative errors < 0.1% after the ultraviolet subtrac-
tion), already N >∼ 20 data points may yield a qualitative
reproduction of a transport coefficient (zero-frequency in-
tercept of ρ(ω, ·)/ω). In general, it is difficult to estimate

systematic errors, but if a clear near-zero minimum in
∑ℓmax

ℓ=0 aℓ is found as a function of ℓmax, then it appears
that a <∼ 50% uncertainty can be expected. This could al-
ready be useful, given that current model-independent de-
terminations of transport coefficients might contain errors
of more than 100% [21].
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The Bayesian strategy

Likelihood:	
  How	
  is	
  the	
  data	
  measured

P[D|⇢, I] = e-L, L =
1

2

X

i

(Di -D⇢
i )

2/�2
i

Prior:	
  What	
  else	
  is	
  known	
  about	
  ρ
(functional	
  form	
  of	
  S	
  and	
  default	
  model	
  m:	
  δS/δρ|ρ=m=0)

P[⇢|I] = eS, S = S[⇢(!),m(!)]

Bayes	
  Theorem:	
  Systematic	
  inclusion	
  of	
  additional	
  prior	
  knowledge	
  (I)

P[⇢|D, I] / P[D|⇢, I]P[⇢|I]

�P[⇢|D, I]

�⇢l

!
= 0

C.M.  Bishop,  Pattern  Recognition  and  Machine  Learning,  Springer (2007),  Jarrell,  Gubernatis,  Phys.  Rep.  269  (1996)
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P[⇢|I] / eS S = ↵

N!X

l=1

�!l

⇣
1-

⇢l

ml
+ log

h
⇢l

ml

i⌘

Previously BR prior: ρ positive definite, smoothness of ρ, result independent of units

Y.Burnier,	
  A.R.
PRL 111 (2013) 18, 182003 
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Generalized BR method

Bayesian proposals to treat non-positive definite spectra in the literature:

use quadratic prior S=(ρ-m)2 :  too strong imprinting of m on end results   

decompose ρ into ρ+>0 and ρ-<0 apriori:   beyond prior information   

add shift onto the data & use standard methods:  remnant dependence on shift?

Dudal,  Oliveira,  Silva  PRD89  (2014)  014010

Hobson,  Lasenby,  Mon.  Not.  Roy.  Astron.  Soc.  298,  905  (1998);;  Qin,  Rischke PRD88  (2013)  056007  

see  e.g.  Haas,  Fister,  Pawlowski PRD90  (2014)  091501    

-� � � ρ

�

�

�

�
-�[ρ]

S+-(2m,m)

SBR

SBR
g (h=m)

SBR
g (h=2m)

m=1

Here instead generalized BR prior:

absolute deviation |ρ-m| vs. previously ρ/m  

new default model function h: confidence in m

weakest amongst different priors: let the data speak

A
.R
.  P
R
D
95
  (2
01
7)
  0
56
01
6  

A.R.  
PRD95  (2017)

056016
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Mock data tests
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Gluon correlators in Landau gauge
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Transversal β=2.10

T=0.152 - 0.762 GeV

Conventional separation into longitudinal (electric) & transversal (magnetic) mode

An electric and magnetic mass visible at q4=0 q=0 :   D(0,0)=1/M2 increase with T
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The O(4) assumption
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Transversal β=2.10

T=0.254GeV

q=0.598-1.19GeV

Previous studies used O(4) invariance assumption to generate correlators for q4>0 

Here: explicitly compute finite q4 and observe range of validity of assumption

Close to q4=0 ok but already deviations at q4~2πT and end of Brillouin zone problematic

see  e.g.  Dudal,  Oliveira,  Silva  PRD89  (2014)  014010
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Raw reconstruction datasets
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Challenge: while at q4=0 strong difference visible already at q4≈2πT very similar 
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See Jan’s talk on how to resolve the correlator beyond the Matsubara frequencies
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Reconstructed Spectra I
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Clear observation of a peak-trough structure in both channels at low T

Negative contribution appears slightly stronger in transversal sector
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Reconstructed Spectra II
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Negative trough significantly reduced at T>TC
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Gluon dispersion relation I
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β=2.10 position of the longitudinal quasi-particle peak

Use the peak position of the lowest lying structure to define dispersion relation

|q| dependence same for large values of spatial momenta, differences at small |q| 
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Gluon dispersion relation II
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Resulting masses in qualitative agreement with weak coupling expectations 
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Summary

Investigating gluon properties provides complementary insight into QGP physics

Lattice QCD simulations with gauge fixing are an appropriate non-pert. tool

Extracting spectral properties from the lattice as ill-posed inverse problem

Positivity violation precludes application of standard approaches

Novel Bayesian approaches (BR) available for positive definite and general spectra

Investigation of gluon properties in Nf=2+1+1twisted mass lattice QCD 

First study not to rely on assumption of O(4) invariance for correlators

Clear observation of quasi-particle structure at small frequencies

Dispersion relation with masses in qualitative agreement with weak coupling

Thank you for your attention - Благодарю вас за внимание
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Deriving the BR prior
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Both	
  functional	
  form	
  of	
  prior	
  distribution	
  and	
  supplied	
  m(ω)	
  encode	
  prior	
  info

Wish	
  to	
  axiomatically	
  derive	
  P[ρ|I]=Exp[S]	
  to encode:	
  	
  	
  ρ>0 &	
  ρ smooth	
  (if Nτ=0)

Anticipate	
  the	
  situation	
  where	
  no	
  prior	
  estimation	
  of	
  ρ exists	
  m(ω)=const.

Axiom	
  II:	
  Scale	
  invariance	
  (new)

ρ itself	
  does	
  not	
  have	
  to	
  be	
  probability	
  distribution:	
  	
  scales	
  differently	
  from	
  1/ω

S = ↵̃

Z
d! s

⇣
⇢(!)/m(!)

⌘
to	
  make	
  dimensionless:	
  hyperparameter α

Axiom	
  I:	
  Subset	
  independence	
  (same	
  as	
  in	
  Maximum	
  Entropy	
  Method)

S[⌦1,m(⌦1)] + S[⌦2,m(⌦2)] = S[⌦1 [⌦2,m(⌦1 [⌦2)]

ω

ρ(ω)

S /
Z
d! s(⇢(!),m(!),!)
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The Bayesian strategy
IN-MEDIUM LANDAU GAUGE GLUON SPECTRAL FUNCTIONS FROM LATTICE QCD 

18

Axiom	
  III:	
  Smoothness	
  of	
  the	
  reconstructed	
  spectrum	
  (new)

Goal:	
  in	
  the	
  case	
  of	
  m(ω)=m0, prior	
  shall	
  choose	
  a	
  smooth	
  spectrum	
  independent of	
  m0

Penalty	
  for	
  deviation	
  of	
  rl=ρl/ml between	
  adjacent	
  values	
  ω1 and	
  ω2

If	
  changing	
  r1 and	
  r2 does	
  not	
  move	
  Dρ beyond	
  errorbars of	
  the	
  data:	
  r1=r2

r1 = r2 r1 = r(1+ ✏), r2 = r(1- ✏)vs.

Penalty	
  independent	
  of	
  r	
  and	
  symmetric	
  in	
  r1≷r2

2s(r)- s(r(1+ ✏))- s(r(1- ✏)) = ✏2C2

S = ↵̃

Z
d!

⇣
C0 - C1

⇢

m
+ C2 ln

⇣ ⇢

m

⌘⌘

Solution	
  of	
  differential	
  equation:

-r2s 00(r) = C2
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Axiom	
  IV:	
  Maximum	
  at	
  the	
  prior	
  (	
  Bayesian	
  meaning	
  of	
  m(ω)	
  )

In	
  the	
  absence	
  of	
  data	
  S	
  must	
  be	
  maximal	
  at	
  ρ =	
  m,	
  i.e.	
  r	
  =	
  1

S(r = 1) = 0, S 0(r = 1) = 0, S 00(r = 1) < 0

The	
  strictly	
  concave	
  result	
  (α>0,	
  	
  S≤0):

S = ↵

Z
d!

⇣
1-

⇢

m
+ ln

⇣ ⇢

m

⌘⌘

S = ↵̃

Z
d!

⇣
C0 - C1

⇢

m
+ C2 ln

⇣ ⇢

m

⌘⌘

P[⇢|↵,m] = eS/
N!Y

i=1

e↵�!i(↵�!i)
-↵�!imi�(↵�!i)

The	
  prior	
  probability	
  hence	
  is	
  related	
  to	
  an	
  inverse	
  γ-­‐distribution:

Out[5]=

10-5 0.001 0.1 10
r

0.01

0.1

1

10

100
-sHrL

Shannon-Jaynes

Our prior

m=1


