ntroduction	The model	eLSM at finite T/μ_B 00	Results 0000000000	
Q	CD phase diagrar	n in the vector PQM model	meson extenc	led

Gyuri Wolf

Wigner Research Centre for Physics, Budapest

wolf.gyorgy@wigner.mta.hu

12.04.2017

Mini-Workshop on Simulations of HIC for NICA energies Dubna

Based on: P. Kovács, Zs. Szép, Gy. Wolf, PRD93 (2016) 114014

Introduction 000	The model 000000000000	eLSM at finite T/μ_B 00	Results 0000000000	Summary
Overview				

- Motivation
- 2 The model
 - Axial(vector) meson extended linear σ -model
 - Parametrization at T = 0
 - Polyakov loop
- 3 eLSM at finite T/μ_B
 - Extremum equations for $\phi_{N/S}$ and $\Phi, \bar{\Phi}$

4 Results

- T dependence of the order parameters
- Critical endpoint
- Phase diagram

Introduction ●00	The model 0000000000000	eLSM at finite T/μ_B 00	Results 00000000000	Summary
Motivation				
OCD nh:	ase diagram			

Phase diagram in the $T - \mu_{\rm B} - \mu_{\rm I}$ space

- At μ_B = 0 T_c = 151 MeV
 Y. Aoki,*et al.*, PLB 643, 46 (2006)
- Is there a CP? (T_{CP} =162 MeV, μ_{CP} =360 MeV, Fodor-Katz)
- At T = 0 in μ_B where is the phase boundary?

Details of the phase diagram are heavily studied theoretically (Lattice, EFT), and experimentally (RHIC, LHC, FAIR, NICA)

Introduction ○●○	The model 000000000000	eLSM at finite T/μ_B 00	Results 0000000000	Summary
Motivation				
Motivation				

- At $\mu = 0$ we know the properties of strong interactions from the lattice in theoretical side and from STAR/PHENIX and from ALICE in the experimental side. On the other hand, for $\mu >> 0$ at the moment no theory and no experiment provide reasonable information.
- What is the order of phase transition on the T=0 line? Is there a CEP?
- Equation of state for neutron stars.
- How the masses change in medium?
- Idea
 - Build an effective model having the right global symmetry pattern.
 - Compare the thermodynamics of the model with lattice at $\mu=\mathbf{0}$
 - Extrapolate to high μ.

Introduction 00●	The model 0000000000000	eLSM at finite T/μ_B 00	Results 00000000000	Summary
Motivation				
Effective	models			

Since QCD is very hard to solve \longrightarrow low energy effective models were set up \longrightarrow reflecting the global symmetries of QCD

- Nambu-Jona-Lasinio model (+Kobayashi-Maskawa-t'Hooft)
- Chiral perturbation theory
- Linear and nonlinear (it does not contain degrees of freedom relevant at high T) sigma model
- To study the phase diagram, we introduced the constituent quarks
- For mimicing confinement, we add the Polyakov loops.

extended Polyakov-Quark-Meson model Similar model e.g.: Pisarski,Skokov, Phys.Rev. D94 (2016) 034015

Introduction 000	The model	eLSM at finite T/μ_B 00	Results 00000000000	Summary
Chiral sym	nmetry			

If the quark masses are zero (chiral limit) \implies QCD invariant under the following global transformation (chiral symmetry): $q_I = (1 - \gamma_5)/2q$, $q_R = (1 + \gamma_5)/2q$ only the mass term mixes $U(3)_V q = \exp(-i\alpha t)q$ $U(3)_A q = \exp(-i\beta\gamma_5 t)q$ $U(3)_{I} \times U(3)_{R} \simeq U(3)_{V} \times U(3)_{A} =$ $SU(3)_V \times SU(3)_A \times U(1)_V \times U(1)_A$ by any quark mass $SU(3)_V \times U(1)_V \times U(1)_A$ remains $U(1)_V$ term \longrightarrow baryon number conservation $U(1)_A$ term \longrightarrow broken through axial anomaly $SU(3)_V$ term \longrightarrow broken down to $SU(2)_V$ if $m_{\mu} = m_d \neq m_s$ \longrightarrow totally broken if $m_{\mu} \neq m_d \neq m_s$ (in nature)

eLSM at finite T/μ_B 00

Results 00000000000 Summary

Meson fields - pseudoscalar and scalar meson nonets

$$\Phi_{PS} = \sum_{i=0}^{8} \pi_i T_i = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{\eta_N + \pi^0}{\sqrt{2}} & \pi^+ & K^+ \\ \pi^- & \frac{\eta_N - \pi^0}{\sqrt{2}} & K^0 \\ K^- & K^0 & \eta_S \end{pmatrix} (\sim \bar{q}_i \gamma_5 q_j)$$

$$\Phi_S = \sum_{i=0}^{8} \sigma_i T_i = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{\sigma_N + a_0^0}{\sqrt{2}} & a_0^+ & K_S^+ \\ a_0^- & \frac{\sigma_N - a_0^0}{\sqrt{2}} & K_S^0 \\ K_S^- & K_S^0 & \sigma_S \end{pmatrix} (\sim \bar{q}_i q_j)$$

Particle content:

Pseudoscalars: $\pi(138), K(495), \eta(548), \eta'(958)$ Scalars: $a_0(980 \text{ or } 1450), K_0^*(800 \text{ or } 1430), (\sigma_N, \sigma_S) : 2 \text{ of } f_0(500, 980, 1370, 1500, 1710)$

oduction	The mod
	000000

he model 0000000000000 eLSM at finite T/μ_B

Results 0000000000 Summary

Structure of scalar mesons

	Mass (MeV)	width (MeV)	decays
$A_0(980)$	980 ± 20	50 - 100	$\pi\pi$ dominant
$A_0(1450)$	1474 ± 19	265 ± 13	$\pi\eta$, $\pi\eta'$, K $ar{K}$
$K_s(800) = \kappa$	682 ± 29	547 ± 24	$K\pi$
$K_{s}(1430)$	1425 ± 50	270 ± 80	$K\pi$ dominant
$f_0(500) = \sigma$	400–550	400 - 700	$\pi\pi$ dominant
$f_0(980)$	980 ± 20	40 - 100	$\pi\pi$ dominant
$f_0(1370)$	1200–1500	200 – 500	$\pi\pipprox$ 250, $Kar{K}pprox$ 150
$f_0(1500)$	1505 ± 6	109 ± 7	$\pi\pipprox$ 38, $Kar{K}pprox$ 9.4
$f_0(1710)$	1722 ± 6	135 ± 7	$\pi\pipprox$ 30, $Kar{K}pprox$ 71

Possible scalar states: $\bar{q}q$, $\bar{q}\bar{q}qq$, meson-meson molecules, glueballs pseudoscalar nonet: π , K, η , η' , scalar nonet: A_0 , K_0 , 2 f_0 multiquark states: $f_0(980)$, $A_0(980)$ $f_0(600)$, $K_0(800)$??? meson-meson bound state ($K\bar{K}$): $f_0(980)$??? glueballs: $f_0(1500)$ (weak coupling to $\gamma\gamma$), $f_0(1710)$???

Introduction 000	The model	eLSM at finite T/μ_B 00	Results 0000000000	Summary

Included fields - vector meson nonets

$$V^{\mu} = \sum_{i=0}^{8} \rho_{i}^{\mu} T_{i} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{\omega_{N} + \rho^{0}}{\sqrt{2}} & \rho^{+} & K^{\star +} \\ \rho^{-} & \frac{\omega_{N} - \rho^{0}}{\sqrt{2}} & K^{\star 0} \\ K^{\star -} & K^{\star 0} & \omega_{S} \end{pmatrix}^{\mu}$$
$$A^{\mu} = \sum_{i=0}^{8} b_{i}^{\mu} T_{i} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{f_{1N} + a_{1}^{0}}{\sqrt{2}} & a_{1}^{+} & K_{1}^{+} \\ a_{1}^{-} & \frac{f_{1N} - a_{1}^{0}}{\sqrt{2}} & K_{1}^{0} \\ K_{1}^{-} & K_{1}^{0} & f_{1S} \end{pmatrix}^{\mu}$$

Particle content:

Vector mesons: $\rho(770), K^{\star}(894), \omega_N = \omega(782), \omega_S = \phi(1020)$ Axial vectors: $a_1(1230), K_1(1270), f_{1N}(1280), f_{1S}(1426)$

$$\begin{aligned} \mathcal{L}_{\text{Tot}} &= \text{Tr}[(D_{\mu}\Phi)^{\dagger}(D_{\mu}\Phi)] - m_{0}^{2}\text{Tr}(\Phi^{\dagger}\Phi) - \lambda_{1}[\text{Tr}(\Phi^{\dagger}\Phi)]^{2} - \lambda_{2}\text{Tr}(\Phi^{\dagger}\Phi)^{2} \\ &- \frac{1}{4}\text{Tr}(L_{\mu\nu}^{2} + R_{\mu\nu}^{2}) + \text{Tr}\left[\left(\frac{m_{1}^{2}}{2} + \Delta\right)(L_{\mu}^{2} + R_{\mu}^{2})\right] + \text{Tr}[H(\Phi + \Phi^{\dagger})] \\ &+ c_{1}(\det \Phi + \det \Phi^{\dagger}) + i\frac{g_{2}}{2}(\text{Tr}\{L_{\mu\nu}[L^{\mu}, L^{\nu}]\} + \text{Tr}\{R_{\mu\nu}[R^{\mu}, R^{\nu}]\}) \\ &+ \frac{h_{1}}{2}\text{Tr}(\Phi^{\dagger}\Phi)\text{Tr}(L_{\mu}^{2} + R_{\mu}^{2}) + h_{2}\text{Tr}[(L_{\mu}\Phi)^{2} + (\Phi R_{\mu})^{2}] + 2h_{3}\text{Tr}(L_{\mu}\Phi R^{\mu}\Phi^{\dagger}). \\ &+ \bar{\Psi}i\partial \Psi - g_{F}\bar{\Psi}(\Phi_{S} + i\gamma_{5}\Phi_{PS})\Psi + g_{V}\bar{\Psi}\gamma^{\mu}\left(V_{\mu} + \frac{g_{A}}{g_{V}}\gamma_{5}A_{\mu}\right)\Psi \\ &+ \text{Polyakov loops} \end{aligned}$$

D. Parganlija, P. Kovacs, Gy. Wolf, F. Giacosa, D.H. Rischke, Phys. Rev. D87 (2013) 014011

Introduction 000	The model o●oooooooooo	eLSM at finite T/μ_B 00	Results 00000000000	Summary
Axial(vector) meso	n extended linear σ -model			
Lagrangi	an $(2/2)$			

where

$$\begin{split} D^{\mu}\Phi &= \partial^{\mu}\Phi - ig_{1}(L^{\mu}\Phi - \Phi R^{\mu}) - ieA_{e}^{\mu}[T_{3}, \Phi] \\ \Phi &= \sum_{i=0}^{8} (\sigma_{i} + i\pi_{i})T_{i}, \quad H = \sum_{i=0}^{8} h_{i}T_{i} \qquad T_{i} : U(3) \text{ generators} \\ R^{\mu} &= \sum_{i=0}^{8} (\rho_{i}^{\mu} - b_{i}^{\mu})T_{i}, \quad L^{\mu} = \sum_{i=0}^{8} (\rho_{i}^{\mu} + b_{i}^{\mu})T_{i} \\ L^{\mu\nu} &= \partial^{\mu}L^{\nu} - ieA_{e}^{\mu}[T_{3}, L^{\nu}] - \{\partial^{\nu}L^{\mu} - ieA_{e}^{\nu}[T_{3}, L^{\mu}]\} \\ R^{\mu\nu} &= \partial^{\mu}R^{\nu} - ieA_{e}^{\mu}[T_{3}, R^{\nu}] - \{\partial^{\nu}R^{\mu} - ieA_{e}^{\nu}[T_{3}, R^{\mu}]\} \\ \bar{\Psi} &= (\bar{u}, \bar{d}, \bar{s}) \end{split}$$

non strange – strange base:

$$\begin{split} \varphi_{\mathsf{N}} &= \sqrt{2/3}\varphi_{0} + \sqrt{1/3}\varphi_{\mathsf{8}}, \\ \varphi_{\mathsf{5}} &= \sqrt{1/3}\varphi_{0} - \sqrt{2/3}\varphi_{\mathsf{8}}, \qquad \varphi \in (\sigma_{i}, \pi_{i}, \rho_{i}^{\mu}, b_{i}^{\mu}, h_{i}) \end{split}$$

broken symmetry: non-zero condensates $\langle \sigma_N \rangle, \langle \sigma_S \rangle \longleftrightarrow \phi_N, \phi_S$

IntroductionThe model
ocoocococococoeLSM at finite T/μ_B Results
cocococococococoSummaryAxial(vector) meson extended linear σ -modelSymmetry properties of the modelSummarySummary

Global U(3)_L×U(3)_R transformation:

$$egin{array}{rcl} \Phi &
ightarrow & U_L \Phi U_R^\dagger \ L^\mu &
ightarrow & U_L L^\mu U_L^\dagger & R^\mu
ightarrow U_R R^\mu U_R^\dagger \end{array}$$

Consequences (using the unitarity of U's):

$$egin{array}{rcl} D^\mu \Phi &
ightarrow & U_L D^\mu \Phi U_R^\dagger \ L^{\mu
u} &
ightarrow & U_L L^{\mu
u} U_L^\dagger & R^{\mu
u}
ightarrow U_R R^{\mu
u} U_R^\dagger \end{array}$$

All terms are invariant except

the determinant: breaks $U_A(1)$

the explicit symmetry breaking term H: breaks $SU_A(3)$ and remains $U_V(1) \times SU_V(3)$ if all 3 eigenvalues of H are equal remains $U_V(1) \times SU_V(2)$ if 2 eigenvalues of H are equal remains $U_V(1)$ if all 3 eigenvalues of H are different.

Introduction 000	The model ooo●oooooooo	eLSM at finite T/μ_B 00	Results 00000000000	Summary
Axial(vector) meso	n extended linear σ -model			
Determi	nant term			

$$\begin{split} U_L &= e^{-i\omega_L^a T^a} \qquad U_R = e^{-i\omega_R^a T^a} \\ \omega_V^a &= 0.5(\omega_L^a + \omega_R^a) \qquad \omega_A^a = 0.5(\omega_L^a - \omega_R^a) \\ \text{By SU(3)}_L \times \text{SU(3)}_R \text{ transformation (if } \omega_L^0 &= \omega_R^0 = 0 = \omega_V^0 = \omega_A^0) \\ (\det \Phi)' &= \det(U_L \Phi U_R^\dagger) = \det U_L \det \Phi \det U_R^\dagger = \det \Phi \\ \text{Similarly } \det \Phi^\dagger \text{ is also invariant.} \\ \text{If } \omega_V^0 &\neq 0 \text{ and all the other } \omega' \text{s are } 0 ([T^a, T^0] = 0) \\ (\det \Phi)' &= \det(e^{-i\omega_V^0 T^0} \Phi e^{i\omega_V^0 T^0}) = \det(e^{-i\omega_V^0 T^0} e^{i\omega_V^0 T^0} \Phi) = \det \Phi \\ \text{On the other hand, if } \omega_A^0 &\neq 0 \text{ and all the other } \omega' \text{s are } 0 \\ (\det \Phi)' &= \det(e^{-i\omega_A^0 T^0} \Phi e^{-i\omega_A^0 T^0}) = \det(e^{-i\omega_A^0 T^0} \Phi) = e^{-i2\omega_A^0} \det \Phi \text{Tr} T^0 \\ \text{So the determinant term is invariant under U(3)}_V \times \text{SU(3)}_A \end{split}$$

transformation and breaks explicitely the $\mathsf{U}(1)_A$ symmetry.

$$\hat{\epsilon} = \sum_{i=0}^{8} \epsilon_i T_i = \begin{pmatrix} \frac{\epsilon_N}{2} & 0 & 0\\ 0 & \frac{\epsilon_N}{2} & 0\\ 0 & 0 & \frac{\epsilon_S}{\sqrt{2}} \end{pmatrix} \quad \text{only} \quad \epsilon^0, \epsilon^8 \neq 0$$

• axial transformation: if at least $\epsilon^0 \neq 0$ U(3)_A is broken:

$$(\operatorname{Tr}[\hat{\epsilon}(\Phi)])' = \operatorname{Tr}(e^{-i2\omega_A^{\mathfrak{a}}T^{\mathfrak{a}}}\hat{\epsilon}\Phi)$$

vector transformation

$$(\mathsf{Tr}[\hat{\epsilon}(\Phi)])' = \mathsf{Tr}(e^{-i\omega_V^a T^a} \hat{\epsilon} e^{i\omega_V^a T^a} \Phi)$$

Since $[\hat{\epsilon}, T^0] = 0$, $U(1)_V$ symmetry is preserved. If all $\epsilon^a = 0$ except ϵ^0 , $U(3)_V$ is preserved. If ϵ^8 also non zero, then since $[T^K, T^8] = 0$ if k = 1, 2, 3, $U(1)_V \times SU(2)_V$ survives (isospin symmetry) (If $\epsilon^3 \neq 0$ too, then the isospin symmetry is broken, only $U(1)_V$.)
 Introduction
 The model
 eLSM at finite T/μ_B Results
 Summary

 000
 00000000000
 00
 00
 0000000000

 Axial(vector)
 meson extended linear σ -model
 Image: second second

Spontaneous symmetry breaking

Interaction is approximately chiral symmetric, spectra not, so SSB:

$$\sigma_{N/S} \to \sigma_{N/S} + \phi_{N/S} \qquad \phi_{N/S} \equiv <\sigma_{N/S} >$$

For tree level masses we have to select all terms quadratic in the new fields. Some of the terms include mixings arising from terms like $Tr[(D_{\mu}\Phi)^{\dagger}(D_{\mu}\Phi)]$:

$$\begin{aligned} \pi_{N} &- a_{1N}^{\mu} &: -g_{1}\phi_{N}a_{1N}^{\mu}\partial_{\mu}\pi_{N}, \\ \pi &- a_{1}^{\mu} &: -g_{1}\phi_{N}(a_{1}^{\mu+}\partial_{\mu}\pi^{-} + a_{1}^{\mu0}\partial_{\mu}\pi^{0}) + \text{h.c.}, \\ \pi_{S} &- a_{1S}^{\mu} &: -\sqrt{2}g_{1}\phi_{S}a_{1S}^{\mu}\partial_{\mu}\pi_{S}, \\ K_{S} &- K_{\mu}^{\star} &: \frac{ig_{1}}{2}(\sqrt{2}\phi_{S} - \phi_{N})(\bar{K}_{\mu}^{\star0}\partial^{\mu}K_{S}^{0} + K_{\mu}^{\star-}\partial^{\mu}K_{S}^{+}) + \text{h.c.}, \\ K &- K_{1}^{\mu} &: -\frac{g_{1}}{2}(\phi_{N} + \sqrt{2}\phi_{S})(K_{1}^{\mu0}\partial_{\mu}\bar{K}^{0} + K_{1}^{\mu+}\partial_{\mu}K^{-}) + \text{h.c.}. \end{aligned}$$

 $\mathsf{Diagonalization} \rightarrow \mathsf{Wave} \text{ function renormalization}$

Parametrization at T = 0

Determination of the parameters of the Lagrangian

16 unknown parameters $(m_0, \lambda_1, \lambda_2, c_1, m_1, g_1, g_2, h_1, h_2, h_3, \delta_S, \Phi_N, \Phi_S, g_F, g_V, g_A) \longrightarrow$ Determined by the min. of χ^2 :

$$\chi^2(x_1,\ldots,x_N) = \sum_{i=1}^M \left[\frac{Q_i(x_1,\ldots,x_N) - Q_i^{\exp}}{\delta Q_i} \right]^2,$$

where $(x_1, \ldots, x_N) = (m_0, \lambda_1, \lambda_2, \ldots)$, $Q_i(x_1, \ldots, x_N)$ calculated from the model, while Q_i^{exp} taken from the PDG

multiparametric minimalization $\longrightarrow \mathsf{MINUIT}$

- PCAC \rightarrow 2 physical quantities: f_{π}, f_{K}
- Tree-level masses \rightarrow 15 physical quantities:

 $m_{u/d}, m_s, m_{\pi}, m_{\eta}, m_{\eta'}, m_K, m_{\rho}, m_{\Phi}, m_{K^{\star}}, m_{a_1}, m_{f_1^H}, m_{a_0}, m_{K_s}, m_{f_0^L}, m_{f_0^H}, m_{h_0^H}, m_{h$

• Decay widths \rightarrow 12 physical quantities:

$$\begin{split} & \Gamma_{\rho \to \pi\pi}, \Gamma_{\Phi \to KK}, \Gamma_{K^\star \to K\pi}, \Gamma_{a_1 \to \pi\gamma}, \Gamma_{a_1 \to \rho\pi}, \Gamma_{f_1 \to KK^\star}, \Gamma_{a_0}, \Gamma_{K_S \to K\pi}, \\ & \Gamma_{f_0^L \to \pi\pi}, \Gamma_{f_0^L \to KK}, \Gamma_{f_0^H \to \pi\pi}, \Gamma_{f_0^H \to KK} \\ & T_C = 155 \text{ MeV from lattice} \end{split}$$

Introduction 000	The model ○○○○○○●○○○○○	eLSM at finite T/μ_B 00	Results 0000000000	Summary
Parametrization at T	= 0			
Results				

	Cal(GeV)	Mass		Cal(GeV)	Width
m_{π}	0.1405	0.1380	f_{π}	0.0955	0.0922
m _K	0.4995	0.4956	f _K	0.1094	0.1100
m_η	0.5421	0.5479	$\Gamma_{f_0L\to KK}$	0.0	0.0
$m_{\eta'}$	0.9643	0.9578	$\Gamma_{f_0H\to KK}$	0.0	0.0
$m_{ ho}$	0.8064	0.7755	$\Gamma_{ ho}$	0.1515	0.149
m_{ϕ}	0.9901	1.0195	Γ_{ϕ}	0.003534	0.003545
m _{K*}	0.9152	0.8938	Γ_{K*}	0.04777	0.048
m_{f_1H}	1.4160	1.4264	$\Gamma_{f_1 \to KK}$	0.04451	0.0445
m_{a_1}	1.0766	1.2300	$\Gamma_{A_1 \to \rho \pi}$	0.1994	0.425
m_{K_1}	1.2999	1.2720	$\Gamma_{A_1 \to \gamma \pi}$	0.0003670	0.000640
m_{a_0}	0.7208	0.980	Γ_{A_0}	0.06834	0.075
$m_{K_0^*}$	0.7529	0.682	$\Gamma_{K_0^*}$	0.006001	0.00547
m_{f_0L}	0.2823	0.475	$\Gamma_{f_0L\to\pi\pi}$	0.5542	0.550
m_{f_0H}	0.7376	0.990	$\Gamma_{f_0H\to\pi\pi}$	0.08166	0.07
m _{ud}	0.3224	0.308	m _s	0.4577	0.483

Introduction 000	The model ○○○○○○○○○○○○○	eLSM at finite T/μ_B 00	Results 0000000000	Summary
Parametrization at 7	r = 0			
Paramete	rs			

Parameter	Value		
ϕ_N [GeV]	0.1411		
$\phi_{\mathcal{S}}$ [GeV]	0.1416		
$m_0^2 [{\rm GeV^2}]$	2.3925 <i>E</i> – 4		
m_1^2 [GeV ²]	6.3298 <i>E</i> – 8		
λ_1	-1.6738		
λ_2	23.5078		
δ_S [GeV ²]	0.1133		
<i>c</i> ₁ [GeV]	1.3086		
g1	5.6156		
g2	3.0467		
h_1	27.4617		
h ₂	4.2281		
h ₃	5.9839		
<i>g</i> F	4.5708		
M_0 [GeV]	0.3511		

• with this set $f_0^I = 0.2837$ GeV

Introduction The model

eLSM at finite T/μ_B

Results

Polvakov loop

Polyakov loops in Polyakov gauge

Polyakov loop variables:
$$\Phi(\vec{x}) = \frac{\operatorname{Tr}_c L(\vec{x})}{N_c}$$
 and $\bar{\Phi}(\vec{x}) = \frac{\operatorname{Tr}_c \bar{L}(\vec{x})}{N_c}$ with
 $L(x) = \mathcal{P} \exp\left[i \int_0^\beta d\tau A_4(\vec{x}, \tau)\right]$

 \rightarrow signals center symmetry (\mathbb{Z}_3) breaking at the deconfinement transition

low T: confined phase, $\langle \Phi(\vec{x}) \rangle$, $\langle \bar{\Phi}(\vec{x}) \rangle = 0$ high *T*: deconfined phase, $\langle \Phi(\vec{x}) \rangle$, $\langle \bar{\Phi}(\vec{x}) \rangle \neq 0$

Polyakov gauge: the temporal component of the gauge field is time independent and can be gauge rotated to a diagonal form in the color space

 $G_4_d(\vec{x}) = \phi_3(\vec{x})\lambda_3 + \phi_8(\vec{x})\lambda_8; \quad \lambda_3, \lambda_8 :$ Gell-Mann matrices.

In this gauge the Polyakov loop operator is

 $L(\vec{x}) = \text{diag}(e^{i\beta\phi_{+}(\vec{x})}, e^{i\beta\phi_{-}(\vec{x})}, e^{-i\beta(\phi_{+}(\vec{x})+\phi_{-}(\vec{x}))})$

where $\phi_{\pm}(\vec{x}) = \pm \phi_{3}(\vec{x}) + \phi_{8}(\vec{x})/\sqrt{3}$

Improved Polyakov loops potential

Logarithmic potential K. Fukushima, Phys. Lett. **B591**, 277 (2004) $\frac{\mathcal{U}_{\log}(\Phi,\bar{\Phi})}{T^4} = -\frac{1}{2}a(T)\Phi\bar{\Phi} + b(T)\ln\left[1 - 6\Phi\bar{\Phi} + 4\left(\Phi^3 + \bar{\Phi}^3\right) - 3\left(\Phi\bar{\Phi}\right)^2\right]$ with $a(T) = a_0 + a_1\frac{T_0}{T} + a_2\frac{T_0^2}{T^2}, \quad b(T) = b_3\frac{T_0^3}{T^3}$ $\mathcal{U}(\Phi,\bar{\Phi})$ models the free energy of a pure gauge theory

Within FRG, the glue potential $U^{glue}(\Phi, \bar{\Phi})$ coming from the gauge dof propagating in the presence of dynamical quarks can be matched to the potential $U^{YM}(\Phi, \bar{\Phi})$ of the SU(3) YM theory by relating the reduced temperatures:

$$\frac{U^{glue}}{T^4}(\Phi,\bar{\Phi},t_{glue}) = \frac{U^{YM}}{(T^{YM})^4}(\Phi,\bar{\Phi},t_{YM}(t_{glue})), \quad t_{YM}(t_{glue}) \approx 0.57 t_{glue}$$
$$t_{glue} \equiv \frac{T - T_c^{glue}}{T_c^{glue}}, t_{YM} \equiv \frac{T^{YM} - T_0^{YM}}{T_0^{YM}}, \quad T_c^{glue} \in (180,270) MeV$$

L.M.Haas et al., PRD 87, 076004 (2013)

"Color confinement" $\langle \Phi \rangle = 0 \longrightarrow$ no breaking of \mathbb{Z}_3 one minimum

"Color deconfinement" $\langle \Phi \rangle \neq 0 \longrightarrow$ spontaneous breaking of \mathbb{Z}_3 minima at $0, 2\pi/3, -2\pi/3$ one of them spontaneously selected

from H. Hansen et al., PRD75, 065004 (2007)

Effects of Polyakov loops on FD statistics

Inclusion of the Polyakov loop modifies the Fermi-Dirac distribution function

$$f(E_{p} - \mu_{q}) \longrightarrow f_{\Phi}^{+}(E_{p}) = \frac{\left(\bar{\Phi} + 2\Phi e^{-\beta(E_{p} - \mu_{q})}\right)e^{-\beta(E_{p} - \mu_{q})} + e^{-3\beta(E_{p} - \mu_{q})}}{1 + 3\left(\bar{\Phi} + \Phi e^{-\beta(E_{p} - \mu_{q})}\right)e^{-\beta(E_{p} - \mu_{q})} + e^{-3\beta(E_{p} - \mu_{q})}}$$

$$f(E_{p} + \mu_{q}) \longrightarrow f_{\Phi}^{-}(E_{p}) = \frac{\left(\Phi + 2\bar{\Phi}e^{-\beta(E_{p} + \mu_{q})}\right)e^{-\beta(E_{p} + \mu_{q})} + e^{-3\beta(E_{p} + \mu_{q})}}{1 + 3\left(\Phi + \bar{\Phi}e^{-\beta(E_{p} + \mu_{q})}\right)e^{-\beta(E_{p} + \mu_{q})} + e^{-3\beta(E_{p} + \mu_{q})}}$$

 $\Phi, \bar{\Phi} \to 0 \Longrightarrow f_{\Phi}^{\pm}(E_p) \to f(\mathbf{3}(E_p \pm \mu_q)) \quad \Phi, \bar{\Phi} \to 1 \Longrightarrow f_{\Phi}^{\pm}(E_p) \to f(E_p \pm \mu_q)$ three-particle state appears: mimics confinement of quarks within baryons at T = 0 there is no difference between models with and without Polyakov loop

Ω : grand canonical potential

$$\frac{\partial\Omega}{\partial\Phi} = \frac{\partial\Omega}{\partial\bar{\Phi}} \bigg|_{\varphi_N = \phi_N, \varphi_S = \phi_S} = 0$$

$$\frac{\partial\Omega}{\partial\phi_N} = \frac{\partial\Omega}{\partial\phi_S} \bigg|_{\Phi,\bar{\Phi}} = 0, \quad \text{(after the SSB)}$$

Hybrid approach: fermions at one-loop, mesons at tree-level (their effects are much smaller)

$$M_{i,ab}^{2} = \frac{\partial^{2} \Omega(T, \mu_{f})}{\partial \varphi_{i,a} \partial \varphi_{i,b}} \bigg|_{\min} = m_{i,ab}^{2} + \Delta_{0} m_{i,ab}^{2} + \Delta_{T} m_{i,ab}^{2},$$

$$\begin{split} m_{i,ab}^{2} &\longrightarrow \text{tree-level mass matrix,} \\ \Delta_{0/T} m_{i,ab}^{2} &\longrightarrow \text{fermion vacuum/thermal fluctuation,} \\ \Delta_{0}m_{i,ab}^{2} &= \frac{\partial^{2}\Omega_{q\bar{q}}^{\text{vac}}}{\partial\varphi_{i,a}\partial\varphi_{i,b}}\Big|_{\text{min}} &= -\frac{3}{8\pi^{2}}\sum_{f=u,d,s} \left[\left(\frac{3}{2} + \log\frac{m_{f}^{2}}{M^{2}}\right) m_{f,a}^{2(i)} m_{f,b}^{2(i)} + m_{f}^{2} \left(\frac{1}{2} + \log\frac{m_{f}^{2}}{M^{2}}\right) m_{f,ab}^{2(i)} \right], \\ \Delta_{T}m_{i,ab}^{2} &= \frac{\partial^{2}\Omega_{q\bar{q}}^{\text{th}}}{\partial\varphi_{i,a}\partial\varphi_{i,b}}\Big|_{\text{min}} &= 6\sum_{f=u,d,s} \int \frac{d^{3}p}{(2\pi)^{3}} \frac{1}{2E_{f}(p)} \left[(f_{f}^{+}(p) + f_{f}^{-}(p)) \left(m_{f,ab}^{2(i)} - \frac{m_{f,a}^{2(i)}m_{f,b}^{2(i)}}{2E_{f}^{2}(p)} \right) \right. \\ &+ \left. \left(B_{f}^{+}(p) + B_{f}^{-}(p) \right) \frac{m_{f,a}^{2(i)}m_{f,b}^{2(i)}}{2TE_{f}(p)} \right], \end{split}$$

where $m_{f,a}^{2(i)} \equiv \partial m_f^2 / \partial \varphi_{i,a}$, $m_{f,ab}^{2(i)} \equiv \partial^2 m_f^2 / \partial \varphi_{i,a} \partial \varphi_{i,b}$

- D.O.F's: scalar, pseudoscalar, vector, axial vector nonets,
- Polyakov loop variables, $\Phi, \overline{\Phi}$ with U^{YM} or U^{glue}
- u,d,s constituent quarks, $(m_u = m_d)$
- no mesonic fluctuations included in the grand canonical potential:

$$\Omega({\it T},\mu_{\it q})=-rac{1}{eta V}{\it ln}(Z)$$

- Fermion vacuum and thermal fluctuations
- quarks do not couple to (axial) vector meson yet
- Four order parameters (φ_N, φ_S, Φ, Φ̄) → four T/μ-dependent equations
- thermal contribution of π, K, f_0^L included in the pressure

Condensates and Polyakov loop variables with vacuum fluctuations

Introduction

The model

eLSM at finite T/μ_B

Results 00000000000 Summary

T dependence of the order parameters

With low mass scalars, $m_{f_0^L} = 300 \text{ MeV}$

chiral symmetry is restored at high T as the chiral partners (π, f_0^L) , (η, a_0) and (K, K_0^*) , (η', f_0^H) become degenerate

 $U(1)_A$ symmetry is not restored, as the axial partners (π, a_0) and (η, f_0^L) do not become degenerate

 $\begin{array}{c|c} \mbox{Introduction} & \mbox{The model} & \mbox{eLSM at finite } T/\mu_B & \mbox{Results} & \mbox{Summary} \\ \mbox{ooo} & \mbox{oooooooooo} & \mbox{oooooooooo} \\ \hline T \mbox{ dependence of the order parameters} \\ \end{array}$

Mass pattern in the η , η' sector

Our pattern: $m_{\eta} \le m_{\eta_N} < m_{\eta_S} \le m_{\eta'}$ in contrast to others Schaefer, PRD79 014018, Tiwari PRD88, 074017

 ${\ensuremath{\mathcal{T}}}$ dependence of the order parameters

T-dependence of condensates compared to lattice results

subtracted chiral condensate

$$\Delta = \frac{(\Phi_N - h_N/h_S \Phi_S)_T}{(\Phi_N - h_N/h_S \Phi_S)_{T=0}}$$

 U^{glue} with $T_c^{glue} \in (210 - 240) \text{MeV}$ gives good agreement with the lattice result of Borsanyi et al.,JHEP 1009, 073 (2010)

- lattice shows smooth transition
- our result is completely off
- renormalization of the Polyakov loop may explain part of the discrepancy Andersen et al., PRD92, 114504

Thermodynamical Observables

We include mesonic thermal contribution to p for (π, K, f'_0)

$$\Delta p(T) = -nT \int \frac{d^3q}{(2\pi)^3} ln(1 - e^{-\beta E(q)}), \quad E(q) = \sqrt{q^2 + m^2}$$

• pressure:
$$p(T, \mu_q) = \Omega_H(T = 0, \mu_q) - \Omega_H(T, \mu_q)$$

- entropy density: $s = \frac{\partial p}{\partial T}$
- quark number density: $\rho_q = \frac{\partial p}{\partial \mu_q}$
- energy density: $\epsilon = -p + Ts + \mu_q \rho_q$
- scaled interaction measure: $\frac{\Delta}{T^4} = \frac{\epsilon 3p}{T^4}$
- speed of sound at $\mu_q = 0$: $c_s^2 = \frac{\partial p}{\partial \epsilon}$

we use U^{glue} with $T_c^{glue} = 270$ MeV

pion dominates at low Tat high T pressure overshoots the lattice data

299 MeV

CEP

(885,52.7) Me

0.7 0.8 0.9

• we use U^{glue} with $T^{glue}_c = 210 \text{ MeV}$

0.86 0.88 0.9 0.92 0.94

0.82 0.84

0.2 0.3

0.06

0.03

0.05 0.04

0 0 0.1

• freeze-out curve from Cleymans et al., J.Phys.G32, S165

284 MeV

μ_R [GeV]

256 MeV

0.4 0.5 0.6

• Curvature at $\mu_B = 0$ $\kappa = 0.0193$, close to the lattice value $\kappa = 0.020(4)$ (Cea *et al.*, PRD93, 014507)

Isentropic trajectories in the $T - \mu_{\rm B}$ plane

our model, where $\mu_B^{\sf CEP}>850{\sf MeV}$

lattice (analytic continuation) Günther *et al.*, arXiv:1607.02493

same qualitative behavior of the isentropic trajectories for $\mu_B \leq 400 \text{ MeV}$ \implies indication that in the lattice result there is no CEP in this region of μ_B

Summary and Conclusions

- The thermodynamics of the ePQM was studied after parametrizing of the model with a modification of the method used in Parganlija et al., PRD87, 014011
- 40 possible assignments of the scalars to the nonet states were investigated. Lowest χ^2 for $a_0^{\bar{q}q} \rightarrow a_0(980)$, $\mathcal{K}_0^{*,\bar{q}q} \rightarrow \mathcal{K}_0^*(980)$, $f_0^{I,\bar{q}q} \rightarrow f_0(500)$, $f_0^{h,\bar{q}q} \rightarrow f_0(980)$
- The phase transition temperature requires low mass (\leq 400 MeV) f_0
- For the best set of parameters CEP was found in the $T \mu_B$ plane
- The *T*-dependence of various thermodynamical observables measured on the lattice is reasonable well reproduced with an improved Polyakov loop potential. L.M. Hass et al., PRD87, 076004
- The model's predictions are unrealistic at large μ_B

Introduction 000	The model 000000000000	eLSM at finite T/μ_B 00	Results 0000000000	Summary

\rightarrow To do . . .

- $\rightarrow\,$ Improve the vacuum phenomenology by tetraquarks (and glueballs)
- $\rightarrow\,$ coupling the quarks to the (axial)vectors
- $\rightarrow\,$ including mesonic fluctuations
- ightarrow find a way to improve the high density behaviour

Introduction	The model	eLSM at finite T/μ_B	Results	Summary
	000000000000		0000000000	

Thank you for your attention!