



# In-medium Landau gauge gluon spectral functions from LQCD with Nf=2+1+1 dynamical quarks

Alexander Rothkopf Institute for Theoretical Physics Heidelberg University



in collaboration with E.M. Ilgenfritz, J.M. Pawlowski and A. Trunin

**References:** 

A.R.: PRD95 (2017) 056016

with E.M. Ilgenfritz, J.M. Pawlowski

and A.Trunin: arXiv:1701.08610

International Mini-Workshop on "Lattice and Functional Techniques for Exploration of Phase Structure and Transport Properties in Quantum Chromodynamics" – JINR, Dubna, Russian Federation – July 13<sup>th</sup> 2017







#### Lattice QCD setup



#### N<sub>f</sub>=2+1+1 flavors of twisted Mass Wilson fermions in the thermal QCD medium

R. Baron et al. PoS LAT2010, 123 (2010) and F. Burger et al. (tmft) PoS LAT2013 (2013) 153

| ETMC ens. $(T = 0)$           | D45.32     |
|-------------------------------|------------|
| tmfT ens. $(T \neq 0)$        | D370       |
| $\beta$                       | 2.10       |
| $a[{ m fm}]$                  | 0.0646     |
| $m_{\pi}  [{ m MeV}]$         | 369(15)    |
| $T_{\rm deconf}  [{\rm MeV}]$ | 193(13)(2) |
| $N_{\tau} = N_{q_4}$ range    | 4-20       |

| D370 $N_{\tau}$ | 4   | 6   | 8   | 10  | 11  | 12  | 14  | 16  | 18  | 20  |
|-----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| T MeV           | 762 | 508 | 381 | 305 | 277 | 254 | 218 | 191 | 170 | 152 |
| $N_s$           | 32  | 32  | 32  | 32  | 32  | 32  | 32  | 32  | 40  | 48  |
| $N_{ m meas}$   | 310 | 400 | 120 | 410 | 420 | 380 | 790 | 610 | 590 | 280 |

I Gluon correlator  $D^{ab}_{\mu\nu}(\mathbf{q}) = \langle A^a_{\mu}(-\mathbf{q})A^b_{\nu}(\mathbf{q}) \rangle$  requires gauge fixing (e.g.  $\partial_{\mu}A^{\mu} = 0$ )

• Minimize 
$$F_{U}[g] = \frac{1}{3} \sum_{x,\mu} \operatorname{ReTr} \left( g_{x}^{\dagger} U_{x\mu} g_{x+\mu} \right)$$
 via gauge transf.  $U_{x\mu} \stackrel{g}{\mapsto} U_{x\mu}^{g} = g_{x}^{\dagger} U_{x\mu} g_{x+\mu}$ 

At T>0 separation into longitudinal (electric) & transversal (magnetic) mode

$$\begin{split} P_{\mu\nu}^{\mathsf{T}} &= (1 - \delta_{\mu4})(1 - \delta_{\nu4}) \left( \delta_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{\vec{q}^{\,2}} \right), \qquad \mathsf{D}_{\mathsf{T}}(q) = \frac{1}{2\mathsf{N}_{g}} \left\langle \sum_{i=1}^{3} \mathsf{A}_{i}^{\alpha}(q) \mathsf{A}_{i}^{\alpha}(-q) - \frac{q_{4}^{2}}{\vec{q}^{\,2}} \mathsf{A}_{4}^{\alpha}(q) \mathsf{A}_{4}^{\alpha}(-q) \right\rangle \\ P_{\mu\nu}^{\mathsf{L}} &= \left( \delta_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^{2}} \right) - \mathsf{P}_{\mu\nu}^{\mathsf{T}} \,, \qquad \mathsf{D}_{\mathsf{L}}(q) = \frac{1}{\mathsf{N}_{g}} \left( 1 + \frac{q_{4}^{2}}{\vec{q}^{\,2}} \right) \left\langle \mathsf{A}_{4}^{\alpha}(q) \mathsf{A}_{4}^{\alpha}(-q) \right\rangle \end{split}$$

# The challenge of gluon spectra



Already perturbation theory predicts Landau gauge spectra non-positive definite Alkofer, von Smekal, Phys. Rept. 353 (2001), Cornwall MPL A28 (2013)

 $D^{ab}_{\mu\nu} \sim \frac{I}{p^2} \Big[ Log \Big( \frac{p^2}{u^2} \Big) \Big]^{-\frac{13}{22}} \qquad \text{decays faster than } p^{-2}$  $D(p) \propto \int_{0}^{\infty} d\omega \, \frac{2\omega \, \rho(\omega)}{p^2 + \omega^2}$ denominator contains only p<sup>-2</sup> Mock  $\lim_{p\to\infty} D(p)p^2 = \int_0^\infty d\omega \ 2\omega \ \rho(\omega) = 0$  $\omega$ [GeV] **UV** asymptotics perturbative

IN-MEDIUM LANDAU GAUGE GLUON SPECTRAL FUNCTIONS FROM LATTICE QCD

#### **Unfolding of real-time information**



Inversion of integral transform required to obtain spectra from correlators

$$DDt_{i}^{p} = \sum_{l=1}^{N_{\omega}} d\Delta u K_{i}(K_{ij} p) \rho(\omega)$$

I.  $N_{\omega}$  parameters  $\rho_{I} >> N_{\tau}$  datapoints 2. data  $D_{i}$  has finite precision

Going to imaginary frequencies improves the inverse problem (see also Backus-Gilbert/Sumudu)

$$D(\tau) = \int_{0}^{\infty} d\omega \, \frac{\cosh[\omega(\tau - \beta/2)]}{\sinh[\omega\beta/2]} \, \rho(\omega) \quad \begin{array}{l} \text{Fourier} \\ \tau \to \mu \end{array} \quad D(\mu) = \int_{0}^{\infty} \, d\omega \frac{2\omega}{\mu^{2} + \omega^{2}} \rho(\omega) \end{array}$$

One possibility: direct projection methods (Pade, Cuniberti, ...)

e.g. Cuniberti, Michelli, Viano Commun.Math.Phys. 216 (2001)

Project D<sub>i</sub> onto a finite set of basis functions: analytically continue the basis functions



- cancellation in basis function coefficients requires very high precision of data  $(D_j=D_j^{ideal} + \delta D_j)$
- divergent structures in the correlator D must be subtracted
- in practice with real-word lattice data only qualitatively satisfactory results achieved

# The Bayesian strategy



Bayes Theorem: Systematic inclusion of additional prior knowledge (I)

C.M. Bishop, Pattern Recognition and Machine Learning, Springer (2007), Jarrell, Gubernatis, Phys. Rep. 269 (1996)

$$P[\rho|D,I] \propto P[D|\rho,I]P[\rho|I]$$

 $\frac{\delta \mathsf{P}[\rho|\mathsf{D},\mathsf{I}]}{\delta \rho_{\mathsf{I}}} \stackrel{!}{=} \mathsf{0}$ 

$$P[D|\rho, I] = e^{-L}, \ L = \frac{1}{2} \sum_{i} (D_{i} - D_{i}^{\rho})^{2} / \sigma_{i}^{2}$$

Likelihood: How is the data measured

$$P[\rho|I] = e^{S}, \ S = S[\rho(\omega), m(\omega)]$$

**Prior**: What else is known about ρ(functional form of S and default model m:  $\delta S/\delta ρ|_{ρ=m}=0$ )

• Previously BR prior:  $\rho$  positive definite, smoothness of  $\rho$ , result independent of units

$$P[\rho|I] \propto e^{S} \qquad S = \alpha \sum_{l=1}^{N_{\omega}} \Delta \omega_l \left( 1 - \frac{\rho_l}{m_l} + \log \left[ \frac{\rho_l}{m_l} \right] \right) \qquad \text{Prl III (2013) 18, 182003}$$

# **Generalized BR method**



- Bayesian proposals to treat non-positive definite spectra in the literature:
  - use quadratic prior  $S=(\rho-m)^2$ : too strong imprinting of m on end results Dudal, Oliveira, Silva PRD89 (2014) 014010
  - decompose ρ into ρ<sup>+</sup>>0 and ρ<sup>-</sup><0 apriori: beyond prior information Hobson, Lasenby, Mon. Not. Roy. Astron. Soc. 298, 905 (1998); Qin, Rischke PRD88 (2013) 056007

add shift onto the data & use standard methods: remnant dependence on shift?

see e.g. Haas, Fister, Pawlowski PRD90 (2014) 091501



A.R. PRD95 (2017) 056016

$$S_{BR}^{g} = \alpha \int d\omega \left( -\frac{|\rho - m|}{h} + \log \left[ \frac{|\rho - m|}{h} + 1 \right] \right)$$

- absolute deviation  $|\rho-m|$  vs. previously  $\rho/m$
- new default model function h: confidence in m
- weakest amongst different priors: let the data speak

#### Mock data tests





#### Gluon correlators in Landau gauge





Conventional separation into longitudinal (electric) & transversal (magnetic) mode

$$\begin{split} P_{\mu\nu}^{\mathsf{T}} &= (1 - \delta_{\mu4})(1 - \delta_{\nu4}) \left( \delta_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{\vec{q}\,^2} \right), \qquad \mathsf{D}_{\mathsf{T}}(q) = \frac{1}{2\mathsf{N}_g} \left\langle \sum_{i=1}^3 A_i^{\mathfrak{a}}(q) A_i^{\mathfrak{a}}(-q) - \frac{q_4^2}{\vec{q}\,^2} A_4^{\mathfrak{a}}(q) A_4^{\mathfrak{a}}(-q) \right\rangle \\ P_{\mu\nu}^{\mathsf{L}} &= \left( \delta_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^2} \right) - P_{\mu\nu}^{\mathsf{T}} \,, \qquad \mathsf{D}_{\mathsf{L}}(q) = \frac{1}{\mathsf{N}_g} \left( 1 + \frac{q_4^2}{\vec{q}\,^2} \right) \left\langle A_4^{\mathfrak{a}}(q) A_4^{\mathfrak{a}}(-q) \right\rangle \end{split}$$

• An electric and magnetic mass visible at  $q_4=0 q=0$ :  $D(0,0)=1/M^2$  increase with T

# The O(4) assumption





Previous studies used O(4) invariance assumption to generate correlators for  $q_4>0$  $D(q_4, q) \approx D(0, \sqrt{q_4^2 + q^2})$ see e.g. Dudal, Oliveira, Silva PRD89 (2014) 014010

Here: explicitly compute finite q<sub>4</sub> and observe range of validity of assumption

Close to  $q_4=0$  ok but already deviations at  $q_4 \sim 2\pi T$  and end of Brillouin zone problematic

IN-MEDIUM LANDAU GAUGE GLUON SPECTRAL FUNCTIONS FROM LATTICE QCD

#### Raw reconstruction datasets





Challenge: while at q<sub>4</sub>=0 strong difference visible already at q<sub>4</sub>≈2πT very similar
 See Jan's talk on how to resolve the correlator beyond the Matsubara frequencies

#### **Reconstructed Spectra I**



4



- Clear observation of a peak-trough structure in both channels at low T
- Negative contribution appears slightly stronger in transversal sector

5

#### **Reconstructed Spectra II**





Negative trough significantly reduced at T>T<sub>C</sub>



# **Gluon dispersion relation I**



Use the peak position of the lowest lying structure to define dispersion relation

 Iq
 dependence same for large values of spatial momenta, differences at small Iq

# **Gluon dispersion relation II**





Quantitative fit with modified free theory ansatz  $\omega^{0}(\mathbf{q}) = A\sqrt{B^{2} + |\mathbf{q}|^{2}}$ 

 $\blacksquare~$  Resulting masses in qualitative agreement with weak coupling expectations  $m_{\rm el}\sim gT,~~m_{\rm mag}\sim g^2T$ 





- Investigating gluon properties provides complementary insight into QGP physics
- Lattice QCD simulations with gauge fixing are an appropriate non-pert. tool
- Extracting spectral properties from the lattice as ill-posed inverse problem
  - Positivity violation precludes application of standard approaches
  - Novel Bayesian approaches (BR) available for positive definite and general spectra
- Investigation of gluon properties in Nf=2+1+1 twisted mass lattice QCD
  - First study not to rely on assumption of O(4) invariance for correlators
  - Clear observation of quasi-particle structure at small frequencies
  - Dispersion relation with masses in qualitative agreement with weak coupling

#### Thank you for your attention - Благодарю вас за внимание

# **Deriving the BR prior**



- Both functional form of prior distribution and supplied  $m(\omega)$  encode prior info
  - Anticipate the situation where no prior estimation of  $\rho$  exists m( $\omega$ )=const.
- Wish to axiomatically derive  $P[\rho|I] = Exp[S]$  to encode:  $\rho > 0 \& \rho$  smooth (if  $N_{\tau} = 0$ )
  - **Axiom I**: Subset independence (same as in Maximum Entropy Method)

$$S[\Omega_1, \mathfrak{m}(\Omega_1)] + S[\Omega_2, \mathfrak{m}(\Omega_2)] = S[\Omega_1 \cup \Omega_2, \mathfrak{m}(\Omega_1 \cup \Omega_2)]$$

$$S \propto \int d\omega \ s(\rho(\omega), m(\omega), \omega)$$



- Axiom II: Scale invariance (new)
  - $\bullet$  ρ itself does not have to be probability distribution: scales differently from  $1/\omega$

$$S = \tilde{\alpha} \int d\omega \ s \Big( \rho(\omega) / m(\omega) \Big)$$

to make dimensionless: hyperparameter  $\boldsymbol{\alpha}$ 

# The Bayesian strategy



- Axiom III: Smoothness of the reconstructed spectrum (new)
  - Goal: in the case of  $m(\omega)=m_{0}$ , prior shall choose a smooth spectrum **independent** of  $m_0$
  - Penalty for deviation of  $r_1 = \rho_1/m_1$  between adjacent values  $\omega_1$  and  $\omega_2$
  - If changing  $r_1$  and  $r_2$  does not move  $D^{\rho}$  beyond errorbars of the data:  $r_1=r_2$

 $r_1 = r_2$  vs.  $r_1 = r(1 + \epsilon), r_2 = r(1 - \epsilon)$ 

Penalty independent of r and symmetric in  $r_1 \ge r_2$ 

$$2s(\mathbf{r}) - s(\mathbf{r}(1+\epsilon)) - s(\mathbf{r}(1-\epsilon)) = \epsilon^2 C_2 \qquad \Longrightarrow \qquad -\mathbf{r}^2 s''(\mathbf{r}) = C_2$$

Solution of differential equation:

$$S = \tilde{\alpha} \int d\omega \left( C_0 - C_1 \frac{\rho}{m} + C_2 \ln \left( \frac{\rho}{m} \right) \right)$$



$$S = \tilde{\alpha} \int d\omega \left( C_0 - C_1 \frac{\rho}{m} + C_2 \ln \left( \frac{\rho}{m} \right) \right)$$

- **Axiom IV**: Maximum at the prior (Bayesian meaning of  $m(\omega)$ )
  - In the absence of data S must be maximal at  $\rho = m$ , i.e. r = 1

$$S(r = 1) = 0$$
,  $S'(r = 1) = 0$ ,  $S''(r = 1) < 0$ 

• The strictly concave result ( $\alpha$ >0, S≤0):

$$S = \alpha \int d\omega \, \left( 1 - \frac{\rho}{m} + ln \left( \frac{\rho}{m} \right) \right) \label{eq:s_states}$$



The prior probability hence is related to an inverse γ-distribution:

$$P[\rho|\alpha,m] = e^{S} / \prod_{i=1}^{N_{\omega}} e^{\alpha \Delta \omega_{i}} (\alpha \Delta \omega_{i})^{-\alpha \Delta \omega_{i}} m_{i} \Gamma(\alpha \Delta \omega_{i})$$