Anisotropic flow fluctuations in heavy-ion collisions

Nazarova Elizaveta

PhD student of Department of Physics, SINP MSU

Mini-Workshop on Simulations of HIC for NICA energies Dubna, 2017

11.04.2017

Outline

Structure

- Introduction
- Motivation
- Analysis

Results

Conclusion

Introduction

Introduction: Evolution of HI collision

P. Sorensen, http://arxiv.org/abs/arXiv:0905.0174

Introduction: Flow

Fig.2. Formation of the overlap region: asymmetry in the initial geometry \longrightarrow anisotropy in particle momenta distributions

Azimuthal anisotropy can be described by Fourier expansion of particles' angular distribution around the beam direction:

$$\frac{\mathrm{d}N}{\mathrm{d}\varphi} \propto 1 + 2\sum_{n=1}^{\infty} v_n \cos(n(\varphi - \Psi_n))$$

where v_n and $\varphi - \Psi_n$ represent magnitude and phase of the n^{th} - order anisotropy of a given event in the momentum space.

 Azimuthal anisotropy is a powerful probe for collective properties of sub-nuclear matter created in heavy ion collision

¹B. Alver and G. Roland, Phys.Rev. C81 (2010) 054905

- Azimuthal anisotropy is a powerful probe for collective properties of sub-nuclear matter created in heavy ion collision
- Event-by-event (EbyE) analysis: studied mean values ⇒ can study EbyE distributions (like p(v_n)). Why?
 - Observation of non-zero v_3 at RHIC and LHC¹ \implies Participant eccentricity fluctuations $(v_n \rightarrow p(v_n))$

- Azimuthal anisotropy is a powerful probe for collective properties of sub-nuclear matter created in heavy ion collision
- Event-by-event (EbyE) analysis: studied mean values ⇒ can study EbyE distributions (like p(v_n)). Why?
 - Observation of non-zero v_3 at RHIC and LHC¹ \implies Participant eccentricity fluctuations $(v_n \rightarrow p(v_n))$

¹B. Alver and G. Roland, Phys.Rev. C81 (2010) 054905

- Azimuthal anisotropy is a powerful probe for collective properties of sub-nuclear matter created in heavy ion collision
- Event-by-event (EbyE) analysis: studied mean values ⇒ can study EbyE distributions (like p(v_n)). Why?
 - Observation of non-zero v_3 at RHIC and LHC \implies Participant eccentricity fluctuations $(v_n \rightarrow p(v_n))$
- Multiparticle cumulants \implies moments of $p(v_n)^2$:
 - Observed $v_2{2} > v_2{4} \approx v_2{6} \approx v_2{8}^3$:
 - Nature of fluctuations is Gaussian?

²S. A. Voloshin, A. M. Poskanzer, A. Tang and G. Wang, Phys.Lett. B659 (2008) 537-541

³CBM Collaboration, Nucl.Phys. A904-905 (2013) 515-518

⁴ATLAS Collaboration, JHEP 1311 (2013) 183

- Azimuthal anisotropy is a powerful probe for collective properties of sub-nuclear matter created in heavy ion collision
- Event-by-event (EbyE) analysis: studied mean values ⇒ can study EbyE distributions (like p(v_n)). Why?
 - Observation of non-zero v_3 at RHIC and LHC \implies Participant eccentricity fluctuations $(v_n \rightarrow p(v_n))$
- Multiparticle cumulants \implies moments of $p(v_n)^2$:
 - Observed $v_2{2} > v_2{4} \approx v_2{6} \approx v_2{8}^3$:
 - Nature of fluctuations is Gaussian?
- Measurement of $p(v_n)$ using EbyE unfolding⁴
 - Allows precise fluctuation studies
 - Cumulant extraction out of EbyE distributions
 - p(ε_n) extraction

²S. A. Voloshin, A. M. Poskanzer, A. Tang and G. Wang, Phys.Lett. B659 (2008) 537-541

³CBM Collaboration, Nucl.Phys. A904-905 (2013) 515-518

⁴ATLAS Collaboration, JHEP 1311 (2013) 183

 $p(v_n^{obs}|v_n) \times p(v_n) = p(v_n^{obs})$

In experimental data fluctuations of v_n may appear due to several causes:

 $p(v_n^{obs}|v_n) \times p(v_n) = p(v_n^{obs})$

In experimental data fluctuations of v_n may appear due to several causes:

• statistical fluctuations (due to finite number of particles)

 $p(v_n^{obs}|v_n) \times p(v_n) = p(v_n^{obs})$

In experimental data fluctuations of v_n may appear due to several causes:

- statistical fluctuations (due to finite number of particles)
- non-flow correlations (from resonance and jet decays)

 $p(v_n^{obs}|v_n) \times p(v_n) = p(v_n^{obs})$

In experimental data fluctuations of v_n may appear due to several causes:

- statistical fluctuations (due to finite number of particles)
- non-flow correlations (from resonance and jet decays)
- fluctuations of initial system distribution in the overlap area (dynamical fluctuations)

 $p(v_n^{obs}|v_n) \times p(v_n) = p(v_n^{obs})$

In experimental data fluctuations of v_n may appear due to several causes:

- statistical fluctuations (due to finite number of particles)
- non-flow correlations (from resonance and jet decays)
- fluctuations of initial system distribution in the overlap area (dynamical fluctuations)

The method of EbyE unfolding analysis discussed here helps to get rid of the first two, \longrightarrow leaves pure flow fluctuations connected with initial geometry of created system.

 Splitting of higher-order cumulants was observed⁵

⁵G. Aad et al., ATLAS Collaboration, Eur.Phys.J. C74 (2014), 3157

⁶G. Giacalone, L. Yan, J. Noronha-Hostler, J.-Y. Ollitrault, Phys. Rev. C 95, 014913 (2017)

- Splitting of higher-order cumulants was observed⁵
- Can be explained by skewness of p(ε₂)⁶

⁵G. Aad et al., ATLAS Collaboration, Eur.Phys.J. C74 (2014), 3157

⁶G. Giacalone, L. Yan, J. Noronha-Hostler, J.-Y. Ollitrault, Phys. Rev. C 95, 014913 (2017)

- Splitting of higher-order cumulants was observed⁵
- Can be explained by skewness of p(ε₂)⁶
- Suggests that initial state fluctuations are non-Gaussian

⁵G. Aad et al., ATLAS Collaboration, Eur.Phys.J. C74 (2014), 3157

⁶G. Giacalone, L. Yan, J. Noronha-Hostler, J.-Y. Ollitrault, Phys. Rev. C 95, 014913 (2017)

Motivation: Extraction of $p(\varepsilon_n)$

Two common eccentricity parametrizations:

Bessel-Gaussian⁷

$$p(\varepsilon_n|\varepsilon_0,\delta) = \frac{\varepsilon_n}{\delta^2} Exp\left[-\frac{\varepsilon_n^2 + \varepsilon_0^2}{2\delta}\right] I_0\left(\frac{\varepsilon_n\varepsilon_0}{\delta^2}\right)$$
$$\varepsilon_2 > \varepsilon_4 = \varepsilon_6 = \varepsilon_8$$

⁷S. A. Voloshin et al., Phys.Lett. B659 (2008) 537-541

⁸L. Yan, J.-Y. Ollitrault, A. M. Poskanzer, Phys.Rev. C90 (2014), 024903

Motivation: Extraction of $p(\varepsilon_n)$

Two common eccentricity parametrizations:

Bessel-Gaussian⁷

$$p(\varepsilon_n|\varepsilon_0,\delta) = \frac{\varepsilon_n}{\delta^2} Exp\left[-\frac{\varepsilon_n^2 + \varepsilon_0^2}{2\delta}\right] I_0\left(\frac{\varepsilon_n\varepsilon_0}{\delta^2}\right)$$
$$\varepsilon_2 > \varepsilon_4 = \varepsilon_6 = \varepsilon_8$$

Elliptic Power Law⁸

$$p(\varepsilon_n|\varepsilon_0,\alpha) = \frac{2\alpha\varepsilon_n}{\pi} (1-\varepsilon_0^2)^{\alpha+1/2} \int_0^\pi \frac{(1-\varepsilon_n^2)^{\alpha-1} d\varphi}{(1-\varepsilon_0\varepsilon_n\cos\varphi)^{2\alpha+1}} |\varepsilon_n| \le 1, \varepsilon^2 > \varepsilon^4 > \varepsilon^6 > \varepsilon^8$$

⁷S. A. Voloshin et al., Phys.Lett. B659 (2008) 537-541

⁸L. Yan, J.-Y. Ollitrault, A. M. Poskanzer, Phys.Rev. C90 (2014), 024903

Analysis

• Construct observed disrtibutions of v_n : $p(v_n^{obs})$

- Construct observed distributions of v_n : $p(v_n^{obs})$
 - generator:

$$\begin{split} v_n^{obs} &= \sqrt{(v_{n,x}^{obs})^2 + (v_{n,y}^{obs})^2}, \\ v_{n,x}^{obs} &= v_n^{obs} \cos n \Psi_n^{obs} = \langle \cos n \varphi \rangle, \\ v_{n,y}^{obs} &= v_n^{obs} \sin n \Psi_n^{obs} = \langle \sin n \varphi \rangle \end{split}$$

• data:

$$\overrightarrow{v}_{n}^{obs} = \left(\frac{\sum \cos n\varphi_{i}/\epsilon_{i}}{\Sigma 1/\epsilon_{i}}, \frac{\sum \sin n\varphi_{i}/\epsilon_{i}}{\Sigma 1/\epsilon_{i}}\right) - \langle \overrightarrow{v}_{n}^{obs} \rangle$$

- Construct observed distributions of v_n : $p(v_n^{obs})$
 - generator:

$$\begin{split} v_n^{obs} &= \sqrt{(v_{n,x}^{obs})^2 + (v_{n,y}^{obs})^2}, \\ v_{n,x}^{obs} &= v_n^{obs} \cos n \Psi_n^{obs} = \langle \cos n \varphi \rangle, \\ v_{n,y}^{obs} &= v_n^{obs} \sin n \Psi_n^{obs} = \langle \sin n \varphi \rangle \end{split}$$

• data:

$$\overrightarrow{v}_{n}^{obs} = \left(\frac{\sum \cos n\varphi_{i}/\epsilon_{i}}{\sum 1/\epsilon_{i}}, \frac{\sum \sin n\varphi_{i}/\epsilon_{i}}{\sum 1/\epsilon_{i}}\right) - \langle \overrightarrow{v}_{n}^{obs} \rangle$$

• Construct response matrix

⁹G. D'Agostini, Nucl. Instrum. Meth. A362, 487 (1995)

- Construct response matrix
 - Data-driven approach (directly use the smearing function)
 - Analytical approach (assume the form of response function)

⁹G. D'Agostini, Nucl. Instrum. Meth. A362, 487 (1995)

- Construct response matrix
 - Data-driven approach (directly use the smearing function)
 - Analytical approach (assume the form of response function)
- Construct unfolding matrix

$$\begin{split} M_{ij}^{iter} &= \frac{A_{ji}c_i^{iter}}{\sum_{m,k}A_{mi}A_{jk}c_k^{iter}},\\ \widehat{c}^{iter+1} &= \widehat{M}^{iter}\widehat{e}, A_{ji} = p(e_j|c_i) \end{split}$$

⁹G. D'Agostini, Nucl. Instrum. Meth. A362, 487 (1995)

- Construct response matrix
 - Data-driven approach (directly use the smearing function)
 - Analytical approach (assume the form of response function)
- Construct unfolding matrix

$$\begin{split} M_{ij}^{iter} &= \frac{A_{ji}c_i^{iter}}{\sum_{m,k}A_{mi}A_{jk}c_k^{iter}},\\ \widehat{c}^{iter+1} &= \widehat{M}^{iter}\widehat{e}, A_{ji} = p(e_j|c_i) \end{split}$$

• Perform D'Agostini Unfolding⁹ (using RooUnfold package¹⁰)

Divide the event into 2 sub-events (2SEs)

- Divide the event into 2 sub-events (2SEs)
- In $(\overrightarrow{v}_n^{obs,a} \overrightarrow{v}_n^{obs,b})/2$ flow signal cancels
 - Remaining effects: statistical and non-flow

- Divide the event into 2 sub-events (2SEs)
- In $(\overrightarrow{v}_n^{obs,a} \overrightarrow{v}_n^{obs,b})/2$ flow signal cancels
 - Remaining effects: statistical and non-flow
- Use 2SE difference to construct the RF response function

Analysis: Unfolding regularization

- Unfolding iteratively removes smearing
- Need to choose "final distribution"

Analysis: Unfolding regularization

- Unfolding iteratively removes smearing
- Need to choose "final distribution"

• Regularization:

Analysis: Unfolding regularization

- Unfolding iteratively removes smearing
- Need to choose "final distribution"

- Refolding
- Cut-off criteria: χ^2/NDF

Outline

Results

- Together with my colleagues from MSU and UiO performed the EbyE Unfolding analysis on HYDJET++ 11
- HYDJET++¹² is the event generator to simulate relativistic HI collisions as a superposition of two independent components:
 - The soft component is hydro-type state with preset freeze-out conditions
 - The hard state results from the in-medium multi-parton fragmentation with taking into account jet quenching effect

¹¹L.V. Bravina et al., Eur.Phys.J. C75 (2015) 588

¹²I.P. Lokhtin et al., Comp. Phys. Commun., 779 (2009)

Elliptic flow in original version of HYDJET++

The direction and strength of the elliptic flow (v_2) :

- ϵ(b) the spatial anisotropy represents the elliptic modulation of
 the final freeze-out hyper-surface at a given impact parameter b
- δ(b) the momentum anisotropy deals with the modulation of flow velocity profile

Elliptic flow in original version of HYDJET++

The direction and strength of the elliptic flow (v_2) :

- ϵ(b) the spatial anisotropy represents the elliptic modulation of
 the final freeze-out hyper-surface at a given impact parameter b
- $\delta(b)$ the momentum anisotropy deals with the modulation of flow velocity profile
- the relation between $\delta(b)$ and $\epsilon(b)$ has the form:

$$\delta = \frac{\sqrt{1 + 4B(\epsilon + B)} - 1}{2B}, \ B = C(1 - \epsilon^2)\epsilon, \ \epsilon = k\epsilon_0$$

Modification of HYDJET++

Fig. 3. EbyE $p(v_2)$ distributions in original HYDJET++

Modification of HYDJET++

Fig. 3. EbyE $p(v_2)$ distributions in original HYDJET++

Introducing additional "eccentricity" fluctuations in HYDJET++ model

The possible modification of HYDJET++:

 \longrightarrow smearing of all three parameters, ϵ , δ and ϵ_3 , at a given b.

Modification of HYDJET++

Fig. 3. EbyE $p(v_2)$ distributions in original HYDJET++

Introducing additional "eccentricity" fluctuations in HYDJET++ model

The possible modification of HYDJET++:

 \longrightarrow smearing of all three parameters, ϵ , δ and ϵ_3 , at a given b.

The modification has been done by introducing EbyE Gaussian smearing of spatial anisotropy parameters $\epsilon(b)$ and $\epsilon_3(b)$.

Results: EbyE $p(v_2)$ in HYDJET++

Fig.4. Comparison of $p(v_2)$ in 5 – 10% (left), 20 – 25% (middle), 35 – 40% (right) centrality intervals in HYDJET++ with ATLAS data

Top/bottom row shows model results with/without additional smearing of spatial anisotropy parameters. ATLAS data are shown by full circles.

Results: EbyE $P(v_3)$ in HYDJET++

Eur.Phys.J. C75 (2015) 588

Fig.5. Comparison of $p(v_3)$ in 5 – 10% (left), 20 – 25% (middle), 35 – 40% (right) centrality intervals in HYDJET++ with ATLAS data.

Top/bottom row shows model results with/without additional smearing of spatial anisotropy parameters. ATLAS data are shown by full circles.

Results: EbyE $p(\varepsilon_2)$ in HYDJET++

Left/right panel shows model results for centrality 20-25 % and 35-40 %. Full lines represent the fits to the Elliptic Power distribution

Results: Cumulant ratios in CMS

Fig. 7. Cumulant ratios

Figure by James Castle, QM2017

Results: Cumulant ratios and skewness in CMS

Fig. 8. Cumulant ratios and skewness

Figure by James Castle, QM2017

Results: Fitting EbyE distributions in CMS

Fig. 9. Fitting with Elliptic Power and Bessel-Gaussian Parametrizations

Figure by James Castle, QM2017

Plans & Conclusions:

• EbyE unfolding analysis makes it possible to study the anisotropic flow and its fluctuations on a new level:

- EbyE unfolding analysis makes it possible to study the anisotropic flow and its fluctuations on a new level:
 - Extract the underlying EbyE $p(v_n)$ distribution

- EbyE unfolding analysis makes it possible to study the anisotropic flow and its fluctuations on a new level:
 - Extract the underlying EbyE $p(v_n)$ distribution
 - New set of parameters to expore: $\langle v_n \rangle, \sigma_{v_n}, \langle v_n \rangle / \sigma_{v_n}$

- EbyE unfolding analysis makes it possible to study the anisotropic flow and its fluctuations on a new level:
 - Extract the underlying EbyE $p(v_n)$ distribution
 - New set of parameters to expore: $\langle v_n \rangle, \sigma_{v_n}, \langle v_n \rangle / \sigma_{v_n}$
 - Probe the initial state (extract $p(\varepsilon_n)$, skewness, ESE)

- EbyE unfolding analysis makes it possible to study the anisotropic flow and its fluctuations on a new level:
 - Extract the underlying EbyE $p(v_n)$ distribution
 - New set of parameters to expore: $\langle v_n \rangle, \sigma_{v_n}, \langle v_n \rangle / \sigma_{v_n}$
 - Probe the initial state (extract $p(\varepsilon_n)$, skewness, ESE)
- Using the EbyE unfolding with HI event generators ⇒ look into model's physics

- EbyE unfolding analysis makes it possible to study the anisotropic flow and its fluctuations on a new level:
 - Extract the underlying EbyE $p(v_n)$ distribution
 - New set of parameters to expore: $\langle v_n \rangle, \sigma_{v_n}, \langle v_n \rangle / \sigma_{v_n}$
 - Probe the initial state (extract $p(\varepsilon_n)$, skewness, ESE)
- Using the EbyE unfolding with HI event generators ⇒ look into model's physics
- Possibility of EbyE Unfolding for NICA energies?

Thank you for your attention!

Back Up: Response Matrix

Constructing the Response Matrix:

• Data-driven approach

Back Up: Response Matrix

Constructing the Response Matrix:

- Data-driven approach
- Prior $p(\overrightarrow{v}_n)$ using $p(\overrightarrow{v}_n^{obs})$ and $p((\overrightarrow{v}_n^{obs,a} \overrightarrow{v}_n^{obs,b})/2) = p(\overrightarrow{s}_n)$
- Sample a random \overrightarrow{v}_n from the prior
- Sample a random \overrightarrow{s}_n from the smearing function

•
$$\overrightarrow{V}_n^{obs} = \overrightarrow{V}_n + \overrightarrow{s}_n$$

• Fill the response matrix with v_n and v_n^{obs}

Constructing the Response Matrix:

• Analytical approach

Constructing the Response Matrix:

• Analytical approach

• Using Bessel-Gaussian function:

$$p(v_n^{obs}|v_n^{true}) \approx \frac{v_n^{obs}}{\delta_{v_n}^2} Exp\Big[-\frac{(v_n^{obs})^2 + (v_n^{true})^2}{2\delta_{v_n}}\Big]I_0\Big(\frac{v_n^{obs}v_n^{true}}{\delta_{v_n}^2}\Big)$$

• Using Student's T function: $p(v_n^{obs}|v_n^{true}, \delta_{v_n}, \nu) \approx v_n^{obs} \oint \left[1 + \frac{(v_n^{obs})^2 + (v_n^{true})^2 - 2v_n^{obs}v_n^{true}\cos\phi}{\nu\delta_{v_n}^2}\right]^{-\frac{\nu-1}{2}} d\phi$

Back-up: Possibilities of EbyE

 \succ Extract cumulants from $p(v_n)$ directly¹:

$$v_n\{2\}^2 \equiv \langle v_n^2 \rangle$$

$$v_n\{4\}^4 \equiv -\langle v_n^4 \rangle + 2\langle v_n^2 \rangle^2$$

$$v_n\{6\}^6 \equiv (\langle v_n^6 \rangle - 9\langle v_n^4 \rangle \langle v_n^2 \rangle + 12\langle v_n^2 \rangle^3)/4$$
Where

$$\left\langle v_n^{2k} \right\rangle \equiv \int v_n^{2k} p(v_n) dv_n$$

> Measure skewness of $p(v_n)$:

$$\gamma_1^{exp} = -6\sqrt{2}v_2\{4\}^4 \frac{v_2\{4\} - v_2\{6\}}{(v_2\{2\}^2 - v_2\{4\}^2)^{3/2}}$$

- Fit fluctuation models to data
 - Bessel Gaussian
 - Elliptic Power
- Couple to ESE
 - Extract detailed shape correlations

¹Phys.Lett. B659 (2008) 537-541

Back-up: Smearing

Back Up: Elliptic flow in HYDJET++

The altered radius of the freeze-out hyper-surface in azimuthal plane:

$$R(b,\phi) = R_{ell}(b,\phi)[1+\epsilon_3(b)\cos[3(\phi-\Psi_3)]],$$

•
$$\epsilon_0 = b/2R_A$$
 - initial ellipticity,

- R_A the nuclear radius,
- *R_{ell}* former transverse radius of the fireball, which reproduces the elliptic deformation.

