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Quantum effects in  

real-time evolution of 

gauge theories 



Motivation 

Glasma state at early stages of HIC 

Overpopulated gluon states 

Almost “classical” gauge fields 

 Chaotic Classical Dynamics 

[Saviddy,Susskind…] 

• Positive Lyapunov 

exponents 

• Gauge fields forget 

initial conditions 

• But not enough for Thermalization 



Motivation 
Dimensionally reduced (9+1) dimensional 

N=1 Super-Yang-Mills in (d+1) dimensions 

A,B = 0…d,  μ,ν = d+1…9  

N x N hermitian 

matrices 
Majorana-Weyl fermions, N 

x N hermitian matrices 

“Holographic” duality [Witten’96]: 

• Xii
μ = Dp brane positions 

•  Xij
μ = open string excitations 



N=1 Supersymmetric Yang-Mills in D=1+9: 

 gauge bosons+adjoint Majorana-Weyl fermions 

Reduce to a single point = BFSS matrix model 

[Banks, Fischler, Shenker, Susskind’1997] 

N x N hermitian 

matrices 

Majorana-Weyl fermions,  

N x N hermitian 

Motivation 

System of N D0 branes  

joined by open strings 



Stringy interpretation: 

Dynamics of self-gravitating D0 

branes 

Entropy production = black hole 

formation 

 

Motivation 



So far, mostly classical simulations … 
 

Quantum effects? 
 

 

• Thermalization and scrambling? 

• Fast thermalization in Yang-Mills 

plasma?  

• Quantum entanglement? 

• Evaporation of black holes [Hanada’15] 

• … Information paradox? 

Motivation 



In this talk: 

Numerical methods to address all 

these questions 

• Beyond classical-statistical: quantum 

fluctuations of gauge fields 
 

• Semi-analytic solutions based on 

truncated Heisenber equations 
 

• Classical-statistical approximation: 

effect of fermions           

   black hole “evaporation” 

 



Going beyond CSFT 
• Return to Heisenberg eqs of motion 

• VEV with more non-trivial correlators 
First, test this idea on the simplest example 

Tunnelling  

between potential 

wells? Absent in CSFT! 



Next step: Gaussian Wigner function 

Assume Gaussian wave function at any t  

Simpler: Gaussian Wigner function 

For other 

correlators: use 

Wick theorem! 

Derive closed equations for  

x, p, σxx , σxp , σpp  



Origin of tunnelling 

Positive force even at x=0 

(classical minimum) 

Quantum force 

causes classical 

trajectory 

to leave classical 

minimum 



Improved CSFT vs exact Schrödinger 

σ2=0.02 σ2=0.1 

σ2=0.2 σ2=0.5 

• Early-time evolution OK 

• Tunnelling period qualitatively OK 



2D potential with flat directions 
(closer to BFSS model) 

Maximally symmetric  

initial conditions 

Classic runaway 

 along x=0 or y=0 



Improved CSFT vs exact Schrödinger 

σ2=0.1 σ2=0.25 

σ2=0.5 σ2=1.0 

• OK for wavefuncs with <x2>~<p2> 

• Wrong for large <x2> or <p2> 



BFSS matrix model: Hamiltonian 

formulation 

a,b,c – su(N) Lie algebra indices 

Heisenberg equations of motion 

Average assuming that X are classical 

(“strong field regime”)!!! 



Improved CSFT for BFSS model 

• CPU time ~ N^5 (double commutators) 

• RAM memory ~ N^4 

• SUSY still broken … 



Entropy/phase volume conservation 
• Entropy of mixed state in terms of 

correlators      simplectic eigenvalues of  

 

 

 

• Simplectic eigenvals = eigenvals of ε Θ 

 

                             - simplectic form 
 

Heisenberg equations take the form 



Initial conditions 

<Xa
i> are random Gaussian 

Minimal quantum 

dispersion  

(Uncertainty principle) 

(Classical) dispersion of <Xa
i> roughly 

corresponds to temperature  



Initial conditions 

Choice of initial momentum 

P chosen to have 

• zero angular momentum 

• zero gauge constraint 

• zero Tr[P] 

• minimal Tr[P2] 



Quantum effects decrease instability 

Lyapunov exponents 

~ OTO correlators !!! 



Entanglement entropy production 
• Separate out some variables, restrict 

the correlator matrix to them 

eigenvalues of  

 

 

• Restricted correlator, in general, mixed 
 

Entanglement entropy vs simplectic evals 

of restricted correlators 



Entanglement entropy production 

Single matrix entry entangled with others 

Initially, dS/dt scales as classical Lyapunov t 



• Quantum effects do not speed up 

thermalization, at least in our Gaussian 

approximation, as indicated by classical 

Lyapunov exponents 
 

• Alternative criterion: entanglement 

entropy, “quantum scrambling” 

 

• Early-time thermalization at most 

governed by classical Lyapunov exponents 

 

• More general OTO correlators? 

Intermediate conclusions 



Classical-statistical field theory (CSFT) 

Closed system of equations: 

[Son, Aarts, Smit, Berges, Tanji, Gelis,…] 

- Schwinger pair production 

- Axial charge generation in glasma  

- (Chiral) plasma instabilities 

Numerical solution! Fermions are costly! 

CPU time + RAM memory scaling ~ N4  

Parallelization is necessary 



Initial conditions: bosons 
Initial state should be excited to allow for 

nontrivial evolution (thinking about black 

holes, we still believe in quantum mechanics) 

Our initial conditions: 

Gaussian random,  

dispersion f 

Gaussian random, 

dispersion 1 



Initial conditions: fermions 
 Fermions are in ground state at given Xa

i 

Tricky for Majoranas, no Dirac sea!!! (          ) 

Negative energy stored in fermions 

 
For given X and <ψψ>: Choose P such that 

•  Zero angular momentum (non-rotating BH) 

•  Gauge constraint 

•  Tr(P) = 0 (center of mass at rest) 

•  Tr(P2) is minimal 

Initial conditions: momenta 



Some results N = 8, f = 0.48 

Hawking radiation of D0 branes   

X2 

t 

With  

fermions 

Classical 
Thermalization 



Some results N = 8, f = 0.48 

Not all configurations evaporate 

X2 

t 
With fermions 

Classical 



Fraction of evaporating configurations 

At f > 0.5 and N->∞ almost no configurations 

evaporate, phase transition at large N? 



Constant acceleration at late times 

X2 

t 

• Boson kinetic energy grows without bound 

• Fermion energy falls down 

• Origin of const force – SUSY violation? 



CSFT and SUSY 

16 supercharges in BFSS model: 

Gauge transformations 



CSFT and SUSY 

In full quantum theory 

In CSFT approximation 

Fierz identity (cyclic shift of indices): 

Fermionic 3pt function seems necessary! 



Some results N = 8, f = 0.48 

σ2 = 0.0, 0.1, 0.2, 1.0 + no fermions  



Some results N = 8, f = 0.48 

σ2 = 0.0, 0.1, 0.2, 1.0 + no fermions  



Evaporation threshold: N = 6, f = 0.50 

σ2 = 0.0, 0.2, 1.0 + no fermions  



Quantum fluctuations vs evaporation 

Quantum fluctuations of X variables 

suppress evaporation!!! 

• Small σ2: evaporation becomes slower 

• Intermediate σ2: no evaporation 

• Large σ2: fermions negligible 

• Fine-tuning with realistic initial 

conditions? 
 

Exact solutions with high symmetry? 
 

What effect quantum fluctuations of X 

have on classical dynamics? 



Exact solution: quantum X 

(limit of large σ2) 
SU(N) x SO(D) symmetric initial conditions 

Equations of motion, σxp can be excluded 

Motion in 1D 

cubic 

potential!!! 



Exact solution: quantum X, maxsym 

Larger than ¼, 

(uncertainty relation) 

  Always periodic oscillations  

  Always safely within potential well 

  “Quantum” tunnelling only to X2<0??? 



One step further: 

quantum X + quantum ψ, maxsym 

  Bounded solutions for small [ψψx] 

X  Otherwise σxx(t)<0, unphysical 

X  No “evaporating” solutions σxx(t)~t2 

X  SUSY still not restored 



Summary 

• Quantum fermions in BFSS model 

trigger real-time instability, “black 

hole evaporation”? 

• Not all configurations “evaporate” 

• Artificial acceleration at large 

distances 

• Quantum fluctuations of X coordinates 

suppress instability 

• Is “fine tuning” possible with realistic 

initial conditions? 

• Faster “quantum” thermalization? 


