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- Reminder of basic elements of exactly solvable statistical models of cluster type

* Mechanism of phase transition (PT) and cross-over generation in these models

* Source of negative eigen surface tension in cluster models

* Solution of statistical models of cluster type for finite V

 Conclusions



Motivation

* Practical purpose: using exactly solvable model, the input from LQCD and
from description of hadronic multiplicities at chemical freeze-out to get

location of QCD (3)CEP

* Academic purpose: rigorously define analogs of phases in finite systems
using exact analytical solutions for liquid-gas phase transition (PT)
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Scatistical Approach: Gas of Bags Model

® 1965 Hagedorn model invention

R. Hagedorn, Nuovo Cimento Suppl. 3, 147 (1965).

e 1981 J. Kapusta formulated the Gas of Bags Model. Interior

pressure of bags corresponds to the MIT bag model.
J. I. Kapusta, Phys. Rev. D 23, 2444 (1981).

1981 An exact analytical solution of the Gas of Bags Model (GBM) is found.
Roughly it is Hagedorn model with finite volume fireballs. Between fireballs there
is hard core repulsion a laVDW. GBM employs the eigen volumes of bags and

not their excluded volumes. M 1. Gorenstein, VK. Petrov and G.M. Zinovjev, Phys. Lett.
B 106 (1981) 327.

1982-84 Several works on GBM. Major result: mass-volume spectrum of MIT
Bag Model is derived from

4
p(m,v) ~ Cv'(m— BU)5 exp 3 022/4 vl/4 (m — Bv)3/4



Interaction n the Gas of Bags Model

Attraction: is accounted by many sorts of clusters (= hadrons and
bags) being in chemical equilibrium.

Repulsion:
Low density approximation! High densities!
Eigen volume approximation means that
Interaction: Hard core repulsion a laVDW baSS move |n5|d.e some ,C?”S!
It is good for high densities!
LS .Excluded Volume (per particle) of hard core

L 4

s “‘tential of radius R is 4 eigen volumes!
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Interaction i the Gas of Bags Model

Unfortunately, in GBM there was no mechanisms

for (3)Critical Endpoint and for Cross-over

Low density approximation! High densities!

Eigen volume approximation means that
bags move inside some cells!
It is good for high densities!

Interaction: Hard core repulsion a laVDW

RELETI Excluded Volume (per particle) of hard core

: ”tential of radius R is 4 eigen volumes!

* o*
. .
 JO.




Well Escablished Scatistical Models

Fisher Droplet Model (FDM) describes the condensation of gaseous clusters
(droplets of all sizes) into liquid. M.E. Fisher, Physics 3 (1967) 255.

FDM was used to describe the nucleation of real fluids, the compressibility factor
of real fluids, clusters of d=2,3 Ising model, percolation clusters e.t.c.

Statistical Multifragmetation Model (SMM) describes the low excitation energy
nuclear reactions with large nuclei. J.P. Bondort et al Phys. Rep. 257 (1995) 131.

An exact analytical solution of a simplified SMM found by K.A.B. et al Phys. Rev.
C 62 (2000) 044320

It predicted a very narrow range for tau exponent P. T. Reuter and K.A.B., Phys.
Lett. B 517 (2001) 233 tau = 1.825 +/- 0.025, which was observed experimentally
by IS1S and EoS Collaborations and could not be explaind by FDM.



Free Energy in Statistical Models

In FDM and SMM the FREE ENERGY of a V-volume cluster has
the Bulk, V**1, Surface, V**(2/3), and Topological, -T T In (V), parts.

T 1s Fisher exponent

At the phase equilibrium the Bulk part of free energy vanishes (equal pressures).

At the (tr1)critial point the Surface part of free energy vanishes (the energy and
entropy gaps between gaseous and liquid phases disappear; recall the critical
opalescence).

These properties are known from the experiments on ordinary liquids.



Free Energy in Statistical Models

® |n FDM and SMM the FREE ENERGY of a V-volume cluster has
the Bulk, V**1, Surface, V**(2/3), and Topological, -T T In (V), parts.

T 1s Fisher exponent

® At the phase equilibrium the Bulk part of free energy vanishes (equal pressures).

® At the (tri)critial point the Surface part of free energy vanishes (the energy and
entropy gaps between gaseous and liquid phases disappear; recall the critical
opalescence).

IMPORTANT CONCLUSION: the GBM lacks the surface free energy!



TheVan der Waals Repulsion

The Grand canonical partition (GCP) of n hadronic bags
with the hard-core repulsion of the Van der Waals type (up = 0)

Z(V,T)= )

{Ng}

0 (V — UlNl — ... UnNn) .

[ﬁ (V —v1 Ny — N— 'vnNn) gbk(T)]N’“]
!

k=1
the particle density of bags of mass m; and eigen volume vy and degeneracy g
OO o (p® + ’mi)l/Q 2

ou(T) = g 0k(T) = 425 [pPdp e T = gupir Ko (%)
0

Using the standard Laplace transformation with respect to volume V,
one gets the isobaric partition with the simple pole:

@)

A

Z(s,T) = /dVexp(—sV) Z(V,T) =

1
[S - F(Sa T)]
describes hard core repulsion in GC ensemble

with  F(s,T) = Zexp(—vjs) g;o(T,m;) .
j=1

® The O function is VERY important because ensures that bags do not overlap!



Basic Ingredients of QGBST Model

If the number of bag kinds is infinite, there may appear an essential
singularity of the Isobaric Partition. This 1s used in GBM and QGBST
to generate PT. This can be seen as follows (also for non-zero W):

For V — o~ the whole analysis is reduced to the
analysis of the Singularities of IP!
After Inverse Laplace transform GCP becomes

1 o—+100
Z(V7T7:UJ):— ds Z(S,T,/L) GSV:

1 Jo—1i00
> Res ( Z(s;, T, ) eSi V) —, ¢V max(s;)
;

Comparing with
pV
Z(V,T,,LL) — el — p(T7 /*L) — TmaX(S;-k) )

where o > max Re(s;) - the rightmost singularity.

® PT happens, if two singularities coincide.

In other words, the Gibbs criterion follows automatically!



QGBST Model

Volume spectrum of bags in isobaric ensemble K.A.B., PRC 76 (2007)
discrete = hadrons continuous = QG bags
F(s,T,up) = Fr(s, T, uB) + FQ(SaTv pB) =

v exp [(sq@ (T, uB) — s)v — (T, up) v™]

thermal parficle density of bags of mass m; find eigen volume v, and degeneracy g;

0o B (p2 + mz)1/2
g ¢(T,mp) [E 22 [p?dp e T
0

Oﬁlfm?’

Fy has no s—singularitiés at any 1T' The bag spectrum Fg(s,T') is chosen to give

and generates a simple pole only! an essential singularity sq(T) = & Q}T).

The finite width of bags is neglected here!
But it can be accounted by additional mass integration.



QGBST Model

Volume spectrum of bags in isobaric ensemble K.A.B., PRC 76 (2007)
discrete = hadrons continuous = QG bags
F(s,T,up) = Fr(s, T, uB) + FQ(SaTv pB) =

exp [(sq@ (T, uB) — s)v — (T, up) v™]

Zgj€¥—0j3¢(T,mj) + u(T) /dv —
j=1 Ve hﬂ

thermal particle density of bags of mass m; and eigen) volume vy and degeneracy g

oo (p% + m2)L/2 Degeneracy of QG bags =
g ¢(T,my) = 25 [p?dp e T
0

kind of Hagedorn spectrum

Main parameters:  sq(T, up) defines pressure of QG bags pg = T'sq(T, upB)
(T, up) is reduced surface tension coefficient

i %, Fisher exponent 7 > 1

QGBST Model incorporates the best features of Hadron Gas Model,
Bag Model and Fisher droplet model



Surface Tension Parameterization

(Y >0, for T — Tsx(ug)—0
(T, pB) =1 0, for T =Tx(pB)
'Y <0, for T —Tx(pug)+0

Sign of (T, up) determines the singularities of Isobaric Partition
in the complex s-plane

Case I: 3 (T, up) > 0 is similar to GBM =>1-st order PT _ -
" Equation for
Fo(s. T ) = w(T) /d'v exp [(sQ (T, uB) —;)U —2(T,pB)v"]  fix pp then | Singularities:
v o . #(T) = F(s*,T)
Defines essential singularity y

QGP pressure pg = T'sg(T, up) can be chosen in several ways.
For definiteness we use the MIT Bag model pressure

example, 0 10 - )
T "B UB
[T () e )]s
PQ =90 [2 T2\T) Ton\T

Iu(T, 1p), B should obey the sufficient conditions for a PT existence:

F(SQ(TnuB — O) +0, T, up = O) > SQ(TMMB — 0)7
F(so(T,ug)+0, T, up) < so(T,up), for all up > pa.

Y

Fu(s, T, pB) Zgj ™ “¢(T,m5) Defines simple pole



The Role of Surface Tension

Case II: 3X(T,up) = 0 is similar to GBM too,
but PT order is defined by Fisher exponent 7T

Structure of singularities for 7 < 2 is also similar to GBM

Can be shown from second derivative that 2"¢ order PT exists for % <7 <2

In general for (n+1)/n<7<n/(n—1) (n=3,4,5,...) there is a n*" order phase transition

sag(Tc) = so(Te), sy(Te) = so(Te), -
n—1 n— n n
s = sy, ST # sGUTL)

with Sgl)(Tc) =oo for (n+1)/n<7<n/(n—1) and

with a finite value of sg’) (T.) for 7= (n+1)/n.



The Role of Surface lension

Case III: 3X(T,up) < 0 is principally different from GBM

It is able to explain the cross-over existence above (3)CEP not only in QCD,
but in other liquid-gas PT's!

4 . ) A
Equation for

fix up then Singularities:

s*(T) = F(s*,T)
- Y

Has a simple pole only!

€p
Ea

Y

k
Then s* can approach sg at T' — oo ot -

Physics: negative surface tension prevents formation of
large and heavy QG bags!



Resules for TriCEP

Our group has calculated the critical indices for this case and
found that the phase diagram must look like shown below

A. Ivanytskyi, NPA(2012) 880 Exists for Fisher exponent t: 1<t <2 only!

K.A.B.,PRC 76 (2007)

Hadrons+QGbags = QGP X(T,u) <0

2-nd order phase transition

— —~—

QGliquid

Cross-over

Z(Ta “’B) >0

Hadrons

What about Fisher exponent ©> 2 ? H B
What about the critical endpoint?



CEP Generation

Main idea:
to match the curves of deconfinement PT and X = 0!

Prediction:
the power law in V-distribution of bags will be not just at CEP
as one would expect, but in the mixed phase with X =0!

K.A.B., V.K. Petrov, G.M. Zinovjev,
QGbags+hadrons=QGP Phys. Part. Nucl. Lett. (2012) 9

(T, uB) <0 JdX has discontinuity at Ts(up)

=2 deconfinement PT is
induced by a surface tension!?

Cross-over

Z(Ta PJB) >0

Hadrons



Aftermath: Unanswered Questions

1. What is a reason for a kink in Surface Tension?

2. Is something wrong with negative values of Surface
Tension coefficient?



Aftermath: Unanswered Questions

1. What is a reason for a kink in Surface Tension?

2. Is something wrong with negative values of Surface
Tension coefficient?

Preliminary answer on 1-st question:
A. Our recent analysis of geometrical clusters formed by Polyakov loops

in SU(2) gluodynamics shows that the kink in Surface Tension exists!
see A.L. Ivanytskyi et al., Nucl. Phys. A 960 (2017) 90

B. My personal belief is that in contrast to ordinary liquids the Kink in
surface is due to chiral symmetry restoration.



Aftermath: Unanswered Questions

1. What is a reason for a kink in Surface Tension?

2. Is something wrong with negative values of Surface
Tension coefficient?

Preliminary answer on 1-st question:
A. Our recent analysis of geometrical clusters formed by Polyakov loops

in SU(2) gluodynamics shows that the kink in Surface Tension exists!
see A.L. Ivanytskyi et al., Nucl. Phys. A 960 (2017) 90

B. My personal belief is that in contrast to ordinary liquids the Kink in
surface is due to chiral symmetry restoration.

Recall A. Ivanystkyi talk on EoS beyond the Van der Waals approximation

Induced surface tension coefficient X

of a particle with hard-core radius Ry Change of cluster mass m_k =>

ot change of partial pressure p_k =>

T |’ change of partial surface tension X_k

X = prRL exp —471'R,2€ - (a — 1)

with Xy = zkj >k Should be studied!



Eigen Surface Free Energy: F=E -TS

To find eigen surface F one has to count for ALL surface deformations together with energy costs

Can be exactly done within Hills and Dales Model for v-volume cluster:
K.A.B. et al, PRE 72 (2005

O,‘,‘ :] o, AS

a(,'z,'Z/ S
x{l + 11..11.\11+11,D.\D) (pr — + 2, 3, etc dofonnltlons
T (PR
- - 1 Hall 1 Dale
s Energy
[ 001,2/3‘ [+ 0.0,1,2/3}
=exp |——— exp —
T :Z"( o o
L it %1 Simplest case (M. Fisher)
Energy part Entropy part

Also one can find supremum and infimum for surface F and surface partition

oo(1—ALT)vs > F > oo(l—AgT)vs, AL~028T.', Ay~ 1.06T,"
K.A.B. & Elliott, UJP 52 (2007)

Thus, there is NOTHING wrong, if surface F < 0 above critical T!
This means only that entropy dominates!




QGBST Model for Finite Volume

Main problem: one cannot simply replace upper limit of integration by
a finite voluyne V, since this is a Laplace transform with respect to V!

exp [(sq(T, uB) — s) v — X(T, pp) v”]

Fo(s, T, up) = w(@) [ do
Vo

Fortunately, this can be done within the formalism developed in

see K.A.B., Acta. Phys. Polon. B 36 (2005) and K.A.B., P.T. Reuter, Ukr. J. Phys. 52 (2007) 489

Replace V-integral by a K-sum over volumes of bags Vi : with max K = K(V)

K(V)

Fo(s,Typg) — FoA, V) = ) ¢w(T) exp [(sq(T, up) — A) Vi]
k=1
Note that surface tension and Fisher terms are hidden in @& (1)

For convenience make a regular mesh over volumes V, = kb, where b is minimal volume

K(V)
k
Fo(A, V) = g ok (T) exp [%] with effective chem. potential v = (sg(T, uB) — A)b
k=1

Evidently, for small b one can make irregular mesh as well by setting some of ¢x(T) = 0



QGBST Model for Finite Volume

Main problem: one cannot simply replace upper limit of integration by
a finite volwme V, since this is a Laplace transform with respect to V!

K (V) is number of species = K(V) < K42 < 00, if no PT exists

= K(V) — oo, if PT exists in the limit V — oo

Replace V-integral by a K-sum over volumes of bags Vi : with max K = K(V)

K(V)

Fo(s,Typg) — FoA, V) = ) ¢w(T) exp [(sq(T, up) — A) Vi]
k=1
Note that surface tension and Fisher terms are hidden in @& (1)

For convenience make a regular mesh over volumes V, = kb, where b is minimal volume

K(V)
k
Fo(A, V) = g ok (T) exp [%] with effective chem. potential v = (sg(T, uB) — A)b
k=1

Evidently, for small b one can make irregular mesh as well by setting some of ¢x(T) = 0



QGBST Model for Finite Volume i

V-independent hadronic mass-volume spectrum can be considered as a single term

Fru(s, T, up) Zgj v o(T,m;) = ¢o(Ts uB)

K(V)
Then the total mass-volume spectrum is F(\, V) = ¢o(T,up) + Fo = >, ¢rexp [?k}
k=0

The GCE partition can be written as

For finite V one has to account for ALL singularities \,, in a complex plane!

In our case A\,, (n =0, 1, ...) are simple poles of Isobaric Partition and are defined by

Ao is the only real solution, while A,,>; come in complex conjugate pairs



GCE Pressure for Finite Volume
Each p,, = TRe(\,,) is the partial thermal pressure of state n

For finite V the mechanical pressure cannot be expressed in terms of T'\,,

2 F(M\n,V
D = 0 In [Z(V, T, .U’)] . T Z An 4 8V§8>\n ) e)\n V
meeh = - 8F (Arn,V) 2
Hence for finite V it differs from the weighted thermal pressure
T Z An eAn V 4

Pthermal = Pmech

2Z(V,T OF (An,V)
V:Top) 55 [1 = 22521

It is not completely clear how to deal with the finite V corrections for finite systems,
although T. Hill discussed this problem in his books and articles.

The point is that T. Hill discussed this problem for weakly interacting systems

I believe that Lattice QCD pressure is the thermal one, but maybe there is a proof ?



Singularities of Isobaric Partition

GCP is reduced to sum over all singularities A\, (n = 0,1,2,..) of

Isobaric Partition & collective states of the same GCP
K.A.B., Acta. Phys. Polon. B 36 (2005)

~1
e Simple poles: A\, = R, +il, Z(V,T,pn) = ZEE)\”V[]. _ ng”)]
, Do)
K(V)
R, = Z dr(T )6 7 COS(I bk) ,

A =F(V, ) | = < K(V)

- Z or(T') e T'ksm(lnbk),

\
e Effective chemical potential v, = v(An)
e Reduced distribution ¢,(T) has no bulk free energy
e Real root meaning (Rg;Ip = 0):

(i) Root Rg exists for any (T, )

(ii) TRo is constrained grand canonical gas pressure:

K(V)
TRo = ) ¢w(T)exp[(sQ(T, up) — Ro)bk]



Singularities of Isobaric Partition

Eqgs. for simple poles: effective number of D.O.F.
( K(V) Re(h)k
R,= >, ¢u(T) e 7 cos(l,bk),
with I, £0: A\, = R, +il, = { k=0
K(V) Re(Oh)k
In=— > ¢x(T) e 7 sin(l,bk).
N k=0

Since Eq. |cos(/,bk)| = 1 cannot hold for all k: 1 <k < K(V)
= Gas Singularity is the Rightmost One: Rg > R,~0

For v < 0 and any T there is a gaseous pole only, i.e. A\ = Ry

e Complex \-plane

For Re(v) > 0 there appear some number of complex conjugate poles

e Since both sides of Eq. for I, are I A
odd functions of [, = ne
if A\, is a root, then X} is a root too. }\,1
= Partition is always real ®
0}\0 I
R
® n
= The gas pressure 1T Ry iIs the *
largest pressure M
®

For finite V the number of solutions defines the analog of phase:
gas has 1 solution,
mixed phase has 3, S or more solutions



Meaning of Complex Roots

—1

Y

e fFrom GCP Z(V,T,u) Z An V[l 8}—(‘/)‘)}
{Aa}

= —Re(\M)VT = —R,VT is free energy of )\, state.
— @Gaseous state is always stable since —RoVT < —R,~oVT

= n > 0 states are metastable for finite V!

e From correspondence:

Statistical Operator <— Evolution Operator
_H 7
e T e e h
= 7 is complex time ¢
. ¢ ¢ = = :IZ‘In|bT
= cos (&4F) = cos (:’f—’f) =2 [e"% + e’fﬂ is formation/decay time
| - | " LT e L = @Gaseous phase
= sin (27=) = sin (T) = 2i [e mT€ } is stable because 15 = +o0




Example Re(V) >>T and Finite K(V)

Consider limit Re(v,) > T
then R, is defined by the largest fragment kK = K(V) = Const

T+ 0n N (=) lrn _Re(l/n)K
[n — Kb ’ |5n| <<7T7 5nN Kb QDK(T) eXp[ T ] )
Re(v,) K
R, =~ (~1)" ¢x(T) exp[ €<;) ].

Important: R,>o0 can have either sign in this limit!

1 R, 1

R
KO o] — 00 = o

¢r (1) ‘

R, = so(T 1) — In' In‘

= For Re(v,) > T some R, approach liquid phase singularity!
e for R,— +o0o we compressed the system to the densest state.
So, it is metastable liquid, indeed! Since I,,~o do not vanish.
e for R,— —oo in the GCP there may appear (with vanishing
probability!) a largest fragment alone.

e for co > Re(v) > Re(v1(T)): analog of mixed phase



Example Re(V) >>T and Finite K(V)

Consider limit Re(v,) > T

In fact, the same is true for Re(v,)>T and V —

Important: R,>o0 can have either sign in this limit!

1 R, | 1
K(V)b ¢K(T)' = = vy

Ry,
¢r (1)

R, = so(T 1) — In' In‘

= For Re(v,) > T some R, approach liquid phase singularity!
e for R,— +o0o we compressed the system to the densest state.
So, it is metastable liquid, indeed! Since I,,~o do not vanish.
e for R,— —oo in the GCP there may appear (with vanishing
probability!) a largest fragment alone.

e for co > Re(v) > Re(v1(T)): analog of mixed phase



Isobaric Partition Poles for LargeV

Without PT Im part is fixed and equidistant
AI AI °
.. ° Ro>R1>R>>..> R,
T Y
¢ . In>O ~ T [gnz;b
Small volume Large volume
With PT Im part 1s equidistant, but moves to 0
'Y Al . Thus, this approach can
o § distinguish the case with
R i PT from the one without
. $ PT, but what about
. : experiments? Is there any

Small volume

Large volume evidence for such states?



1.

What About (3)CEP Analog for Finite V?

Honestly, at the moment there is no convincing definition.

In fact, result depends on how do we define (3)CEP!

If (3)CEP corresponds to a power law in mass distribution of
clusters (=bags or nuclear fragments or droplets of liquid),
then such a point of vanishing surface tension belongs to a gas.

K. A. B., A. L. Ivanytskyi, V. V. Sagun, D. R. Oliinychenko,
Phys. Part. Nucl. Lett.10, 832 (2013)

If (3)CEP is defined as a position of the maximum of specific heat capacity
(or maximum of isothermal compressibility), then its location depends on
EoS of gaseous and liquid phases!

In general, these two maxima can have different locations for finite V!



Conclusions

* New mechanisms of PT and (3)CEP models for QCD are required

* Rigorous theory of surface tension of ordinary liquids and QCD clusters

iS necessary

* Statistical thermodynamics of finite systems should be developed

* Alot of interesting work related to NICA and FAIR experiments awaits for us!



Thank You for Your Attention!
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Problems of the Gas of Bags Model

* 2005 A new and EXTRAVAGANT idea to revitalize the GBM: in order to get the
CEP and cross-over M.I. Gorenstein, M. Gazdzicki and W. Greiner, Phys. Rev. C 72
(2005) 024909, suggested a line along which the PT order gradually
decreases.

T . QGP

1* order PT

HG

Hg
e Consequently, such a formulation of GBM lacks an
important physical input and has to be modified.



Structure of singularities for CEP

* Thus, for the CEP case the rightmost singularity below and above
PT line is a SIMPLE POLE!

V (T, ug) >0 (T, ug) >0 0 <0

Parameter & can be either T or upg.
For example, if £is T, then &4 <T¢, & =T and &g > Te.




