Exploring the phase structure and dynamics of QCD

Jan M. Pawlowski

Universität Heidelberg & ExtreMe Matter Institute

Dubna, July 12th & 14th 2017

GEFÖRDERT VOM

für Bildung

Heavy ion collisions

Heavy ion collisions

Heavy ion collisions

LHC

RHIC

Phase diagram & order parameters

Phases in QCD

quarks massless - massive

chiral condensate $\int_{\vec{x}} < \bar{q}(x)q(x) >$

Phase diagram & order parameters

Phases in QCD

quarks massless - massive

chiral condensate $\int_{\vec{\mathbf{x}}} < \bar{\mathbf{q}}(\mathbf{x}) \mathbf{q}(\mathbf{x}) >$

quarks confined - deconfined

Polyakov loop
$$~~\Phi~~~{
m e}^{-rac{1}{2}{
m F}_{ar{f q}{
m q}}}$$

$$\label{eq:Freeenergy} \quad F_{\bar{\mathbf{q}}\mathbf{q}} = \lim_{|\vec{\mathbf{x}} - \vec{\mathbf{y}}| \to \infty} F_{\bar{\mathbf{q}}(\mathbf{x})\mathbf{q}(\mathbf{y})}$$

Phase diagram & order parameters

Phases in QCD

quarks massless - massive

chiral condensate $\int_{\vec{\mathbf{x}}} < \bar{\mathbf{q}}(\mathbf{x}) \mathbf{q}(\mathbf{x}) >$

Φ

Polyakov loop

$$= rac{1}{\mathbf{N_c}} \langle \mathrm{tr} \, \mathcal{P} \mathbf{e}^{\mathbf{i} \, \mathbf{g}} \int_{\mathbf{0}}^{eta} \mathbf{A_0}(\mathbf{x})
angle$$

$$\label{eq:Freeenergy} \quad F_{\bar{\mathbf{q}}\mathbf{q}} = \lim_{|\vec{\mathbf{x}} - \vec{\mathbf{y}}| \to \infty} F_{\bar{\mathbf{q}}(\mathbf{x})\mathbf{q}(\mathbf{y})}$$

Outline

Introduction

Phase structure of QCD

Confinement & chiral symmetry breaking
Finite temperature correlation functions
QCD at finite density & fluctuations

QCD transport

Real time correlation functions

Single particle spectral functions

transport coefficients

Summary & outlook

Outline

Introduction

Phase structure of QCD

Confinement & chiral symmetry breaking
Finite temperature correlation functions
QCD at finite density & fluctuations

QCD transport

Real time correlation functions

Single particle spectral functions

transport coefficients

Summary & outlook

fQCD collaboration: J. Braun, L. Corell, A. Cyrol, W.-j. Fu, M. Leonhardt, M. Mitter, JMP, M. Pospiech, F. Rennecke, N. Strodthoff, N. Wink

Heidelberg, Dailan, Darmstadt

Agenda

QCD at finite T & mu

Phase structure

Fluctuations

Phenomenology

Real time correlation functions

Hadron spectrum & decays

Transport coefficients

Dynamícs

Selection of papers

Cyrol, Fister, Mitter, JMP, Strodthoff, PRD 94 (2016) 054005

Braun, Fister, Haas, JMP, Rennecke, PRD 94 (2016) 034016 Cyrol, Mitter, JMP, Strodthoff, arXiv:1706.XXXXX Rennecke, PRD 92 (2015) 076012

> Mitter, JMP, Strodthoff, PRD 91 (2015) 054035 Cyrol, Mitter, JMP, Strodthoff, in preparation

Fu, JMP, Schaefer, Rennecke, Phys.Rev. D94 (2016)

fQCD collaboration: J. Braun, L. Corell, A. Cyrol, W.-j. Fu, M. Leonhardt, M. Mitter, JMP, M. Pospiech, F. Rennecke, N. Strodthoff, N. Wink

Heidelberg, Dailan, Darmstadt

Agenda

QCD at finite T'& mu		
Phase structure	Selection of papers	
Fluctuations		Celectient of pupers
Phenomenology	quenched QCD: Cyrol, Fister, Mitter, JMP, Strodthoff, PRD 94 (2016) 054005	
Real time correlation functions	unquenched QCD:	Braun, Fister, Haas, JMP, Rennecke, PRD 94 (2016) 034016 Cyrol, Mitter, JMP, Strodthoff, arXiv:1706.XXXXX
Hadron spectrum & decays		vector mesons: Rennecke, PRD 92 (2015) 076012
Transport coefficients	pure glue:	Mitter, JMP, Strodthoff, PRD 91 (2015) 054035
Dynamícs		finite T: Cyrol, Mitter, JMP, Strodthoff, in preparation
	Fluctuations:	Fu, JMP, Schaefer, Rennecke, Phys.Rev. D94 (2016)

JMP, AIP Conf.Proc. 1343 (2011) Nucl.Phys. A931 (2014) 113

closed form

JMP, AIP Conf.Proc. 1343 (2011) Nucl.Phys. A931 (2014) 113

low energy

effective theories

QCD

 numerically tractable, also at real time no sign problem systematic error control via closed form

properties

Iow energy models naturally encorporated

000000000

JMP, AIP Conf.Proc. 1343 (2011) Nucl.Phys. A931 (2014) 113

00000000

000000000

00000000

 A_0 : background field

fQCD: workflow

European Research Council Established by the European Commission

Outline

Introduction

Phase structure of QCD

Confinement & chiral symmetry breaking

Finite temperature correlation functions

• QCD at finite density & fluctuations

QCD transport

- Real time correlation functions
- Single particle spectral functions
- transport coefficients

Summary & outlook

 $\langle A A \rangle (p^2)$

full. mom. dep.

full. mom. dep. classical tensor structures

mom. dep. needed by tadpoles full tensor basis sym. point mom. dep. and mom. dep. needed by tadpole classical tensor structure

full. mom. dep.

full. mom. dep. classical tensor structures

mom. dep. needed by tadpoles full tensor basis sym. point mom. dep. and mom. dep. needed by tadpole classical tensor structure

YM-theory: Euclidean gluon propagator

Functional Renormalisation Group

Lattice: Sternbeck, Ilgenfritz, Müller-Preussker, Schiller, Bogolubsky, PoS LAT2006, 076

Aiming at apparent convergence

Cyrol, Fister, Mitter, JMP, Strodthoff, PRD 94 (2016) 054005

YM-theory: Euclidean gluon propagator

Functional Renormalisation Group

Lattice: Sternbeck, Ilgenfritz, Müller-Preussker, Schiller, Bogolubsky, PoS LAT2006, 076

Aiming at apparent convergence

up to date pinch technique: Aguilar, Binosi, Papavassiliou, PRD 89 (2014) 085032

up to date DSE: Cyrol, Huber, Smekal, EPJ C75 (2015) 102

Cyrol, Fister, Mitter, JMP, Strodthoff, PRD 94 (2016) 054005

QCD: current set of correlation functions

Cyrol, Mitter, JMP, Strodthoff, arXiv:1706.06326

Cyrol, Fister, Mitter, JMP, Strodthoff, PRD 94 (2016) 054005

Mitter, JMP, Strodthoff, PRD 91 (2015) 054035

QCD: Euclidean propagators

Cyrol, Mitter, JMP, Strodthoff, arXiv:1706.06326

QCD: Vertices

QCD: Vertices

QCD: Vertices

$$\left[\Gamma_{\bar{q}qA}^{(3)}\right]_{\mu}^{a}(p,q) = \mathbb{1}_{2\times 2}^{\text{flav}} T^{a} \sum_{i=1}^{8} \lambda_{i}(p,q) \left[\mathcal{T}_{\bar{q}qA}^{(i)}\right]_{\mu}(p,q)\right]$$

covariant expansion scheme

$$\begin{split} \bar{q} \not{D} q : & \left[\mathcal{T}_{\bar{q}qA}^{(1)} \right]_{\mu} (p,q) = -i \gamma_{\mu} & \bar{q} \not{D}^{2} q : & \left[\mathcal{T}_{\bar{q}qA}^{(2)} \right]_{\mu} (p,q) = (p-q)_{\mu} \mathbf{1}_{4 \times 4} \\ \bar{q} \not{D}^{3} q : & \left[\mathcal{T}_{\bar{q}qA}^{(5)} \right]_{\mu} (p,q) = i (\not{p} + \not{q})(p-q)_{\mu} & \left[\mathcal{T}_{\bar{q}qA}^{(6)} \right]_{\mu} (p,q) = (\not{p} - \not{q})\gamma_{\mu} \\ & \left[\mathcal{T}_{\bar{q}qA}^{(6)} \right]_{\mu} (p,q) = i (\not{p} - \not{q})(p-q)_{\mu} & \left[\mathcal{T}_{\bar{q}qA}^{(4)} \right]_{\mu} (p,q) = (\not{p} + \not{q})\gamma_{\mu} \\ & \left[\mathcal{T}_{\bar{q}qA}^{(7)} \right]_{\mu} (p,q) = \frac{i}{2} [\not{p}, \not{q}]\gamma_{\mu} \end{split}$$

Aiming at apparent convergence

quenched: Mitter, JMP, Strodthoff, PRD 91 (2015) 054035 Cyrol, Mitter, JMP, Strodthoff, arXiv:1706.06326

up-to-date 1st principles works:

 $\lambda_1(p,q)$

running couplings

up-to-date 1st principles works:

FunMethods: Williams, EPJ A51 (2015) 57 Sanchis-Alepuz, Williams, PLB 749 (2015) 592 Williams, Fischer, Heupel, PRD 93 (2016) 034026

> Aguilar, Binosi, Ibanez, Papavassiliou, PRD 89 (2014) 065027 Binosi, Chang, Papavassiliou, Qin, Roberts, PRD 95 (2017) 031501 Aguilar, Cardona, Ferreira, Papavassiliou, arXiv:1610.06158

Mitter, JMP, Strodthoff, PRD 91 (2015) 054035

Pelaez, Tissier, Wschebor, PRD 92 (2015) 045012

Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, PPNP 91 (2016) 1

lattice: Oliveira, Kizilersü, Silva, Skullerud, Sternbeck, Williams, APP Suppl. 9 (2016) 363

Beware of BRST

 $\lambda_1(p,q)$

A glimpse at the hadron spectrum

preliminary

four-fermi scattering amplitude at pion pole

$$\langle \bar{q}\vec{\sigma}\gamma_5 q(p) \ \bar{q}\vec{\sigma}\gamma_5 q(-p) \rangle \rightarrow \frac{\chi_{\bar{q}\pi q}\bar{\chi}_{\bar{q}\pi q}}{p^2 - m_\pi^2} + \text{finite terms}$$

A glimpse at the hadron spectrum

preliminary

four-fermi scattering amplitude at pion pole

A glimpse at the hadron spectrum

preliminary

four-fermi scattering amplitude at pion pole

pion decay constant $f_\pi~$ via normalisation of $\Gamma^{(3)}_{\bar{\mathbf{q}}\pi\mathbf{q}}$

 ${f_\pi}\simeq 99\,MeV_{\text{quenched QCD}}$
A glimpse at the hadron spectrum

preliminary

four-fermi scattering amplitude at pion pole

pion decay constant $f_\pi~$ via normalisation of $~\Gamma^{(3)}_{\bar{\mathbf{q}}\pi\mathbf{q}}$

 $egin{aligned} & f_\pi \simeq 99 \, \mathrm{MeV} & f_\pi \simeq 89 \, \mathrm{MeV} & \ & unquenched \, \mathsf{QCD} & unquenched \, \mathsf{QCD} & \ & unquenched$

Mitter, JMP, Strodthoff, in preparation

A glimpse at the hadron spectrum

preliminary

four-fermi scattering amplitude at pion pole

pion decay constant $f_\pi~$ via normalisation of $\Gamma^{(3)}_{\bar{\mathbf{q}}\pi\mathbf{q}}$

 ${
m f}_{\pi}\simeq 99\,{
m MeV}$ guenched QCD

 ${f f}_{\pi}\simeq 89\,MeV$ unquenched QCD

lattice Davies et al., PRL 92 (2004) 022001

unquenched e.g. Horsley et al., PLB 732, 41 (2014) $~{f f}_{\pi}^{
m lattice}\simeq 89\,{
m MeV}$

Mitter, JMP, Strodthoff, in preparation

Outline

Introduction

Phase structure of QCD

Confinement & chiral symmetry breaking

• Finite temperature correlation functions

• QCD at finite density & fluctuations

QCD transport

Real time correlation functions

Single particle spectral functions

transport coefficients

Summary & outlook

QCD: Euclidean propagators

Cyrol, Mitter, JMP, Strodthoff, arXiv:1706.06326

YM-theory: gluonic correlation functions

full. mom. dep.

full. mom. dep. classical tensor structures

mom. dep. needed by tadpoles full tensor basis sym. point mom. dep. and mom. dep. needed by tadpole classical tensor structure

Aiming at apparent convergence

YM-theory: gluonic correlation functions

Aiming at apparent convergence

Euclidean gluon propagator at finite T

Yang-Mills propagators, finite T

Lattice: Silva, Oliviera, Bicudo, Cardoso, PRD89 (2014) 7, 074503

Euclidean gluon propagator at finite T

Yang-Mills propagators, finite T

Lattice: Silva, Oliviera, Bicudo, Cardoso, PRD89 (2014) 7, 074503

Euclidean gluon propagator at finite T

Yang-Mills propagators, finite T

Cyrol, Mitter, JMP, Strodthoff, in preparation

Lattice: Silva, Oliviera, Bicudo, Cardoso, PRD89 (2014) 7, 074503

Confinement

FRG: Braun, Gies, JMP, PLB 684 (2010) 262 FRG, DSE, 2PI: Fister, JMP, PRD 88 (2013) 045010

$$\left[L[A_0] = \frac{1}{\mathbf{N}_c} \operatorname{tr} \mathcal{P} \mathbf{e}^{\mathbf{i} \mathbf{g} \int_0^\beta \mathbf{A}_0(\mathbf{x})} \right]$$

Confinement

FRG: Braun, Gies, JMP, PLB 684 (2010) 262 FRG, DSE, 2PI: Fister, JMP, PRD 88 (2013) 045010

$$\left[L[A_0] = \frac{1}{\mathbf{N}_c} \operatorname{tr} \mathcal{P} \mathbf{e}^{\mathbf{i} \mathbf{g} \int_0^\beta \mathbf{A}_0(\mathbf{x})} \right]$$

$$T_c/\sqrt{\sigma} = 0.658 \pm 0.023$$

lattice : $T_c/\sqrt{\sigma} = 0.646$

Confinement

FRG: Braun, Gies, JMP, PLB 684 (2010) 262 FRG, DSE, 2PI: Fister, JMP, PRD 88 (2013) 045010

Kaczmarek et al. '02

Gupta et al. '08

 $< L_{FRG} = \Phi$

5

4

10

5

15

20

6

25

7

$$L[A_0] = \frac{1}{\mathbf{N}_c} \operatorname{tr} \mathcal{P} \mathbf{e}^{\mathbf{i} \mathbf{g} \int_0^\beta \mathbf{A}_0(\mathbf{x})}$$

Summary I

Outline

Introduction

Phase structure of QCD

Confinement & chiral symmetry breaking

Finite temperature correlation functions

• QCD at finite density & fluctuations

QCD transport

Real time correlation functions

Single particle spectral functions

transport coefficients

Summary & outlook

QCD phase structure

 $\partial_t \Gamma_k[\phi] = \frac{1}{2} \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix} - \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix} - \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix} + \frac{1}{2} \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix}$

Sequential decoupling of gluon, quark, sigma, pion fluctuations

Rennecke, PRD 92 (2015) 076012

QCD phase structure

 $\partial_t \Gamma_k[\phi] = \frac{1}{2} \begin{pmatrix} & & \\ & & \\ & & \\ & & \end{pmatrix} - \begin{pmatrix} & & \\ & & \\ & & \\ & & \end{pmatrix} - \begin{pmatrix} & & \\ & & \\ & & \\ & & \\ & & \end{pmatrix} + \frac{1}{2} \begin{pmatrix} & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$

Sequential decoupling of gluon, quark, sigma, pion fluctuations

2 flavors & chiral limit

Flows towards the fluctuating PQM model for low energies

Thermodynamics and condensates

2+1 flavor QCD - enhanced PQM-model

2+1 flavor DSE

reduced chiral condensate

Fischer, Luecker, Welzbacher, PRD 90 (2014), 034022 Fischer, Fister, Luecker, JMP, PLB 732 (2014) 273-277

Glue potential from QCD-computation with FRG

Braun, Haas, Marhauser, JMP, PRL 106 (2011) 022002

Approximations of infrared dynamics involved

Thermodynamics and condensates

2+1 flavor QCD - enhanced PQM-model

2+1 flavor DSE

1=

reduced chiral condensate

Fischer, Luecker, Welzbacher, PRD 90 (2014), 034022 Fischer, Fister, Luecker, JMP, PLB 732 (2014) 273-277

QCD at finite density

Herbst, JMP, Schaefer, PLB 696 (2011) 58-67 PRD 88 (2013) 1, 014007

FRG QCD results at finite density

Haas, Braun, JMP '09, unpublished

Extension of FRG QCD results at imaginary chemical potential

Braun, Haas, Marhauser, JMP, PRL 106 (2011) 022002

Phase structure at finite density

Kaczmarek at al. '11 Endrodi, Fodor, Katz, Szabo '11 Cea, Cosmai, Papa '14

Phase diagram of QCD-enhanced 2-flavor PQM-model

PRD 88 (2013) 1, 014007

FRG QCD results at finite density

Haas, Braun, JMP '09, unpublished

Fischer, Fister, Luecker, JMP, PLB732 (2014) 248 Fischer, Luecker, Welzbacher, PRD 90 (2014) 034022 Eichmann, Fischer, Welzbacher, PRD 93 (2014) 034013

Chiral phase structure

Qin, Chang, Chen, Liu, Roberts, PRL 106 (2011) 172301

Phase structure at finite density

Haas, Braun, JMP '09, unpublished

Chiral phase structure

Qin, Chang, Chen, Liu, Roberts, PRL 106 (2011) 172301

Comparison with 2 flavor vs 2+1 flavor scale matching of $m T_{c}$

Karsch, Schaefer, Wagner, Wambach, PLB 698 (2011) 256

Friman, Karsch, Redlich, Skokov, EPJ C71 (2011) 1694

Schaefer, Wagner, PRD 85 (2012) 034027

Skokov, Friman, Redlich, PRC 88 (2013) 034911

Almasi, Friman, Redlich, Nucl.Phys. A956 (2016) 356-359

Fu, JMP, PRD 92 (2015) 116006

Fu, JMP, PRD 93 (2016 091501

Fu, JMP, PRD 92 (2015) 116006

Fu, JMP, PRD 93 (2016 091501

Outline

Introduction

Phase structure of QCD

Confinement & chiral symmetry breaking

Finite temperature correlation functions

• QCD at finite density & fluctuations

QCD transport

Real time correlation functions

Single particle spectral functions

transport coefficients

Summary & outlook

Real-Time

MEM & Real-time diagrams

MEM & lattice

MEM & Real-time diagrams

MEM & lattice

single particle spectral functions

diagrammatic representation of transport coefficients

transport coefficients

MEM-type reconstruction

Rothkopf, arXiv:1611:00482 Ilgenfritz, JMP, Rothkopf, Trunin; arXiv:1701.08610 Fischer, JMP, Rothkopf, Welzbacher, arXiv:1705.03207

Transport

Real-Time

Haas, Fister, JMP, PRD 90 (2014) 9, 091501 Christiansen, Haas, JMP, Strodthoff, PRL 115 (2015) 11, 112002 JMP, Rosenblüh, Strodthoff; in prep.

Real-Time MEM & Real-time diagrams MEM & lattice Real time correlation functions single particle spectral functions **Yang-Mills** 2+1+1 flavour QCD **Т=1.44** т_с pion 4d ϵ =0.1 sigma 4d ϵ =0.1 **T=0** pion 3d ϵ =0.1 sigma 3d ϵ =0.1 Longitudinal B=2.10 Longitudinal B=2.10 200 T=0.152GeV T=0.305GeV 150 a=0.0429-0.188Ge\ q=0.0643-0.251GeV 0.1 b[GeV⁻²] 100 Q ωίGeV ω[GeV] 50 100 150 200 250 300 ext. frequency ω[MeV] diagrammatic representation of transport coefficients finite T T = 20 MeV T = 165 MeV 100 200 300 400 0 ω [MeV]

Real time:

0.01

0.0001

1e-06

1e-08

1e-10

10-

[1/MeV²] ີ່ມ ເວັ 10⁻

10

JMP, Strodthoff, PRD 92 (2015) 094009 Strodthoff, Phys.Rev. D95 (2017) no.7, 076002 JMP, Strodthoff, Wink; in prep.

Transport

Haas, Fister, JMP, PRD 90 (2014) 9, 091501 Christiansen, Haas, JMP, Strodthoff, PRL 115 (2015) 11, 112002 JMP, Rosenblüh, Strodthoff; in prep.

transport coefficients

MEM-type reconstruction

Rothkopf, arXiv:1611:00482 Ilgenfritz, JMP, Rothkopf, Trunin; arXiv:1701.08610 Fischer, JMP, Rothkopf, Welzbacher, arXiv:1705.03207

MEM & Real-time diagrams

MEM & lattice

Real time correlation functions

Т=1.44 т_с

0.1 b[GeV⁻⁵]

Real-Time

exponentially improved MEM

Real time:

JMP, Strodthoff, PRD 92 (2015) 094009 Strodthoff, Phys.Rev. D95 (2017) no.7, 076002 JMP, Strodthoff, Wink; in prep.

Transport

Haas, Fister, JMP, PRD 90 (2014) 9, 091501 Christiansen, Haas, JMP, Strodthoff, PRL 115 (2015) 11, 112002 JMP, Rosenblüh, Strodthoff; in prep.

Yang-Mills 2+1+1 flavour QCD

diagrammatic representation of transport coefficients

transport coefficients

Imag. time lattice at finite T

JMP, Rothkopf, arXiv:1610:09531 JMP, Rothkopf, work in progress JMP, Rothkopf, Ziegler, work in progress

MEM-type reconstruction

Rothkopf, arXiv:1611:00482 Ilgenfritz, JMP, Rothkopf, Trunin; arXiv:1701.08610 Fischer, JMP, Rothkopf, Welzbacher, arXiv:1705.03207

finite T spectral functions

thermal spectral functions on the lattice

thermal spectral functions on the lattice

Test case: 1+0 dimensional scalar theory

JMP, Rothkopf, arXiv:1610:09531

3+1-dimensional complex scalar field

two-point correlation function of the field

3+1-dimensional complex scalar field

D(iw) [Lat]

'Those are my methods (principles), and if you don't like them...well, I have others' direct computation Groucho Marx

JMP, Rothkopf, work in progress

Outline

Introduction

Phase structure of QCD

Confinement & chiral symmetry breaking

Finite temperature correlation functions

• QCD at finite density & fluctuations

QCD transport

Real time correlation functions

Single particle spectral functions

transport coefficients

Summary & outlook
Single particle spectral functions

 $\rho(p) = 2 \operatorname{Im} \langle A A \rangle_{\text{\tiny ret}}(p)$

Single particle spectral functions

gluon spectral functions

Strauss, Fischer, Kellermann, PRL 109 (2012) 252001

full complex FRG/real time

pion and sigma spectral functions

analytic complex FRG

Tripolt, Strodthoff, von Smekal, Wamach, PRD 89 (2014) 034010 Kamikado, Strodthoff, von Smekal, Wambach, EPJ C74 (2014) 2806 Kamikado, Strodthoff, von Smekal, Wambach, PRD 95 (2017) 036020

Outline

Introduction

Phase structure of QCD

Confinement & chiral symmetry breaking
Finite temperature correlation functions
QCD at finite density & fluctuations

QCD transport

Real time correlation functions

Single particle spectral functions

transport coefficients

Summary & outlook

transport coefficients

Kubo relation

$$\eta = \frac{1}{20} \left. \frac{d}{d\omega} \right|_{\omega=0} \rho_{\pi\pi}(\omega, 0)$$

Haas, Fister, JMP, PRD 90 (2014) 9, 091501

transport coefficients

Aiming at apparent convergence

Yang-Mills viscosity over entropy ratio

Kubo relation

$$\eta = \frac{1}{20} \left. \frac{d}{d\omega} \right|_{\omega=0} \rho_{\pi\pi}(\omega, 0)$$

Haas, Fister, JMP, PRD 90 (2014) 9, 091501

QCD - estimate for viscosity over entropy ratio

viscosity over entropy ratio

$$\gamma_{
m grg} pprox 5$$

 $\gamma_{
m qgp} pprox 1.6$

pure glue

$$a_{
m qgp} \approx 0.15$$

 $a_{
m hrg} \approx 0.14$
 $c \approx 0.66$

$$\frac{\eta}{s}(T) = \frac{a_{\rm qgp}}{\alpha_s^{\gamma_{\rm qgp}}(c\,T/T_c)} + \frac{a_{\rm grg}}{(T/T_c)^{\gamma_{\rm grg}}}$$

QCD - estimate for viscosity over entropy ratio

transport coefficients

Yang-Mills viscosity over entropy

QCD - estimate for viscosity over entropy ratio

QCD transport & transport models

transport coefficients

Kubo relation

$$\eta = \frac{1}{20} \left. \frac{d}{d\omega} \right|_{\omega=0} \rho_{\pi\pi}(\omega, 0)$$

Haas, Fister, JMP, PRD 90 (2014) 9, 091501

transport coefficients

Aiming at apparent convergence

Yang-Mills viscosity over entropy ratio

Kubo relation

$$\eta = \frac{1}{20} \left. \frac{d}{d\omega} \right|_{\omega=0} \rho_{\pi\pi}(\omega, 0)$$

Haas, Fister, JMP, PRD 90 (2014) 9, 091501

QCD - estimate for viscosity over entropy ratio

viscosity over entropy ratio

$$\gamma_{
m grg} pprox 5$$

 $\gamma_{
m qgp} pprox 1.6$

pure glue

$$a_{
m qgp} \approx 0.15$$

 $a_{
m hrg} \approx 0.14$
 $c \approx 0.66$

$$\frac{\eta}{s}(T) = \frac{a_{\rm qgp}}{\alpha_s^{\gamma_{\rm qgp}}(c\,T/T_c)} + \frac{a_{\rm grg}}{(T/T_c)^{\gamma_{\rm grg}}}$$

QCD - estimate for viscosity over entropy ratio

transport coefficients

Yang-Mills viscosity over entropy

QCD - estimate for viscosity over entropy ratio

QCD transport & transport models

Outline

Introduction

Phase structure of QCD

Confinement & chiral symmetry breaking
Finite temperature correlation functions
QCD at finite density & fluctuations

QCD transport

Real time correlation functions

Single particle spectral functions

transport coefficients

Summary & outlook

Chiral Symmetry Breaking and Confinement

Phase Structure and Transport

Chiral Symmetry Breaking and Confinement

Phase Structure and Transport

- Towards quantitative precision
- Baryons, high density regime & CEP, dynamics
- Hadronic properties
 - hadron spectrum & in medium modifications
 - Iow energy constants