

Vorticity at NICA

JINR 10.04.2017

3FD Model

3FD Phys. Input 3FD vorticity vorticity plot averaged vortic

Summary

Vorticity in heavy-ion collisions at NICA

Aluni-Fluid Dynamics

arXiv:1703.05040 [nucl-th]

Yuri B. Ivanov

NRC Kurchatov Institute

"Simulations of HIC for NICA energies", April 10-12, 2017, Dubna

Relativistic Kinematic Vorticity

Vorticity at NICA

JINR 10.04.2017

3FD Model

3FD Phys. Input 3FD vorticity vorticity plot averaged vortic

Summary

where $u_{\mu} =$ collective local four-velocity of the matter, is relevant to the **chiral vortical effect**

that leads to contribution to the electromagnetic current

$$J_{\rm e}^{\kappa} = \frac{N_c}{4\pi^2 N_f} \varepsilon^{\kappa\lambda\mu\nu} \partial_{\mu} \mathbf{u}_{\nu} \ \partial_{\lambda} \left(\theta \sum_j \boldsymbol{e}_j \mu_j \right)$$

 N_c and N_f are the number of colors and flavors respectively, e_j and μ_j are the electric charge and chemical potential of a particle of *j* flavor and θ **is the topological QCD field**.

Relativistic Thermal Vorticity

Vorticity at NICA

JINR 10.04.2017

3FD Model

3FD Phys. Input 3FD vorticity vorticity plot averaged vortic

$$arpi_{\mu
u}=rac{1}{2}(\partial_{
u}\hat{eta}_{\mu}-\partial_{\mu}\hat{eta}_{
u}),$$

where $\hat{\beta}_{\mu} = \hbar \beta_{\mu}$ and $\beta_{\mu} = u_{\nu}/T$ with T = the local temperature.

Summary

ϖ is dimensionless.

 ϖ is related to **the polarization vector**, $\Pi^{\mu}(p)$, of a spin 1/2 particle in a relativistic fluid [F. Becattini, et al., Annals Phys. **338**, 32 (2013)]

$$\Pi^{\mu}(\boldsymbol{p}) = \frac{1}{8m} \frac{\int_{\Sigma} \mathrm{d}\Sigma_{\lambda} \boldsymbol{p}^{\lambda} n_{F} (1 - n_{F}) \, \boldsymbol{p}_{\sigma} \epsilon^{\mu\nu\rho\sigma} \partial_{\nu} \beta_{\rho}}{\int_{\Sigma} \Sigma_{\lambda} \boldsymbol{p}^{\lambda} \, n_{F}},$$

where n_F is the Fermi-Dirac-Juttner distribution function, the integration runs over the freeze-out hypersurface Σ .

3FD Equations of Motion

Total energy-momentum conservation:

 $\partial_{\mu}(T^{\mu\nu}_{\rho}+T^{\mu\nu}_{t}+T^{\mu\nu}_{f})=0$

Hydrodymanic densities

Vorticity at NICA

JINR 10 04 2017

Baryon current:

3FD

Summary

$J^{\mu}_{\alpha} = n_{\alpha} u^{\mu}_{\alpha}$

 n_{α} = baryon density of α -fluid

 u^{μ}_{α} = 4-velocity of α -fluid

Energy-momentum tensor:

 $T^{\mu\nu}_{\alpha} = (\varepsilon_{\alpha} + P_{\alpha}) u^{\mu}_{\alpha} u^{\nu}_{\alpha} - g_{\mu\nu} P_{\alpha}$ ε_{α} = energy density P_{α} = pressure

+ Equation of state:

 $P = P(n,\varepsilon)$

Physical Input

Vorticity at NICA

JINR 10.04.2017

3FD Model

3FD

Phys. Input

3FD vorticity vorticity plot averaged vorticit

Summary

Equation of State

crossover EoS [Khvorostukhin, Skokov, Redlich, Toneev, (2006)]

Friction

calculated in hadronic phase (Satarov, SJNP 1990) fitted to reproduce the baryon stopping in QGP phase

• Freeze-out

When system becomes dilute, hydro has to be stopped

Freeze-out energy density $\varepsilon_{frz} = 0.4 \text{ GeV/fm}^3$

Below we consider Au+Au collisions at b = 6 fm

3FD vorticity at NICA energies

angular momentum J vs time

J of the f-fluid is \sim 100 lower than that of the overlapped baryon-rich fluids.

The energy in the fireball fluid is $\sim \,$ 10 lower than that in the baryon-rich fluids.

Therefore, the baryon-rich fluids dominate.

4-velocity of the baryon-rich matter = $u_B^{\mu} = J_B^{\mu}/|J_B|$, where $J_B^{\mu} = n_p u_p^{\mu} + n_t u_t^{\mu}$ is the total baryon current.

The temperature [required by the thermal vorticity]

$$T_{B} = \sum_{\alpha = p, t} T_{\alpha} \varepsilon_{\alpha} \Big/ \sum_{\alpha = p, t} \varepsilon_{\alpha}$$

(proper-energy-density-weighted temperature)

fluid unification measure = $1 - (n_p + n_p)/n_B$ [= 0 if p and t fluids are unified]

observations

Vorticity at NICA

JINR 10.04.2017

0 E		N	л				
эг	υ	ľ	VI	U	u	e	

3FD Phys. Input 3FD vorticity vorticity plot

Summary

- kinematic and thermal vorticity reaches peak values at the participant-spectator border
- thermal vorticity reaches extremely high peak values also because of strong gradients of the temperature at the border.
- the vorticity in the participant bulk gradually dissolves in the course of time and practically disappears to the end of the collision
- Conclusion: relative polarization of Λ hyperons should be higher in the fragmentation regions than in the midrapidity region

Kin. vorticity averaged with energy density

the

T-vorticity averaged with energy density

3FD Model

3FD Phys. Input 3FD vorticity vorticity plot averaged vorticity

Summary

biased averaged quantities

- T > 5 MeV
- T > 50 MeV
- T > 100 MeV

to test the effect of the participant-spectator border.

 $\langle \varpi_{zx} \rangle$ strongly depends on *T* cutoff because of strong *T* gradients at the border.

 $\langle \varpi_{\rm ZX} \rangle$ is almost independent of $\sqrt{s_{\rm NN}}$ at "freeze-out" stage.

Even at $T_0 = 100$ MeV cutoff, $\langle \varpi_{ZX} \rangle$ at $\sqrt{s_{NN}} = 7.7$ GeV essentially exceeds those of [L. P. Csernai, et al., Phys. Rev. C 90 021904 (2014)] for $\sqrt{s_{NN}} = 8$ GeV. Only 150 MeV cutoff makes these values compatible.

Vorticity at NICA

JINR 10.04.2017

3FD Model

3FD Phys. Input 3FD vorticity vorticity plot averaged vorticit

Summary

• the vorticity mainly takes place at the border between participant and spectator matter

This effect was noticed in

[M. I. Baznat, K. K. Gudima, A. S. Sorin and O. V. Teryaev, Phys. Rev. C **93**, 031902 (2016); **88**, 061901 (2013)] in the QGSM.

- this effect is essentially enhanced for the thermal vorticity because of strong temperature gradients at the participant-spectator border.
- the A-hyperon polarization should be stronger at peripheral rapidities, corresponding to the participant-spectator border, than that in the midrapidity region.

Vorticity at NICA

JINR 10.04.2017

3FD Model

3FD Phys. Input 3FD vorticity vorticity plot averaged vorti

Summary

ThankСПАСИБОЗА ВНИМАНИЕfor attention