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Light clusters in warm dense matter 



Outline 
•  Light cluster production at NICA 
•  Nonequilibrium and equilibrium, Zubarev approach 
•  Equation of state: quantum statistical approach to nuclear systems   

at finite temperatures and subsaturation densities,                       
bound states, spectral function, quasiparticle concept 

•  Light quasiparticles 
•  Advanced problems: Continuum correlations, cluster virial expansion, 

correlated matter, quantum condensates 
•  HIC: chemical constants, symmetry energy 
•  Heavy elements, thermodynamic instability, pasta structures 
•  Few-particle correlations in finite nuclear systems (nuclei),  
•  Transport codes, Mott effect and in-medium cross sections, 

relevance of the equilibrium EoS. 

 



Light cluster production at NICA⋆ 
 

N.-U. Bastian, P. Batyuk, D. Blaschke, P. Danielewicz, Yu.B. Ivanov, Iu. Karpenko,  
G. Ropke, O. Rogachevsky, and H.H. Wolter, Eur. Phys. J. A (2016) 52: 244  



Symmetric nuclear matter: Phase diagram 



Equilibrium and non-equilibrium 

D.N. Zubarev, V.G. Morozov, and G. Ropke, Statistical Mechanics of Nonequilibrium Processes (1996) 
D.N. Zubarev, V.G. Morozov, I.P. Omelyan, and M.V. Tokarchuk, Theoret. Math. Phys. 96, 997 (1993) 
G. Ropke and H. Schulz, Nucl. Phys. A 477, 472 (1988) 

Statistical operator 

Extended von Neumann equation 



Quantum statistics 
•  System in equilibrium: temperature T, volume Ω, particle numbers 

Nc  (conserved) 

•  Nuclear systems, Nc: neutrons nn, protons np, electrons ne, … 

 
•   density nc(T, muc’) 
     Thermodynamic potential: free energy F(T, Ω, Nc) 
     Internal energy U(T, Ω, Nc) 

•  Nuclear structure T=0,  
     astrophysics, heavy ion reactions (HIC): finite T 

•  Interaction: strong, Coulomb, weak 

•  Green function approach, Path integral, numerical simulatios 
   



Equilibrium composition and 
Equation of State (EoS) of nuclear 

matter 



Many-particle theory 

Spectral function S (or A)  



Different approximations 



Different approximations 

Ideal Fermi gas: 
protons, neutrons,  
(electrons, neutrinos,…) 

Quasiparticle quantum liquid: 
mean-field approximation 
Skyrme, Gogny, RMF 

Nuclear statistical equilibrium: 
ideal mixture of all bound states  
(clusters:) chemical equilibrium 

Chemical equilibrium  
with quasiparticle clusters: 
self-energy and Pauli blocking 

Second virial coefficient: 
account of continuum contribution, 
scattering phase shifts, Beth-Uhl.E. 

Generalized Beth-Uhlenbeck  
formula: 
medium modified binding energies, 
medium modified scattering phase shifts 

Cluster virial approach: 
all bound states (clusters) 
scattering phase shifts of all pairs  

medium effects 

bound state formation 

continuum contribution 

chemical & physical picture 
Correlated medium 
phase space occupation by all bound states 
in-medium correlations,  
quantum condensates 



Different approximations 

Ideal Fermi gas: 
protons, neutrons,  
(electrons, neutrinos,…) 



Different approximations 

Ideal Fermi gas: 
protons, neutrons,  
(electrons, neutrinos,…) 

Quasiparticle quantum liquid: 
mean-field approximation 
Skyrme, Gogny, RMF 

medium effects 



Quasiparticle picture: RMF and DBHF 

C. Fuchs, H.H. Wolter, Eur. Phys. J. A 30, 5 (2006)  
But: cluster formation 
Incorrect low-density limit 



Quasiparticle approximation for nuclear matter 

Klaehn et al., PRC 2006 

But: 
cluster  
formation 

Incorrect 
low-density  
limit 



Nuclear statistical equilibrium 
(NSE) 

Chemical picture: 
Ideal mixture of reacting components 
Mass action law 

Interaction between the components 
internal structure: Pauli principle 



Different approximations 

Ideal Fermi gas: 
protons, neutrons,  
(electrons, neutrinos,…) 

Quasiparticle quantum liquid: 
mean-field approximation 
Skyrme, Gogny, RMF 

Nuclear statistical equilibrium: 
ideal mixture of all bound states  
(clusters:) chemical equilibrium 

medium effects 

bound state formation 



Cluster decomposition 
 of the self-energy 

T-matrices: bound states, scattering states 
Including clusters like new components 
chemical picture, 
mass action law, nuclear statistical equilibrium (NSE) 



Ideal mixture of reacting nuclides 

mass number A, 
charge ZA, 
energy EA,ν,K, 
ν  internal quantum number, 
K center of mass momentum 

Chemical equilibrium, mass action law, 
Nuclear Statistical Equilibrium (NSE) 



Nuclear statistical equilibrium 
(NSE) 

Chemical picture: 
Ideal mixture of reacting components 
Mass action law 

Physical picture: 
"elementary" constituents 
and their interaction 

Interaction between the components 
internal structure: Pauli principle Quantum statistical (QS) approach, 

quasiparticle concept, virial expansion 



Composition of low-dense nuclear matter 

mass number A 
charge ZA 
energy EA,ν,K 
ν: internal quantum number 



Different approximations 

Ideal Fermi gas: 
protons, neutrons,  
(electrons, neutrinos,…) 

Quasiparticle quantum liquid: 
mean-field approximation 
Skyrme, Gogny, RMF 

Nuclear statistical equilibrium: 
ideal mixture of all bound states  
(clusters:) chemical equilibrium 

Chemical equilibrium  
with quasiparticle clusters: 
self-energy and Pauli blocking 

medium effects 

bound state formation 



Effective wave equation  
for the deuteron in matter 
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Fermi distribution function 

Pauli-blocking 

BEC-BCS crossover: 
Alm et al.,1993 

Add self-energy 

Thouless criterion 

€ 

Ed (T,µ) = 2µ

In-medium two-particle wave equation in mean-field approximation 



Pauli blocking – phase space occupation 

momentum space 

Fermi sphere 
px 

py 

pz cluster wave function (deuteron, alpha,…)  
in momentum space 

P P - center of mass momentum 

The Fermi sphere is forbidden, 
deformation of the cluster wave function 
in dependence on the c.o.m. momentum P 

The deformation is maximal at P = 0. 
It leads to the weakening of the interaction 
(disintegration of the bound state). 



Shift of the deuteron binding energy 

G.R., NP A 867, 66 (2011)  

Dependence on nucleon density, various temperatures, 
zero center of mass momentum  

thin lines: 

fit formula  



Shift of the deuteron bound state energy 
Dependence on center of mass momentum, 
various densities, T=10 MeV 

 G.R., NP A 867, 66 (2011)  
thin lines: 

fit formula  



Few-particle Schrödinger equation 
in a dense medium 

4-particle Schrödinger equation with medium effects 

€ 
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+ permutations{ }
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Medium modification of light 
clusters 

•  Single-particle, two-particle, etc. spectral function 
     quasiparticle concept: Peak structures in the few-body spectral function 
 
•  Dispersion relation: quasiparticle energy is a function of total few-body 

momentum K, but also T, nB, Ye:  
     EA,nu,K(T, nB, Ye) 
 

•  Solution of a few-body equation. For practical use parametrization (like 
Skyrme or RMF, DFT) 

 
•  Alternative simple approaches to describe the medium effects:  
     excluded volume 



Composition of dense nuclear matter 

mass number A 
charge ZA 
energy EA,ν,K 
ν: internal quantum number 

•  Inclusion of excited states 
 
•  Medium effects: 
  self-energy and Pauli blocking shifts of binding energies, 
  Coulomb corrections due to screening (Wigner-Seitz,Debye) 
 
•  Bose-Einstein condensation 



Shift of Binding Energies of Light Clusters 

G.R., PRC 79, 014002 (2009) 
S. Typel et al.,  
PRC 81, 015803 (2010) 

Symmetric matter 



Light Cluster Abundances 

Composition of symmetric matter in dependence on the baryon density nB, T = 5 MeV.  
Quantum statistical calculation (full) compared with NSE (dotted).  

 



Light Cluster Abundances 

Composition of symmetric matter in dependence on the baryon density nB, T = 20 MeV.  
Quantum statistical calculation (full) compared with NSE (dotted).  

 



Intermediate nuclei 

G.R., J. Phys.: Conf. Series 436, 012070 (2013)  

Quantum statistical calculation of cluster abundances in hot dense matter  



Heavier clusters 
In principle, clusters with arbitrary A should be considered. 
 
Clusters with 4 < A <12 :  weakly bound, no significant contributions 
 
Heavy clusters: Thomas-Fermi model,  



Open problems 
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Light Clusters and Pasta Phases in 
Warm and Dense Nuclear Matter  

Sidney S. Avancini et al., arXiv:1704.00054 



Light Clusters and Pasta Phases in 
Warm and Dense Nuclear Matter  

Sidney S. Avancini et al., 
 arXiv:1704.00054 



Different approximations 

Ideal Fermi gas: 
protons, neutrons,  
(electrons, neutrinos,…) 

Quasiparticle quantum liquid: 
mean-field approximation 
Skyrme, Gogny, RMF 

Nuclear statistical equilibrium: 
ideal mixture of all bound states  
(clusters:) chemical equilibrium 

Chemical equilibrium  
with quasiparticle clusters: 
self-energy and Pauli blocking 

Second virial coefficient: 
account of continuum contribution, 
scattering phase shifts, Beth-Uhl.E. 

Generalized Beth-Uhlenbeck  
formula: 
medium modified binding energies, 
medium modified scattering phase shifts 

medium effects 

bound state formation 

continuum contribution 



Deuteron-like scattering phase shifts 
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Virial coeff. ∝  

10

A. Two-nucleon contribution

The virial expansion of the EOS (4) reads [23, 35, 36, 38, 39]

ntot
n (T, µn, µp) =

2
⇤3

h

bn(T )eµn/T + 2bnn(T )e2µn/T + 2bnp(T )e(µn+µp)/T + . . .
i

,

ntot
p (T, µn, µp) =

2
⇤3

h

bp(T )eµp/T + 2bpp(T )e2µp/T + 2bpn(T )e(µn+µp)/T + . . .
i

, (31)

Already the noninteracting, i.e. ideal Fermi gas of nucleons contains two e↵ects in contrast to the standard low-
density, classical limit:
i) The relativistic dispersion relation E⌧ (p) = c

p

(m⌧ c)2 + (~p)2 � m⌧ c2 results in a first virial coe�cient b⌧ 6= 1.
The value b⌧ = 1 follows from the dispersion relation E⌧ (p) = ~2p2/2m⌧ . For a more detailed investigation see [39].
ii) The degeneration of the fermionic nucleon gas leads to the contribution �2�5/2 to b⌧⌧ [35].

The remaining part of the second virial coe�cient is determined by the two-nucleon interaction. We can introduce
di↵erent channels, in particular the isospin triplet (TI = 1, neutron matter) and isospin singlet (TI = 0, deuteron)
channels which are connected with the spin singlet and spin triplet state, respectively, if even angular momentum is
considered, for instance S-wave scattering. The second virial coe�cient in both channels can be derived from bnn and
bnp. Empirical values are given as function of T in Ref. [38] (isospin symmetry is assumed).

B. Generalized Beth-Uhlenbeck formula

The second virial coe�cients bnn and bnp cannot directly used within a quasiparticle approach. Because part of
the interaction is already taken into account when introducing the quasi-particle energy, we have to subtract this
contribution from the second virial coe�cient to avoid double counting, see [32, 36, 39]. We expand the density
with respect to the fugacities within the quasiparticle approximation picture (23), (24). We identify the residual
isospin-triplet contribution v0

TI=1(T ) from the neutron matter case as

ntot
B,neutron m.(T, µn, µp) = nqu

n (T, µn, µp) +
25/2

⇤3
e2µn/T v0

TI=1(T ) + . . . , (32)

and the residual isospin-singlet contribution v0
TI=0(T ) from the symmetric matter case (µp = µn) according to

ntot
B,symmetr.m.(T, µn, µp) = nqu

n (T, µn, µp) + nqu
p (T, µn, µp)

+
25/23
⇤3

e(µn+µp)/T
h

e�E0
d/T � 1 + v0

TI=0(T ) + v0
TI=1(T )

i

+ . . . , (33)

dots indicate higher orders in densities. The residual second virial coe�cients v0
c (T ) are given by [36]

v0
c (T ) =

1
⇡T

Z 1

0

dE e�E/T

⇢

�c(E)� 1
2

sin[2�c(E)]
�

. (34)

Comparing (33) with the ordinary Beth-Uhlenbeck formula (8) there are two di↵erences:
i) After integration by parts, the derivative of the scattering phase shift is replaced by the phase shift, and according
to the Levinson theorem for each bound state the contribution �1 appears.
ii) The contribution � 1

2 sin[2�c(E)] appears to avoid double counting [32, 36] when introducing the quasiparticle
picture. E denotes the relative energy in the c.o.m. system.

The EOS (4) is not free of ambiguities with respect to the subdivision into bound state contributions and continuum
contributions, compare (33), (34) with (7), (8). The continuum correlations in b⌧,⌧ 0(T ) are reduced to the residual part
v0

c (T ) if the quasiparticle picture is introduced. The remaining contribution to the second virial coe�cient b⌧,⌧ 0(T ) is
absorbed in the quasiparticle shift. This has been discussed in detail in [32, 36, 39].

To give an approximation for v0
c (T ), we performed calculations within the generalized Beth-Uhlenbeck approach

[36] for a simple separable potential,

Vc(12, 1020) = ��ce
� (p1�p2)2

4�2 e
� (p01�p02)2

4�2 ��,�0�⌧,⌧ 0 (35)

with �d = 1287.37 MeV for the deuteron (isospin 0) channel, � = 1.474 fm�1, see [34], adapted to binding energy and
point rms radius of the deuteron. After evaluating the T-matrix, the scattering phase shifts are obtained, and v0

d(T )
has been evaluated. For details see [36]. The result is approximated by

v0
d(T ) = v0

TI=0(T ) ⇡ 0.30857 + 0.65327 e�0.102424 T/MeV . (36)



EOS: continuum contributions 
Partial density of channel A,c at P (for instance, 3S1= d): 

separation: bound state part – continuum part ? 

parametrization (d – like): 

G. Roepke, PRC 92,054001 (2015) 



Different approximations 

Ideal Fermi gas: 
protons, neutrons,  
(electrons, neutrinos,…) 

Quasiparticle quantum liquid: 
mean-field approximation 
Skyrme, Gogny, RMF 

Nuclear statistical equilibrium: 
ideal mixture of all bound states  
(clusters:) chemical equilibrium 

Chemical equilibrium  
with quasiparticle clusters: 
self-energy and Pauli blocking 

Second virial coefficient: 
account of continuum contribution, 
scattering phase shifts, Beth-Uhl.E. 

Generalized Beth-Uhlenbeck  
formula: 
medium modified binding energies, 
medium modified scattering phase shifts 

Cluster virial approach: 
all bound states (clusters) 
scattering phase shifts of all pairs  

medium effects 

bound state formation 

continuum contribution 

chemical & physical picture 
Correlated medium 
phase space occupation by all bound states 
in-medium correlations,  
quantum condensates 



Composition of dense nuclear matter 

mass number A 
charge ZA 
energy EA,ν,K 
ν: internal quantum number 

•  Medium effects: correct behavior near saturation 
  self-energy and Pauli blocking shifts of binding energies, 
  Coulomb corrections due to screening (Wigner-Seitz,Debye) 
 
• Inclusion of excited states and continuum correlations, 
   correct virial expansions 

• Bose-Einstein condensation, phase instabilities 



Cluster virial expansion for nuclear matter 
within a quasiparticle approach 

G.R., N. Bastian, D. Blaschke, T. Klaehn, S. Typel, H. Wolter, NPA 897, 70 (2013) 

Generating functional 

Avoid double counting 

Generalized Beth-Uhlenbeck approach 



Correlations in the medium 

cluster mean-field approximation 



Pauli blocking, correlated medium 

effective occupation numbers 

In-medium Schroedinger equation 

effective Fermi distribution 

effective temperature 

G. Roepke, PRC 92,054001 (2015) 

blocking by all nucleons 



Symmetric matter: chemical potential 
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QS compared with RMF (thin) and NSE (dotted)  

Insert: no continuum correlations (thin) 



Heavy ion collisions 



EOS at low densities from HIC 

chemical constants 
Yields of clusters from HIC: p, n, d, t, h, α  

inhomogeneous, 
non-equilibrium 



Chemical constants 

Matthias Hempel,  
Kris Hagel,  
Joseph Natowitz,  
Gerd Röpke, and  
Stefan Typel 
Phys. Rev. C 91,  
045805 (2015)  

Comparison: 
experiment 
NSE (ideal mixture) 
QS (quantum statistics) 



Symmetry energy 
Heavy-ion collisions, spectra of emitted clusters, 
temperature (3 - 10 MeV), free energy 

S. Kowalski et al., 
PRC 75, 014601  
(2007) 



Symmetry Energy 

Scaled internal symmetry energy as a function of the scaled total density. 
MDI: Chen et al., QS: quantum statistical, Exp: experiment at TAMU   

J.Natowitz et al. PRL, May 2010 



Light clusters and symmetry energy 

         K. Hagel et al.Eur. Phys. J. A (2014) 50: 39 
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Symmetry energy: low density limit 
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Correlations in nuclei 



Cluster formation in nuclei 

•  Clustering in low-density matter 

•  Alpha-like clustering and condensation in expanded N=Z nuclei: 
Hoyle state 

•  Clustering in the neck region 

•  Clustering at the surface of heavy nuclei, 
     Preformation for alpha decay 

•  Pairing - quartetting 



Self-conjugate 4n nuclei 



Self-conjugate 4n nuclei 



Alpha cluster structure of Be 8 

Contours of constant density, plotted in cylindrical coordinates, for 8Be(0+) .  
The left side is in the laboratory frame while the right side is in the intrinsic frame. 

R.B. Wiringa et al., 
PRC 63, 034605 (01) 



Results 

M. Chernykh et al., PRL 98, 032501 (07);              Y. Funaki et al., PRL 101, 082502 (08) 



 α decay of heavy nuclei 



Decay modes of nuclei 



α decay of 212Po 

d: 208Pb 

m: 212Po 



Woods-Saxon potentials for the 208Pb core 
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D.S. Delion and R. J. Liotta, Phys. Rev. C 87, 041302( R) (2013) 



Few-particle Schrödinger equation 
in a dense medium 

4-particle Schrödinger equation with medium effects 

€ 

E HF (p1) + E HF (p2) + E HF (p3) + E HF (p4 )[ ]( )Ψn,P (p1, p2, p3, p4 )

+ (1− f p1 − f p2 )V
p1$ ,p2$

∑ (p1, p2;p1$, p2$)Ψn,P (p1$, p2$, p3, p4 )

+ permutations{ }
= En,PΨn,P (p1, p2, p3, p4 )

Thouless criterion  
for quantum condensate: 

En,P=0(T,µ) = 4µ  



Four-nucleon energies at finite density 
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Solution of the in-medium wave equation, T = 0 

critical baryon density ncr = 0.03 fm-3 



212Po: α on top of 208Pb 
•  Woods-Saxon potential (Delion 2013) 
•  Thomas-Fermi nucleon density 
•  Pauli-blocking of the α particle 

Cluster: center of mass motion as collective degree of freedom, 
Separation of the c.o.m. motion from the internal motion. Exact wave equations? 
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Density in Thomas-Fermi  
approximation  
with chemical potential fixed  
by the total nucleon number 

C. Xu et al., PRC 93, 011306(R) (2016) 



Results for α decay of 212Po 

C. Xu et al., 



Transport codes including light clusters 



Equilibrium and non-equilibrium 

D.N. Zubarev, V.G. Morozov, and G. Ropke, Statistical Mechanics of Nonequilibrium Processes (1996) 
D.N. Zubarev, V.G. Morozov, I.P. Omelyan, and M.V. Tokarchuk, Theoret. Math. Phys. 96, 997 (1993) 
G. Ropke and H. Schulz, Nucl. Phys. A 477, 472 (1988) 

Statistical operator 

Extended von Neumann equation 

Future work is necessary to devise a transport theory for HIC which is compatible 
with the thermodynamic properties and the EoS as equilibrium  solution.  



Boltzmann equation 
•  Relevant observables: single particle distribution function (classical, 

quantal) 

•  Mean-field and collisions 

•  Entropy and conservation of kinetic energy 

•  Equilibrium solution: ideal gases 

•  Time-dependent Green functions 

•  Quasiparticles, spectral function 



Formation of light clusters in heavy 
ion reactions, transport codes 

Wigner distribution 

cluster mean-field potential 

loss rate 

in-medium  
breakup transition operator 

breakup cross section 



Mott effect, in-medium cross section  

C. Kuhrts, PRC 63,034605 (2001) 



Equilibrium correlations and 
transport codes 

Important: Mott effect 
 
Minor effects:  
in medium cross sections 
 
Missing: inclusion of alphas 
 
Correlated continuum, 
correlated medium 
 
Freeze-out and local   
thermodynamic equilibrium 
 
single-particle quantum kinetic  
equations and correlations 
 
Equilibrium solution? C. Kuhrts, PRC 63,034605 (2001) 



AMD (Akira Ono) 



Various transport theories  





Vaporized nuclei and nuclear matter  





Applications 

•  Astrophysics 

•  Heavy ion collisions 



Nuclear matter phase diagram 

Core collapse supernovae 

T. Fischer et al., 
 ApJS 194, 39 (2011) 

Thermodynamic 
parameters: 
 
baryon density nB 
 
temperature T 

electron fraction Ye  



Nuclear matter phase diagram 

Exploding 
supernova 

T. Fischer et al., 
arXiv 1307.6190 



Light cluster production at NICA⋆ 
 

N.-U. Bastian, P. Batyuk, D. Blaschke, P. Danielewicz, Yu.B. Ivanov, Iu. Karpenko,  
G. Ropke, O. Rogachevsky, and H.H. Wolter, Eur. Phys. J. A (2016) 52: 244  



Light cluster production at NICA⋆ 
 

N.-U. Bastian, P. Batyuk, D. Blaschke, P. Danielewicz, Yu.B. Ivanov, Iu. Karpenko,  
G. Ropke, O. Rogachevsky, and H.H. Wolter, Eur. Phys. J. A (2016) 52: 244  



Light cluster production at NICA⋆ 
 

N.-U. Bastian, P. Batyuk, D. Blaschke, P. Danielewicz, Yu.B. Ivanov, Iu. Karpenko,  
G. Ropke, O. Rogachevsky, and H.H. Wolter, Eur. Phys. J. A (2016) 52: 244  



Light cluster production at NICA⋆ 
 

N.-U. Bastian, P. Batyuk, D. Blaschke, P. Danielewicz, Yu.B. Ivanov, Iu. Karpenko,  
G. Ropke, O. Rogachevsky, and H.H. Wolter, Eur. Phys. J. A (2016) 52: 244  



Light cluster production at NICA⋆ 
 

N.-U. Bastian, P. Batyuk, D. Blaschke, P. Danielewicz, Yu.B. Ivanov, Iu. Karpenko,  
G. Ropke, O. Rogachevsky, and H.H. Wolter, Eur. Phys. J. A (2016) 52: 244  



Summary 
•   Quantum statistical approach: light clusters with in-medium 
   quasiparticle energies. The Pauli blockiing is  
   strongly depending on temperature T and P. Mott effect. 
 
•  Clusters are observed. Which signatures can be obtained for the 

source? 
 
•   The influence of continuum correlations (clusters) at increasing 
     densities requires detailed investigations. 
-  Continuum correlations contribute to the symmetry energy (density 

dependent virial coefficients). 
-  The blocking of bound states is modified because of correlations in the 

medium (α matter). 
 
•  Cluster formation is relevant for HIC (freeze-out, transport theory) and 

astrophysics (supernova explosions, pasta structures) 
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Woods-Saxon potentials for the 208Pb core 
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QS versus NSE: comparison with data 



Center of mass and intrinsic 
Schroedinger equation 

c. o. m.  coordinate R, relative coordinates sj  

normalization 

Wave equation for the c.o.m. motion 

c.o.m. effective potential 

Wave equation for the intrinsic motion 



Four-particle correlations 
Four-particle wave equation in position space representation 

Homogeneous nuclear matter: momentum representation 

Single-nucleon Hamiltonian hi ,  Pauli blocking B: Tamm-Dancoff 

Intrinsic motion 

Effective in-medium interaction 



Four-nucleon energies at finite density 
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4 free nucleons 
at the Fermi energy 
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Solution of the in-medium wave equation, T = 0 



𝛼-like correlations in a nucleus 

c. o. m. wave equation 

Effective c. o. m. potential  

Local approximation for the four nucleon effective potential 

External contribution  together with mean-field contribution to the effective potential  

Intrinsic contribution containing Pauli blocking 

Mixed representation 



Quantum condensate 

A. Tohsaki et al., PRL 87, 192501 (2001) 



Variational ansatz 

but  deuteron / dineutron case: non-Gaussian wf 



Free energy per nucleon 

(preliminary) 

correlated  
medium 

Constrained THSR calculations as function of the c.o.m. width B?   



Quantum condensates in nuclei? 

•  Pairing is well accepted. 
 
•  Quartetting is not very well-known and simple. 

•  The main point is the formation of clusters (correlations) in low-
density matter. 

•  We are interested in an efficient description (optimal wave function) 
for the cluster state. 

 
•  The center of mass motion has to be considered as new (collective) 

degree of freedom.  

Lot of semantics – my position 



Internal energy per nucleon 

EOS for symmetric matter - low density region?  

    Quantum 
statistical 
approach: 

 
    Cluster ? 
 
    Condensate? 



α-cluster-condensation 
(quartetting) 

G.Röpke, A.Schnell, P.Schuck, and P.Nozieres, PRL 80, 3177 (1998) 



α-cluster-condensation 
(quartetting) 

G.Röpke, A.Schnell, P.Schuck, and P.Nozieres, PRL 80, 3177 (1998) 



Nuclear matter phase diagram 
Core collapse supernovae 

T. Fischer et al., ApJS 194, 39 (2011) 
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Excited light nuclei 

decreasing 
density 
 
deuterons? 
systematics 
in  
weakly bound  
light  
elements 

light  
clusters  
in neutron 
matter 

Yoshiko Kanada-En'yo  
Cluster2012,Debrecen  

inhomogeneous, T=0 



Chemical constants 

Matthias Hempel,  
Kris Hagel,  
Joseph Natowitz,  
Gerd Röpke, and  
Stefan Typel 
Phys. Rev. C 91,  
045805 (2015)  



α cluster in astrophysics 

S. Typel, Proc. Int. Workshop XII Hadron Physics 

Crust of neutron stars 

Protons in droplets 
(heavy nuclei) 
 
α-cluster outside, 
at the surface, 
condensate? 



Two-particle correlations 

M. Schmidt, G.R., H. Schulz 
Ann. Phys. 202, 57 (1990) 

Generalized  
Beth-Uhlenbeck Approach 
for Hot Nuclear Matter 
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