Quarks and pions at finite chemical potential A study of the QCD phase diagram with Dyson-Schwinger equations

Pascal Gunkel

with Christian Fischer and Christian Welzbacher

Institute for theoretical physics Justus-Liebig-University

Miniworkshop in Dubna, July 10, 2017

< □ > < @ > < 注 > < 注 > ... 注

Outline

- 1. Introduction and Motivation
- 2. QCD phase diagram
- 3. Quarks at finite chem. potential
- 4. Pions at finite chem. potential
- 5. Summary and Outlook

Introduction and Motivation

QCD phase diagram

QCD phase diagram

Figure: Schaefer and Wagner, Prog.Part.Nucl.Phys. 62 (2009) 381

Pascal Gunkel (JLU)

Dubna, July 10, 2017 3 / 27

Quarks and pions at finite chemical potential Introduction and Motivation Previous Studies

Previous Studies

QCD phase diagram with $N_f = 2+1$ and $N_f = 2+1+1$ quark flavors:

Luecker and Fischer, Prog.Part.Nucl.Phys. 67(2), 200–205 (2012) Fischer, Luecker and Welzbacher, Phys.Rev. D 90(3), 34022 (2014)

Pascal Gunkel (JLU)

Previous Studies

Influence of baryonic effects in two-color-version of QCD:

Strodthoff, Schaefer and von Smekal, Phys.Rev. D 85, 074007 (2012)

Baryon effects on the location of QCD's CEP in DS approach:

Eichmann, Fischer and Welzbacher, Phys.Rev. D 93, 034013 (2016)

Pascal Gunkel (JLU)

Quarks and pions at finite chemical potential

Dubna, July 10, 2017 5 / 27

Quarks and pions at finite chemical potential
Introduction and Motivation
Motivation

Motivation

Mesonic back-coupling effects in vacuum and finite T in DS (Dyson-Schwinger) approach:

Fischer, Nickel and Wambach Phys.Rev. D 76, 094009 (2007) Fischer and Williams Phys.Rev. D 78, 074006 (2008) Fischer and Mueller Phys.Rev. D 84, 054013 (2011)

Open question: Influence of mesonic back-coupling effects onto QCD phase diagram and CEP

Goal of thesis: Investigation of mesons at finite chemical potential

イロト 不得下 イヨト イヨト

Quark DSE

Quark DSE

$$\rightarrow \rightarrow -1 = -1 + 3$$

$$S^{-1}(p) = S_0^{-1}(p) + g^2 C_F Z_{1F} \int_q \gamma_\sigma S(q) \Gamma_{\nu}(p, q, k) D_{\sigma\nu}(k)$$

Missing components: Dressed quark-gluon vertex Γ_{ν} Dressed gluon propagator $D_{\sigma\nu}$

Bare quark propagator (vacuum)Dressed propagator (vacuum)
$$S_0^{-1}(p) = Z_2(ip + \mathbbm Z_m m_r)$$
 $S^{-1}(p) = ip A(p) + \mathbbm B(p)$

Scalar B and vector A dressing function

Pascal Gunkel (JLU)

Dubna, July 10, 2017 7 / 27

Quarks and pions at finite chemical potential — Dyson-Schwinger basics

Gluon DSE

Gluon DSE

Dressed gluon propagator (vacuum, Landau gauge)

$$D_{\sigma\nu}(k) = P^{\mathscr{T}}_{\sigma\nu}(k) \frac{Z(k)}{k^2}$$

Projector: $P_{\sigma\nu}^{\mathscr{T}}(k) = \left(\delta_{\sigma\nu} - \frac{k_{\sigma}k_{\nu}}{k^2}\right)$

Gluon DSE:

$$D_{\sigma\nu}^{-1}(k) = D_{0,\sigma\nu}^{-1}(k) + \prod_{\sigma\nu}^{YM}(k) + \prod_{\sigma\nu}^{QL}(k)$$
$$\Pi_{\sigma\nu}^{QL}(k) = -\frac{g^2 Z_{1F}}{2} \sum_{f}^{N_f} \int_{q} tr_D \left[\gamma_{\sigma} S(q) \Gamma_{\nu}(p,q,k) S(p)\right]$$

Dyson-Schwinger basics

└─ Introducing the medium

Introducing the medium

Heat bath: T and μ_q introduce assigned direction $u = (\vec{0}, 1)$

• Quark vector dressing function splits up in spatial A and heat bath C part ($\not p \rightarrow \vec{p}\vec{\gamma}, \, \tilde{\omega}_p\gamma_4$):

Dressed quark propagator (medium)

 $S^{-1}(p) = i\vec{p}\vec{\gamma}A(\omega_p,\vec{p}) + i\tilde{\omega}_p\gamma_4C(\omega_p,\vec{p}) + \mathbb{1}B(\omega_p,\vec{p}) + \vec{p}\vec{\gamma}\tilde{\omega}_p\gamma_4D(\omega_p,\vec{p})$

• Gluon splits up into a part transversal and a part longitudinal to heat bath $(P_{\sigma\nu}^{\mathscr{T}}(k) \to P_{\sigma\nu}^{\mathsf{T}}(k), P_{\sigma\nu}^{\mathsf{L}}(k))$

Dressed gluon propagator (medium)

$$D_{\sigma\nu}(k;T) = \left(P_{\sigma\nu}^{T}(k)\frac{Z_{T}(k;T)}{k^{2}} + P_{\sigma\nu}^{L}(k)\frac{Z_{L}(k;T)}{k^{2}}\right)$$

Dyson-Schwinger basics

Order parameter

Order parameter

Chirality:
Quark condensate

$$\langle \bar{\Psi}\Psi \rangle^f = -Z_m Z_2 \int_q tr_{DC} [S^f(p)]$$

Deconfinement: $\langle L[A] \rangle \propto e^{-\frac{F_q}{T}}$, static quark free energy F_q

Dressed Polyakov loop

$$\Sigma = -\int_{0}^{2\pi} rac{darphi}{2\pi} e^{-iarphi} ig\langle ar{\Psi}\Psiig
angle_arphi$$

Polyakov loop potential²

$$L[A] := \frac{1}{N_c} tr_C \left(\mathcal{P} e^{i \int d\tau A_0(\vec{x}, \tau)} \right)$$

2 Braun, Gies, Pawlowski, 1 Synatschke, Wipf, Wozar, PLB 684, 262 (2010); PRD 75, 114003 (2007); Braun, Haas, Marhauser, $\frac{\delta\left(\Gamma-S\right)}{\delta A_{0}} \;=\; \frac{1}{2}\; \left(\!\!\! \int \limits_{-\infty}^{\infty} \!\!\!\! \left(\!\!\! \int \limits_{-\infty}^{\infty} \!\!\!\! \left(\!\!\! \int \limits_{-\infty}^{\infty} \!\!\!\! \left(\!\!\! \left(\!\! \left(\!\! \left(\!\!\! \left(\!\! \left(\!\!\! \left(\!\! \left(\!\!\! \left(\!\! \left(\! \left(\!\! \left(\! \left(\! \left(\!\! \left(\!\! \left(\! \left(\!\! \left(\! \left(\!\! \left(\!\! \left(\! \left(\!\! \left(\! \left(\!\! \left(\!\! \left(\! \left(\! \left(\!\! \left(\! \left(\! \left(\! \left(\!\! \left(\!\! \left(\!\! \left(\! \left(\! \left(\! \left(\!\! \left(\! \left(\!\! \left(\!\! \left(\!\! \left(\!\! \left(\! \left(\! \left(\! \left(\!\! \left(\! \left(\! \left(\! \left$ Bilgici, Bruckmann, Pawlowski, PRL 106 (2011): Gattringer, Hagen, PRD 77 Fister, Pawlowski, PRD 88 094007 (2008); 045010 (2013): CF. PRL 103 052003 (2009): CF, Fister, Luecker, Pawlowski, PLB 732 (2013) Pascal Gunkel (JLU) Quarks and pions at finite chemical potential Dubna, July 10, 2017 10 / 27

Dyson-Schwinger basics

L Truncation

Truncation scheme one: quark loop included

Gluon truncation:

Fischer, Maas and Müller, Eur.Phys.J. C (2010) 68: 165

Pascal Gunkel (JLU)

Dyson-Schwinger basics

L Truncation

Truncation scheme one: quark loop included

T-dependent gluon propagator from quenched lattice simulations:

Crucial difference between transversal and longitudinal gluon $T_c = 277 \text{ MeV}$

Cucchieri, Maas, Mendes, PRD 75 (2007) CF, Maas, Mueller, EPJC 68 (2010) Aouane et al., PRD 85 (2012) 034501 Cucchieri, Mendes, PoS FACESQCD 007 (2010) Silva, Oliveira, Bicudo, Cardoso, PRD 89 (2014) 074503 FRG: Fister, Pawlowski, arXiv:1112.5440

Pascal Gunkel (JLU)

Quarks and pions at finite chemical potential

Dubna, July 10, 2017 1

Dyson-Schwinger basics

L Truncation

Truncation scheme one: quark loop included

Vertex truncation: STI and perturbative behavior at large momenta constrain vertex

$$\Gamma_{\nu}^{f}(p,q,k) = \gamma_{\nu} \Gamma(k^{2}) (\delta_{\nu,s} \Sigma_{A} + \delta_{\nu,4} \Sigma_{C})$$

$$\Gamma(k^{2}) = \frac{d_{1}}{d_{2} + k^{2}} + \frac{k^{2}}{\Lambda^{2} + k^{2}} \left(\frac{\beta_{0} \alpha(\mu'') \ln[k^{2}/\Lambda^{2} + 1]}{4\pi}\right)^{2\delta}$$

Considers first Ball-Chiu structure: $\Sigma_X = \frac{X(\vec{p}^2, \omega_p) + X(\vec{q}^2, \omega_q)}{2}$, $X \in \{A, B\}$

Abelian WTI: from approximated STI Perturbation theory Infrared ansatz: d_2 fixed to match gluon input, d_1 fixed via quark condensate

Fischer and Mueller Phys.Rev. D 80, 074029 (2009)

Pascal Gunkel (JLU)

Dyson-Schwinger basics

Truncation

Truncation scheme one: quark loop included

Determination of d_1 and prediction for unquenched gluon:

Quantitative agreement: DSE results verified by lattice

Pascal Gunkel (JLU)

Quarks and pions at finite chemical potential

└─QCD phase diagram

Phase diagram for included quark loop

Phase diagram for included quark loop

CEP at large μ_q

CF, Luecker, PLB 718 (2013) 1036, CF, Fister, Luecker, Pawlowski, PLB 732 (2014) 273 CF, Luecker, Welzbacher, PRD 90 (2014) 034022

Extrapolated curvature from lattice

Kaczmarek at al. PRD 83 (2011) 014504, Endrodi, Fodor, Katz, Szabo, JHEP 1104 (2011) 001 Cea, Cosmai, Papa, PRD 89 (2014), PRD 93 (2016) Bonati et al., PRD 92 (2015) 054503 Bellwied et al. PLB 751 (2015) 559 FRG and DSE results combined: CEP above $\mu_B/T > 2$

< 4 ► >

└─QCD phase diagram

L Truncation

Truncation scheme two: simple model

$$\begin{aligned} \alpha(k^2) &= \alpha_{IR}(k^2/\Lambda^2, \eta) + \alpha_{UV}(k^2) \\ \Lambda &= 0.74, \ \eta = 1.85 \pm 0.2 \end{aligned}$$

Combining vertex Γ and gluon Z to renormalization-group invariant effective coupling

$$lpha(\mu) D_{\sigma
u}(k) \Gamma^f_{
u}(p,q,k) \propto \frac{lpha(k^2)}{lpha(k^2)} \frac{P^{\mathscr{T}}_{\sigma
u}(k)}{k^2} \gamma_{
u}$$

Maris-Tandy ansatz:

Simple ansatz, quark flavor decouple

Maris and Tandy, Phys.Rev. C 60, 055214 (1999)

└─QCD phase diagram

Phase diagram for simple model

Phase diagram for simple model

effective model for interaction, chiral limit, quark flavor decouple

Precise determination of CEP numerically challenging, agreement for coexistence curves with previous calculations

Qin, Chang, Chen, Liu and Roberts, Phys.Rev.Lett. 106, 172301 (2011)

└─QCD phase diagram

Phase diagram for simple model

Phase diagram for simple model

effective model for interaction, chiral limit, quark flavor decouple

Precise determination of CEP numerically challenging, agreement for coexistence curves with previous calculations

Qin, Chang, Chen, Liu and Roberts, Phys.Rev.Lett. 106, 172301 (2011)

Quarks in cold dense matter

Results for quark propagator at finite chemical potential

Results for quark propagator at finite chemical potential

Scalar dressing function:

Quarks in cold dense matter

Results for quark propagator at finite chemical potential

Results for quark propagator at finite chemical potential

Vector dressing functions:

Degeneration of vector dressing function only in chiral limit Pascal Gunkel (JLU) Quarks and pions at finite chemical potential

Quarks in cold dense matter

Results for quark propagator at finite chemical potential

Silver Blaze property

Silver Blaze property:

T = 0, $\mu_q \neq 0$: Partition function and observables independent from $\mu_q \Leftrightarrow \mu_q < mass gap of the system <math>\delta$

- T. D. Cohen, Phys. Rev. Lett. 91 , 222001 (2003)
- T. D. Cohen, arXiv:hep-ph/0405043 (2004)

Reg. quark condensate at $\mu_q \neq 0$:

Quarks and pions at finite chemical potential Pions in cold dense matter

Reminder

Wanted: Influence of Pion back-coupling onto QCD phase diagram and CEP

First step: Investigate Pion at finite chemical potential

Quarks and pions at finite chemical potential Bethe-Salpether basics

Homogeneous BSE

Homogeneous BSE

In Rainbow-ladder approximation with effective interaction $\alpha(k^2)$:

$$\Gamma_{\pi}(P,p) = -4\pi Z_2^2 C_F \int_q \frac{\alpha(k^2)}{k^2} P_{\mu\nu}^{\mathscr{T}}(k) \gamma^{\mu} S(q_+) \Gamma_{\pi}(P,q) S(-q_-) \gamma^{\nu}$$

Pion amplitude in vacuum

$$\Gamma_{\pi}(P,p) = \gamma_{5} \left[-iE(P,p) + \not PF(P,p) + \not p(Pp)G(P,p) + \left[\not P, \not p \right] H(P,p) \right]$$

Pions in cold dense matter

Pion amplitude

Pion amplitude

Pascal Gunkel (JLU)

Quarks and pions at finite chemical potential

Dubna, July 10, 2017 22 / 27

Pions in cold dense matter

Pion amplitude

Pion amplitude

Pascal Gunkel (JLU)

Quarks and pions at finite chemical potential

Dubna, July 10, 2017 22 / 27

Pions in cold dense matter

Pion amplitude

Pion amplitude

Chebyshev expansion:

$$\begin{split} E(P^2,p^2,\hat{P}\hat{p}) \approx \\ \sum_{j=0}^3 E^j(P^2,p^2) T_j(\hat{P}\hat{p}) \end{split}$$

Charge-conjugated pion amplitude:

$$ar{\mathsf{\Gamma}}_{\pi}(\mathsf{P},\mathsf{p}) = ig[\mathsf{C}\mathsf{\Gamma}_{\pi}(\mathsf{P},-\mathsf{p})\mathsf{C}^{-1}ig]^{\mathsf{T}}$$

Pions in cold dense matter

Pion amplitude

Pion amplitude

Chebyshev expansion:

 $E(P^2, p^2, \hat{P}\hat{p}) \approx$ $\sum_{i=0}^{3} E^{j}(P^{2}, p^{2})T_{i}(\hat{P}\hat{p})$

Charge-conjugated pion amplitude:

$$ar{\mathsf{\Gamma}}_{\pi}(\mathsf{P},\mathsf{p}) = ig[\mathsf{C}\mathsf{\Gamma}_{\pi}(\mathsf{P},-\mathsf{p})\mathsf{C}^{-1}ig]^{\mathsf{T}}$$

Pion: C-Parity $\wedge J^{PC} = 0^{-+}$ \rightarrow odd chebyshev coefficients vanish $\rightarrow \mu_{a}$ breaks C-Parity

< 67 ▶

- N Dubna, July 10, 2017

э.

Bethe-Salpether basics

Pion decay constant

Pion decay constant

Pion decay constant in vacuum

$$f_{\pi}P^{\mu}=Z_2N_c\int_q tr_D\left[\gamma_5\gamma^{\mu}S(q_+)\Gamma_{\pi}(q,P)S(-q_-)
ight]$$

From vacuum to finite chemical potential:

$$f_{\pi}P^{\mu} \xrightarrow{\mu_q > 0} \left(f_{\pi}^t P^{\mathscr{L}}_{\mu\nu}(v) + f_{\pi}^s P^{\mathscr{T}}_{\mu\nu}(v) \right) P^{\nu}$$

Longitudinal projector $P^{\mathscr{L}}_{\mu\nu}(v) = v_{\mu}v_{\nu}$ with $v = (\vec{0}, 1)$

Pions in cold dense matter

Pion properties

Pion properties

 $\Gamma_{\pi}(P,p) = \gamma_5 E(P,p)$, quark mass $m_R = 3.7$ MeV at $\mu = 19$ GeV:

Full tensor structure, quark mass $m_R = 3.7$ MeV at $\mu = 19$ GeV: $m_{\pi}(\mu_q = 0) = 137.4$ MeV and $f_{\pi}(\mu_q = 0) = 92$ MeV

Silver Blaze property fulfilled: mass gap = $\frac{m_M}{2}$ = 60.5 MeV

Pions in cold dense matter

Pion properties

Pion properties

 $\Gamma_{\pi}(P,p) = \gamma_5 E(P,p)$, quark mass $m_R = 0.5$ MeV at $\mu = 19$ GeV:

 $\mu_q^c = 277~{\rm MeV}$ corresponds also to phase transition point of quark condensate

Qualitative agreement with (simpler) truncations:

Roberts, Phys.Part.Nucl. 30:223-257 (1999) Roberts and Schmidt, Prog.Part.Nucl.Phys. 45(1) 1-103 (2000) Liu, Chao, Chang and Wei, Chinese Physics Letters, Volume 22, Number 1 () (

Pascal Gunkel (JLU)

Summary and outlook

Summary:

- QCD phase diagram for $N_f = 2 + 1$ quark flavors
- Quark calculation for $\mu_q \neq 0$
 - Quark condensate fulfills Silver Blaze property
- Pion calculation for $\mu_q \neq 0$, one tensor structure
 - Introduction of chemical potential breaks C-Parity of pions
 - Pion mass and decay constant fulfill Silver Blaze property
 - Pion do not exist above chiral phase transition point

Thank you for your attention!

- 一司

Backups

└─Origin of Dyson-Schwinger equations

Origin of Dyson-Schwinger equations

Generating functional:

$$Z[J] = \mathscr{N} \int \mathscr{D}\varphi e^{i(S[\varphi] - \int_{x} \varphi(x)J(x))}$$

Local translational invariance: $\varphi(x) \rightarrow \varphi'(x) = \varphi(x) + \epsilon(x)$

Master-DSE for 1PI Green-functions:

$$\Gamma'_{x}(\tilde{\varphi}) = \frac{\delta S}{\delta \varphi(x)} \left(\tilde{\varphi} + \int_{y} \Delta_{.y}[\tilde{\varphi}] \frac{i\delta}{\delta \tilde{\varphi}(y)} \right)$$

Meaning of DSE: Quantum equations of motion for n-point function Infinite tower of coupled integral equations Ab initio, if solved completely and self-consistently

Pascal Gunkel (JLU)

Dubna, July 10, 2017

Backups

Connection to thermodynamics

Connection to thermodynamics

Grand canonical partition function:

$$Z_{GC}(\beta,\mu_q) = tr\left(e^{-\beta(\hat{H}-\mu_q\hat{N})}\right) = \int_x \langle x| e^{-\beta(\hat{H}-\mu_q\hat{N})} |x\rangle$$

Particle number operator: $\hat{N} = \int d^4x \hat{\Psi} \gamma_0 \hat{\Psi}$

Generating functional for finite space-time:

$$Z(x',\tau';x,\tau) = \langle x' | e^{-\hat{H}(\tau'-\tau)} | x \rangle = \mathscr{N} \int_{x(\tau)}^{x'(\tau')} \mathscr{D}x(\tau'') e^{-S_E(\tau,\tau')}$$

In-medium generating functional:

$$Z_{GC}(\beta,\mu_q) = \mathscr{N} \int_{x(0)=x(\beta)} \mathscr{D}x(\tau) e^{-S_E(0,\beta)+\mu_q \int_0^\beta d\tau \int d^3x \hat{\Psi} \gamma_0 \hat{\Psi}}$$

Quarks and pions at finite chemical potential Backups Connection to thermodynamics

Connection to thermodynamics

Finite integration interval and different periodicity conditions

 $\Psi(x, \tau) = -\Psi(x, \tau + \beta)$ fermions $\Phi(x, \tau) = +\Phi(x, \tau + \beta)$ bosons

yield discreet four momentum components

$$p
ightarrow (ec{p}, ilde{\omega}_p = \pi T(2n_p + \eta) + i\mu_q), \qquad \eta = egin{cases} 1 & ext{fermions} \\ 0 & ext{bosons} \end{cases}$$

and a sum over the so called Matsubara-frequencies

$$\int rac{d^4q}{(2\pi)^4}
ightarrow T \sum_{n_q} \int rac{d^3q}{(2\pi)^3}$$

Skeleton expansion

Skeleton expansion

DSE of the fully dressed quark-gluon vertex:

Skeleton expansion in terms of hadronic contributions:

ightarrow Separation of hadronic terms and Yang-Mills terms

Pascal Gunkel (JLU)

Quarks and pions at finite chemical potential

Backups

Skeleton expansion

Skeleton expansion

Only mesonic contributions:

Inserting vertex into quark:

Assumption: Only Yang-Mills part present in BSE \Rightarrow rewrite Quark DSE by inserting DSE into second diagram

Approximation justified if BSE vertex function with and without pion interaction term do not differ strongly

Fischer, Nickel and Wambach, Phys.Rev. D 76(9) (2007)

Backups

Lattice fit functions

Lattice fit functions

Gluon:

$$Z_{T,L}^{\text{lat que}}(k^2) = \frac{x}{(x+1)^2} \left[\left(\frac{\hat{c}}{x+a_{T,L}(T)} \right)^{b_{T,L}(T)} + x \left(\frac{\beta_0 \alpha}{4\pi} \ln(1+x) \right)^{\gamma} \right]$$

Parameters:
$$x = \frac{k^2}{\Lambda^2}$$
, $\beta_0 = \frac{11N_c - 2N_f}{3}$, $\hat{c} = 5.87$, $\Lambda = 1.4 \text{ GeV}$, $\gamma = -\frac{13}{22}$, $\alpha(\mu'') = \frac{g^2}{4\pi} = 0.3$

$$a_L(t) = \begin{cases} 0.595 - 0.9025 \cdot t + 0.4005 \cdot t^2 & \text{if } t < 1\\ 3.6199 \cdot t - 3.4835 & \text{if } t > 1 \end{cases},$$
$$a_T(t) = \begin{cases} 0.595 + 1.1010 \cdot t^2 & \text{if } t < 1\\ 0.8505 \cdot t - 0.2965 & \text{if } t > 1 \end{cases}$$

 $t=rac{T}{T_c}$, $T_c=277~{
m MeV}$

Pascal Gunkel (JLU)

3

æ

Backups

Lattice fit functions

Lattice fit functions

Gluon:

$$Z_{T,L}^{\text{lat que}}(k^2) = \frac{x}{(x+1)^2} \left[\left(\frac{\hat{c}}{x+a_{T,L}(T)} \right)^{b_{T,L}(T)} + x \left(\frac{\beta_0 \alpha}{4\pi} \ln(1+x) \right)^{\gamma} \right]$$

Parameters:
$$x = \frac{k^2}{\Lambda^2}$$
, $\beta_0 = \frac{11N_c - 2N_f}{3}$, $\hat{c} = 5.87$, $\Lambda = 1.4 \text{ GeV}$, $\gamma = -\frac{13}{22}$, $\alpha(\mu'') = \frac{g^2}{4\pi} = 0.3$

$$b_L(t) = egin{cases} 1.355 - 0.5741 \cdot t + 0.3287 \cdot t^2 & ext{if } t < 1 \ 0.1131 \cdot t + 0.9319 & ext{if } t > 1 \ 0.1135 + 0.5548 \cdot t^2 & ext{if } t < 1 \ 0.4296 \cdot t + 0.7103 & ext{if } t > 1 \ \end{cases}$$

 $t=rac{T}{T_c}, \ T_c=277 \ {
m MeV}$

Pascal Gunkel (JLU)

э.

æ

Backups

Lattice fit functions

Lattice fit functions

Vertex:

$$\Gamma_{\nu}^{f}(p,q,k) = \gamma_{\nu}\Gamma(x)\left(\delta_{\nu,s}\Sigma_{A} + \delta_{\nu,4}\Sigma_{C}\right)$$

$$\Gamma(x) = \frac{d1}{d2 + k^{2}} + \frac{x}{1+x}\left(\frac{\beta_{0}\alpha(\mu'')\ln[x+1]}{4\pi}\right)^{2\delta}$$

$$\Sigma_{X} = \frac{X(\vec{p}^{2},\omega_{p}) + X(\vec{q}^{2},\omega_{q})}{2}$$

Parameters: $x = \frac{k^2}{\Lambda^2}$, $\beta_0 = \frac{11N_c - 2N_f}{3}$, $\alpha(\mu'') = \frac{g^2}{4\pi} = 0.3$, $\delta = \frac{-9N_c}{44N_c - 8N_f}$, $\Lambda = 1.4 \text{ GeV}$, $d_2 = 0.5 \text{ GeV}^2$,

 Quarks and pions at finite chemical potential Backups Thermal mass

Thermal mass

Regularized quark loop:

$$\Pi_{\sigma\nu}^{reg}(k) = \left[\delta_{\sigma\alpha}\delta_{\nu\beta} - \delta_{\sigma\nu}P_{\alpha\beta}^{\mathscr{L}}(k)\right]\Pi_{\alpha\beta}^{QL}(k)$$

$$\Pi_{T/L}^{reg}(k) = \frac{1}{2/1k^2} \Pi_{\sigma\nu}^{reg}(k) P_{\sigma\nu}^{T/L}(k)$$

Separation of regular part and thermal mass:

$$\Pi_{T/L}^{reg}(k) = \Pi_{T/L}^{regular}(k) + \frac{2\left[m_{T/L}^{th}(T,\mu_q)\right]^2}{k^2}$$

$$\left[m_{T/L}^{th}(T,\mu_q)\right]^2 := \frac{1}{2} \left. \prod_{T/L}^{reg}(k) \vec{k}^2 \right|_{\omega_k = 0, \vec{k}^2 \longrightarrow 0}$$

Backups

L Thermal mass

Thermal mass

Upper spinodal:

Lower spinodal:

Backups

d_1 dependency

Backups

└─ Maris-Tandy interaction

Maris-Tandy interaction

$$\alpha(k^{2}) = \pi \frac{\eta^{7}}{\Lambda^{4}} k^{4} e^{-\eta^{2} \frac{k^{2}}{\Lambda^{2}}} + \frac{2\pi \gamma_{m} \left(1 - e^{-k^{2}/\Lambda_{t}^{2}}\right)}{\ln \left[e^{2} - 1 + \left(1 + k^{2}/\Lambda_{QCD}^{2}\right)^{2}\right]}$$

Parameters: $\gamma_m = \frac{12}{11N_c - 2N_f}$, $\Lambda_t = 1 \,\text{GeV}$, $\Lambda_{QCD} = 0.234 \,\text{GeV}$

- Scale Λ adjusted to observables like f_{π}
- Quark masses m_u, m_u, m_s from m_π, m_K
- α_{UV} from perturbative theory

Backups

Spinodals

Spinodals

Curvature

Curvature $\kappa =$ first coefficient in taylor series expansion of transition line in terms of $\frac{\mu_q}{T}$

$$\frac{T^{c}(\mu_{q})}{T_{0}^{c}} = 1 - \kappa \left(\frac{\mu_{q}}{T_{0}^{c}}\right)^{2} + O\left[\left(\frac{\mu_{q}}{T_{0}^{c}}\right)^{4}\right]$$

 T_0^c = transition temperature for $\mu_q = 0$

Remark: Curvature depends on choice of pesudo-critical temperature definition in crossover region

Calculation method

Until now only truncation scheme two (effective interaction)

Changes from medium to finite chemical potential:

•
$$(\vec{p}, \tilde{\omega}_p = \omega_p + i\mu_q) \longrightarrow (\vec{p}, \tilde{p}_4 = p_4 + i\mu_q)$$

• $\frac{T}{(2\pi)^3} \sum_{\omega_q} \int d\vec{q}^2 \int d\Omega_{3D} \rightarrow \begin{cases} \frac{1}{(2\pi)^4} \int dq_4 \int d\vec{q}^2 \int d\Omega_{3D} & \text{Method A} \\ \frac{1}{(2\pi)^4} \int dq^2 \int d\Omega_{4D} & \text{Method B} \end{cases}$

 Method A: Separate integration for spacial and temporal part Vacuum and medium limit does not work
 Method B: Uses hyperspherical coordinates instead Vacuum and medium limit work perfectly

Backups

Silver Blaze Property

Silver Blaze Property

$$\left< ar{\Psi} \Psi \right> \sim \int_{q} S(ec{q}, q_4 + i \mu_q) \stackrel{q_4 o q_4 + i \mu_q}{=} \int_{q} S(ec{q}, q_4) \sim \left< ar{\Psi} \Psi \right>_{vac}$$

Substitution possible \Leftrightarrow no singularity between 0 and $i\mu_q$ in complex- p_4 -plane

э

Complex quark

Complex quark

$$S^{-1}(p\pm i\frac{m_{\pi}}{2})=S_0^{-1}(p\pm i\frac{m_{\pi}}{2})+Z_2^2C_F\int_q\gamma_{\sigma}S(q)\gamma_{\nu}P_{\sigma\nu}^{\mathscr{T}}(\tilde{k})\frac{\alpha(\tilde{k}^2)}{\tilde{k}^2}$$

Complex gluon momentum: $\tilde{k} = k \mp i \frac{m_{\pi}}{2}$

$$p_{\pm}^{2} = \left(p \pm \frac{P}{2}\right)^{2} \text{ and } P = \left(\vec{0}, im_{\pi}\right)$$
$$\longrightarrow p_{\pm}^{2} = p^{2} - \frac{m_{\pi}^{2}}{4} \pm im_{\pi}\sqrt{p^{2}}$$
$$f(p_{0}) = \frac{\oint_{\gamma} \frac{f(p)}{p - p_{0}} dp}{\oint_{\gamma} \frac{1}{p - p_{0}} dp}$$

Dubna, July 10, 2017

Backups

ł

Parametrization of the pion

Parametrization of the pion

Momentum parametrization:

$$\begin{aligned} p &= (0, 0, im_{\pi}, 0) \\ p &= (|\vec{p}|(0, 0, 1), p_4) \\ q &= (|\vec{q}|(0, \sin(\Psi_q), \cos(\Psi_q)), q_4) \end{aligned} \qquad \qquad |\vec{p}| = |p|\sin(\theta_p) \\ p_4 &= |p|\cos(\theta_p) \end{aligned}$$

Integral parametrization:

$$\int \frac{d^4q}{(2\pi)^4} = \frac{1}{16\pi^3} \int_{\sigma^2}^{\Lambda^2} dq^2 q^2 \int_0^{\pi} d\Psi_q \sin(\Psi_q) \int_0^{\pi} d\theta_q \sin^2(\theta_q)$$

Quarks and pions at finite chemical potential Backups Chebyshev expansion

Chebyshev expansion

Pion amplitude: $\Gamma_{\pi}(P,p) = \sum_{k=1}^{4} f_{k}(P,p)\tau_{k}(P,p)$

Chebyshev expansion of dressing function $f_k(P^2, p^2, z_p)$:

$$f_k(P^2, p^2, z_p) \approx \sum_{j=0}^{\tilde{N}} f_k^j(P^2, p^2) T_j(z_p)(i)^j$$

Chebyshev polynomials: $T_n(z_p) = \cos(n\theta_p) = \cos(n \arccos(z_p))$ with $z_p \in [-1, 1]$

Recursive formula: $T_j(z_p) = 2z_p T_{j-1}(z_p) - T_{j-2}(z_p)$ with first polynomials $T_0(z_p) = 1$ and $T_1(z_p) = z_p$

Quarks and pions at finite chemical potential Backups C-Parity

C-Parity

Pion amplitude: $\Gamma_{\pi}(P,p) = \sum_{k=1}^{4} f_{k}(P,p)\tau_{k}(P,p)$

Charge-conjugated pion amplitude: $\bar{\Gamma}_{\pi}(P, p) = [C\Gamma_{\pi}(P, -p)C^{-1}]^{T}$ **C-Parity:** $\bar{\Gamma}_{\pi}(P, p) = \eta_{c}\Gamma_{\pi}(P, p)$ with eigenvalue $\eta_{c} = \pm 1$

$$\bar{\tau}_k(P,p) = \begin{bmatrix} C\tau_k(P,-p)C^{-1} \end{bmatrix}^T = \xi_k \tau_k(P,p) \longrightarrow \eta_c = \xi_k \tilde{\xi}_k \quad \forall k$$
$$\bar{f}_k(P,p) = \begin{bmatrix} Cf_k(P,-p)C^{-1} \end{bmatrix}^T = \tilde{\xi}_k f_k(P,p)$$

Pion: $\eta_c = +1$

Cheby. exp. $\longrightarrow \bar{f}_k(P^2, p^2, z_p) = f_k(P^2, p^2, -z_p) \stackrel{!}{=} f_k(P^2, p^2, z_p)$

C-Parity of the pion

Chebyshev expansion of dressing function $E(P^2, p^2, \hat{P}\hat{p})$:

$$E(P^2,p^2,\hat{P}\hat{p})\approx\sum_{j=0}^3 E^j(P^2,p^2)T_j(\hat{P}\hat{p})$$

Charge-conjugated pion amplitude: $\bar{\Gamma}_{\pi}(P,p) = [C\Gamma_{\pi}(P,-p)C^{-1}]^{T}$ $\Gamma_{\pi} = -i\gamma_{5}E(P^{2},p^{2},\hat{P}\hat{p}) \Rightarrow \bar{\Gamma}_{\pi} = -i\gamma_{5}E(P^{2},p^{2},-\hat{P}\hat{p})$ Pion properties: $J^{PC} = 0^{-+} \Rightarrow \bar{\Gamma}_{\pi}(P,p) = \Gamma_{\pi}(P,p)$ $E^{(2j+1)}(P^{2},p^{2}) \stackrel{!}{=} 0$

- 4 週 ト - 4 ヨ ト - 4 ヨ ト - -

Quarks and pions at finite chemical potential Backups Power-iteration

Power-iteration

BSE:

$$\hat{K}(P^2) |\Gamma_n(P,p)\rangle = \lambda_n(P^2) |\Gamma_{n+1}(P,p)\rangle$$

On-shell condition: $P^2 = -M_j^2 \longrightarrow \lambda(P^2) = 1$

Iteration number: n

Eigenvalue:

$$\lambda_n(P^2) = \frac{\langle \Gamma_n(P,p) | \Gamma_{n+1}(P,p) \rangle}{\langle \Gamma_n(P,p) | \Gamma_n(P,p) \rangle}$$

 $\lambda_n(P^2) \xrightarrow{n \to \infty} \lambda(P^2)$

- 一司

3 D (3 D)

3

Quarks and pions at finite chemical potential Backups <u>Pion</u> propagator

Pion propagator

Pion velocity:

Pion dispersion relation:

$$\omega^2 = u^2 \left(\vec{P}^2 + m_\pi^2 \right)$$

Pion propagator:

Vacuum: $f_{\pi}^{t} \stackrel{\mu_{q} \to 0}{=} f_{\pi}^{s} \Rightarrow u \to 1$

 $u^2 = \left(\frac{f_\pi^s}{f_\pi^t}\right)^2$

Son and Stephanov Phys.Rev. D, 66(7) (2002) Fischer and Mueller Phys.Rev. D 84, 054013 (2011)

イロト 不得下 イヨト イヨト