

Simulations with the PHSD for NICA

Elena Bratkovskaya for the PHSD group

(GSI, Darmstadt & Uni. Frankfurt)

Mini-Workshop on Simulations of HIC for NICA energies, Dubna, 10 – 12 April, 2017

The ,holy grail' of heavy-ion physics:

The phase diagram of QCD

Search for the critical point

 Study of the phase transition from hadronic to partonic matter – Quark-Gluon-Plasma

Search for the signatures of chiral symmetry restoration

Study of the in-medium properties of hadrons at high baryon density and temperature

Signals of the phase transition:

- Multi-strange particle enhancement in A+A
- Charm suppression
- Collective flow (v₁, v₂)
- Thermal dileptons
- Jet quenching and angular correlations
- High p_T suppression of hadrons
- Nonstatistical event by event fluctuations and correlations

Experiment: measures final hadrons and leptons

How to learn about physics from data?

Compare with theory!

Basic models for heavy-ion collisions

Statistical models:

basic assumption: system is described by a (grand-) canonical ensemble of non-interacting fermions and bosons in thermal and chemical equilibrium [-: no dynamics]

• (Ideal) hydrodynamical models:

basic assumption: conservation laws + equation of state; assumption of local thermal and chemical equilibrium

[-: simplified dynamics]

 Transport models: based on transport theory of relativistic quantum many-body systems -Actual solutions: Monte Carlo simulations

[+ : full dynamics | - : very complicated]

Microscopic transport models provide a unique dynamical description of nonequilibrium effects in heavy-ion collisions

Dynamical models for HIC

Boltzmann-Uehling-Uhlenbeck equation (non-relativistic formulation here) - propagation of particles in the self-generated Hartree-Fock mean-field potential U(r,t) with an on-shell collision term:

$$\frac{\partial}{\partial t}f(\vec{r},\vec{p},t) + \frac{\vec{p}}{m}\vec{\nabla}_{\vec{r}} f(\vec{r},\vec{p},t) - \vec{\nabla}_{\vec{r}}U(\vec{r},t) \vec{\nabla}_{\vec{p}}f(\vec{r},\vec{p},t) = \left(\frac{\partial f}{\partial t}\right)_{coll}$$

collision term: elastic and inelastic reactions

 $f(\vec{r}, \vec{p}, t)$ is the single particle phase-space distribution function - probability to find the particle at position *r* with momentum *p* at time *t*

□ self-generated Hartree-Fock mean-field potential:

$$U(\vec{r},t) = \frac{1}{(2\pi\hbar)^3} \sum_{\beta_{occ}} \int d^3r' \, d^3p \, V(\vec{r}-\vec{r}',t) \, f(\vec{r}',\vec{p},t) \, + \, (Fock \ term)$$

□ Collision term for $1+2 \rightarrow 3+4$ (let's consider fermions) :

$$I_{coll} = \frac{4}{(2\pi)^3} \int d^3 p_2 \, d^3 p_3 \, \int d\Omega \, |v_{12}| \, \delta^3(\vec{p}_1 + \vec{p}_2 - \vec{p}_3 - \vec{p}_4) \cdot \frac{d\sigma}{d\Omega} (1 + 2 \to 3 + 4) \cdot P$$

Probability including Pauli blocking of fermions: $P = f_3 f_4 (1 - f_1)(1 - f_2) - f_1 f_2 (1 - f_3)(1 - f_4)$ Gain term: 3+4->1+2
Loss term: 1+2->3+4

Properties of matter created in HIC

Hadronic matter:

In-medium effects = changes of particle properties in the hot and dense hadronic medium;

example: vector mesons, strange mesons

QGP:

Exp. data + IQCD: η /s near T_c is very small

→ QGP is close to an ideal liquid, not a gas of weakly interacting quarks and gluons

→ QGP: strongly-interacting matter

Compilation of the ratio of shear viscosity to entropy density for various substances

Theoretical description of strongly interacting systems

Many-body theory:

Strong interactions → large width = short life-time → broad spectral functions → quantum objects

• How to describe the dynamics of broad strongly interacting quantum states in transport theory?

semi-classical BUU

Mandatory for the description of strongly-interacting matter and in-medium effects! First-order gradient expansion of quantum Kadanoff-Baym equations

generalized transport equations = off-shell transport approach!

Dynamical description of strongly interacting systems

□ Semi-classical on-shell BUU: applies for small collisional width, i.e. for a weakly interacting systems of particles

How to describe strongly interacting systems?!

❑ Quantum field theory → Kadanoff-Baym dynamics for resummed single-particle Green functions S[<]

 $\hat{S}_{0x}^{-1} S_{xy}^{<} = \Sigma_{xz}^{ret} \odot S_{zy}^{<} + \Sigma_{xz}^{<} \odot S_{zy}^{adv}$

(1962)

Green functions S[<] / self-energies Σ :

Integration over the intermediate spacetime

 $iS_{xy}^{<} = \eta \langle \{ \Phi^{+}(y) \Phi(x) \} \rangle$ $iS_{xy}^{>} = \langle \{ \Phi(y) \Phi^{+}(x) \} \rangle$ $iS_{xy}^{c} = \langle T^{c} \{ \Phi(x) \Phi^{+}(y) \} \rangle - causal$ $iS_{xy}^{a} = \langle T^{a} \{ \Phi(x) \Phi^{+}(y) \} \rangle - anticausal$ $S_{xy}^{ret} = S_{xy}^{c} - S_{xy}^{<} = S_{xy}^{>} - S_{xy}^{a} - retarded \qquad \hat{S}_{\theta x}^{-1} \equiv -(\partial_{x}^{\mu}\partial_{\mu}^{x} + M_{\theta}^{2})$ $S_{xy}^{adv} = S_{xy}^{c} - S_{xy}^{>} = S_{xy}^{<} - S_{xy}^{a} - advanced \qquad \eta = \pm 1(bosons / fermions)$ $T^{a}(T^{c}) - (anti-)time - ordering operator$

Leo Kadanoff

Gordon Baym

From Kadanoff-Baym equations to generalized transport equations

After the first-order gradient expansion of the Wigner transformed Kadanoff-Baym equations and separation into the real and imaginary parts one gets:

□ GTE: Propagation of the Green's function $iS_{XP}^{<}=A_{XP}N_{XP}$, which carries information not only on the number of particles (N_{XP}), but also on their properties, interactions and correlations (via A_{XP})

$$\Box \text{ Spectral function: } A_{XP} = \frac{\Gamma_{XP}}{(P^2 - M_0^2 - Re\Sigma_{XP}^{ret})^2 + \Gamma_{XP}^2/4}$$

 $\Gamma_{XP} = -Im \Sigma_{XP}^{ret} = 2 p_0 \Gamma$ – ,width' of spectral function = reaction rate of particle (at space-time position X) 4-dimentional generalizaton of the Poisson-bracket:

$$\diamond \{F_1\}\{F_2\} := \frac{1}{2} \left(\frac{\partial F_1}{\partial X_{\mu}} \frac{\partial F_2}{\partial P^{\mu}} - \frac{\partial F_1}{\partial P_{\mu}} \frac{\partial F_2}{\partial X^{\mu}} \right)$$

 \Box Life time $\tau = \frac{\hbar c}{\Gamma}$

W. Cassing , S. Juchem, NPA 665 (2000) 377; 672 (2000) 417; 677 (2000) 445

General testparticle off-shell equations of motion

W. Cassing , S. Juchem, NPA 665 (2000) 377; 672 (2000) 417; 677 (2000) 445

 \Box Employ testparticle Ansatz for the real valued quantity *i* S[<]_{XP} -

$$F_{XP} = A_{XP}N_{XP} = i S_{XP}^{<} \sim \sum_{i=1}^{N} \delta^{(3)}(\vec{X} - \vec{X}_{i}(t)) \delta^{(3)}(\vec{P} - \vec{P}_{i}(t)) \delta(P_{0} - \epsilon_{i}(t))$$

insert in generalized transport equations and determine equations of motion !

General testparticle Cassing's off-shell equations of motion for the time-like particles:

$$\begin{split} \frac{d\vec{X}_{i}}{dt} &= \frac{1}{1-C_{(i)}} \frac{1}{2\epsilon_{i}} \left[2\vec{P}_{i} + \vec{\nabla}_{P_{i}} Re\Sigma_{(i)}^{ret} + \underbrace{\frac{\epsilon_{i}^{2} - \vec{P}_{i}^{2} - M_{0}^{2} - Re\Sigma_{(i)}^{ret}}{\Gamma_{(i)}} \vec{\nabla}_{P_{i}} \Gamma_{(i)} \right], \\ \frac{d\vec{P}_{i}}{dt} &= -\frac{1}{1-C_{(i)}} \frac{1}{2\epsilon_{i}} \left[\vec{\nabla}_{X_{i}} Re\Sigma_{i}^{ret} + \underbrace{\frac{\epsilon_{i}^{2} - \vec{P}_{i}^{2} - M_{0}^{2} - Re\Sigma_{(i)}^{ret}}{\Gamma_{(i)}} \vec{\nabla}_{X_{i}} \Gamma_{(i)} \right], \\ \frac{d\epsilon_{i}}{dt} &= \frac{1}{1-C_{(i)}} \frac{1}{2\epsilon_{i}} \left[\frac{\partial Re\Sigma_{(i)}^{ret}}{\partial t} + \underbrace{\frac{\epsilon_{i}^{2} - \vec{P}_{i}^{2} - M_{0}^{2} - Re\Sigma_{(i)}^{ret}}{\Gamma_{(i)}} \frac{\partial \Gamma_{(i)}}{\partial t} \right], \\ \mathbf{with} \quad F_{(i)} \equiv F(t, \vec{X}_{i}(t), \vec{P}_{i}(t), \epsilon_{i}(t)) \\ C_{(i)} &= \frac{1}{2\epsilon_{i}} \left[\frac{\partial}{\partial\epsilon_{i}} Re\Sigma_{(i)}^{ret} + \underbrace{\frac{\epsilon_{i}^{2} - \vec{P}_{i}^{2} - M_{0}^{2} - Re\Sigma_{(i)}^{ret}}{\Gamma_{(i)}} \frac{\partial}{\partial\epsilon_{i}} \Gamma_{(i)} \right] \end{split}$$

Collision term for reaction 1+2->3+4:

$$\begin{split} \underline{I_{coll}(X,\vec{P},M^2)} &= Tr_2 Tr_3 Tr_4 \underline{A(X,\vec{P},M^2)} A(X,\vec{P}_2,M_2^2) A(X,\vec{P}_3,M_3^2) A(X,\vec{P}_4,M_4^2) \\ & |G((\vec{P},M^2) + (\vec{P}_2,M_2^2) \rightarrow (\vec{P}_3,M_3^2) + (\vec{P}_4,M_4^2))|_{\mathcal{A},\mathcal{S}}^2 \ \delta^{(4)}(P + P_2 - P_3 - P_4) \\ & [N_{X\vec{P}_3M_3^2} N_{X\vec{P}_4M_4^2} \bar{f}_{X\vec{P}M^2} \bar{f}_{X\vec{P}_2M_2^2} - N_{X\vec{P}M^2} N_{X\vec{P}_2M_2^2} \bar{f}_{X\vec{P}_3M_3^2} \bar{f}_{X\vec{P}_4M_4^2}] \\ & , \text{gain' term} , \text{loss' term} \end{split}$$

with $\bar{f}_{X\vec{P}M^2} = 1 + \eta N_{X\vec{P}M^2}$ and $\eta = \pm 1$ for bosons/fermions, respectively.

The trace over particles 2,3,4 reads explicitly for fermions $Tr_{2} = \sum_{\sigma_{2},\tau_{2}} \frac{1}{(2\pi)^{4}} \int d^{3}P_{2} \underbrace{\frac{dM_{2}^{2}}{\sqrt{\vec{P}_{2}^{2} + M_{2}^{2}}}}_{\text{additional integration}} Tr_{2} = \sum_{\sigma_{2},\tau_{2}} \frac{1}{(2\pi)^{4}} \int d^{3}P_{2} \underbrace{\frac{dP_{0,2}^{2}}{2}}_{2}$

The transport approach and the particle spectral functions are fully determined once the in-medium transition amplitudes G are known in their off-shell dependence!

Example of in-medium transition rates: G-matrix approach

Need to know in-medium transition amplitudes G and their off-shell dependence $|G((\vec{P}, M^2) + (\vec{P}_2, M_2^2) \rightarrow (\vec{P}_3, M_3^2) + (\vec{P}_4, M_4^2))|^2_{\mathcal{A}, \mathcal{S}}$

Coupled-channel G-matrix approach

Transition probability :

$$P_{1+2\to 3+4}(s) = \int d\cos(\theta) \ \frac{1}{(2s_1+1)(2s_2+1)} \sum_i \sum_{\alpha} G^{\dagger}G$$

with $G(p,\rho,T)$ - G-matrix from the solution of coupled-channel equations:

For strangeness:

D. Cabrera, L. Tolos, J. Aichelin, E.B., PRC90 (2014)055207; W. Cassing, L. Tolos, E.B., A. Ramos, NPA727 (2003) 59

Detailed balance on the level of 2<->n: treatment of multi-particle collisions in transport approaches

W. Cassing, NPA 700 (2002) 618

Generalized collision integral for *n* <->*m* reactions:

$$I_{coll} = \sum_{n} \sum_{m} I_{coll}[n \leftrightarrow m]$$

$$\begin{split} I_{coll}^{i}[n \leftrightarrow m] &= \\ &\frac{1}{2} N_{n}^{m} \sum_{\nu} \sum_{\lambda} \left(\frac{1}{(2\pi)^{4}} \right)^{n+m-1} \int \left(\prod_{j=2}^{n} d^{4}p_{j} \ A_{j}(x,p_{j}) \right) \left(\prod_{k=1}^{m} d^{4}p_{k} \ A_{k}(x,p_{k}) \right) \\ &\times A_{i}(x,p) \ W_{n,m}(p,p_{j};i,\nu \mid p_{k};\lambda) \ (2\pi)^{4} \ \delta^{4}(p^{\mu} + \sum_{j=2}^{n} p_{j}^{\mu} - \sum_{k=1}^{m} p_{k}^{\mu}) \\ &\times [\tilde{f}_{i}(x,p) \ \prod_{k=1}^{m} f_{k}(x,p_{k}) \prod_{j=2}^{n} \tilde{f}_{j}(x,p_{j}) - f_{i}(x,p) \prod_{j=2}^{n} f_{j}(x,p_{j}) \prod_{k=1}^{m} \tilde{f}_{k}(x,p_{k})]. \end{split}$$

 $\tilde{f} = 1 + \eta f$ is Pauli-blocking or Bose-enhancement factors; η =1 for bosons and η =-1 for fermions

 $W_{n,m}(p,p_j;i,\nu \mid p_k;\lambda)$ is a transition probability

□ 2017: Ph.D. Thesis of Eduard Seifert (Giessen Uni.)

Consider the light and strangeness sector \Rightarrow 2546 possible mass channels Baryons: N, Δ (1232),N(1440),N(1535), Λ , Σ , Σ^* , Ξ , Ξ^* , Ω (octett and decuplett) Mesons: π , η , η' ,K, K^* , ρ , ω , Φ , a_1

Degrees-of-freedom of QGP

✤ IQCD gives QGP EoS →

! need to be interpreted in terms of degrees-of-freedom

pQCD:

- weakly interacting system
- massless quarks and gluons

Thermal QCD = QCD at high parton densities:

- □ strongly interacting system
- massive quarks and gluons

Effective degrees-of-freedom

From SIS to LHC: from hadrons to partons

The goal: to study of the phase transition from hadronic to partonic matter and properties of the Quark-Gluon-Plasma on a microscopic level

need a consistent <u>non-equilibrium</u> transport approach

with explicit parton-parton interactions (i.e. between quarks and gluons)
 explicit phase transition from hadronic to partonic degrees of freedom
 IQCD EoS for partonic phase (,cross over' at μ_q=0)

□ Transport theory for strongly interacting systems: off-shell Kadanoff-Baym equations for the Green-functions S[<]_h(x,p) in phase-space representation for the partonic and hadronic phase

Parton-Hadron-String-Dynamics (PHSD)

QGP phase is described by

Dynamical QuasiParticle Model (DQPM)

W. Cassing, E. Bratkovskaya, PRC 78 (2008) 034919; NPA831 (2009) 215; W. Cassing, EPJ ST 168 (2009) 3

> A. Peshier, W. Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)

Dynamical QuasiParticle Model (DQPM) - Basic ideas:

DQPM describes **QCD** properties in terms of **,resummed' single-particle Green's functions** (propagators) – in the sense of a two-particle irreducible (2PI) approach:

gluon propagator: $\Delta^{-1} = P^2 - \Pi$ & quark propagator $S_q^{-1} = P^2 - \Sigma_q$

gluon self-energy: $\Pi = M_g^2 - i2\Gamma_g \omega$ & quark self-energy: $\Sigma_q = M_q^2 - i2\Gamma_q \omega$

(scalar approximation)

the resummed properties are specified by complex (retarded) self-energies which depend on temperature:

- the real part of self-energies (Σ_q , Π) describes a dynamically generated mass (M_q , M_q);

- the imaginary part describes the interaction width of partons (Γ_q, Γ_g)

space-like part of energy-momentum tensor $T_{\mu\nu}$ defines the potential energy density and the mean-field potential (1PI) for quarks and gluons (U_q, U_g)

Pl framework guarantees a consistent description of the system in- and out-of equilibrium on the basis of Kadanoff-Baym equations with proper states in equilibrium

A. Peshier, W. Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)

The Dynamical QuasiParticle Model (DQPM)

<u>Properties</u> of interacting quasi-particles: massive quarks and gluons (g, q, q_{bar}) with Lorentzian spectral functions:

$$A_{i}(\omega,T) = \frac{4\omega\Gamma_{i}(T)}{\left(\omega^{2} - \overline{p}^{2} - M_{i}^{2}(T)\right)^{2} + 4\omega^{2}\Gamma_{i}^{2}(T)}$$
$$(i = q, \overline{q}, g)$$

19

 T/T_c

Modeling of the quark/gluon masses and widths \rightarrow HTL limit at high T

Cassing, NPA 791 (2007) 365: NPA 793 (2007)

DQPM thermodynamics (N_f=3) and IQCD

The Dynamical QuasiParticle Model (DQPM)

Peshier, Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)

I. From hadrons to QGP:

□ Initial A+A collisions – as in HSD:

- string formation in primary NN collisions
- string decay to pre-hadrons (= new produced secondary hadrons:
 - *B* baryons, *m* mesons)

➔ ,flavor chemistry' from strings

□ Formation of initial QGP stage - if local energy density $\varepsilon > \varepsilon_c = 0.5$ GeV/fm³:

- I. Dynamical Quasi-Particle Model (DQPM) defines:
 - 1) properties of quasiparticles in equilibrium, i.e. masses $M_q(T)$ and widths $\Gamma_q(T)$ (T $\rightarrow \varepsilon$ by IQCD EoS)

2) ,chemistry' of ,initial state' of QGP: number of q, qbar, g

3) ,energy balance⁴ , i.e. the fraction of mean-field quark and gluon potentials U_q , U_g from the energy density ε

LUND string mode

II. Realization of the initial QGP stage from DQPM in the PHSD: by dissolution of pre-hadrons (keep ,leading' hadrons!) into massive colored quarks (and gluons) + mean-field energy

 $B \rightarrow qqq, \quad \tilde{m} \rightarrow q\bar{q}, \quad (q\bar{q}) \Rightarrow g \quad \forall \quad U_q, U_g$

→ allows to keep initial non-equilibrium momentum anisotropy !

W. Cassing, E. Bratkovskaya, PRC 78 (2008) 034919; NPA831 (2009) 215; W. Cassing, EPJ ST 168 (2009) 3 22

II. Partonic phase - QGP:

Propagation of quarks and gluons (= ,dynamical quasiparticles') with off-shell spectral functions (width, mass) defined by the DQPM in self-generated mean-field potential for quarks and gluons U_q, U_g

□ EoS of partonic phase: ,crossover' from lattice QCD (fitted by DQPM)

□ (quasi-) elastic and inelastic parton-parton interactions: using the effective cross sections from the DQPM

• (quasi-) elastic collisions: $q+q \rightarrow q+q$ $g+q \rightarrow g+q$ $q+\overline{q} \rightarrow q+\overline{q}$ $g+\overline{q} \rightarrow g+\overline{q}$ $\overline{q}+\overline{q} \rightarrow \overline{q}+\overline{q}$ $g+g \rightarrow g+g$ • inelastic collisions: (Breight-Wigner cross sections) $\left\{\begin{array}{c} q+\overline{q} \rightarrow g \\ g \rightarrow q+\overline{q}\end{array}\right\}$ $q+\overline{q} \rightarrow g+g$ $g \rightarrow q+\overline{q}$ $g \rightarrow g+g$ $g \rightarrow g+g$ $g \rightarrow g+g$

III. PHSD - basic concept

III. <u>Hadronization</u> (based on DQPM):

massive, off-shell (anti-)quarks with broad spectral functions hadronize to off-shell mesons and baryons or color neutral excited states - ,strings' (strings act as ,doorway states' for hadrons)

 $g \rightarrow q + \overline{q}, \quad q + \overline{q} \leftrightarrow meson \ (' string ')$ $q + q + q \leftrightarrow baryon \ (' string ')$

• Local covariant off-shell transition rate for q+qbar fusion $\begin{array}{l} & \longrightarrow \\ & \blacksquare \\ \hline & \blacksquare \\ \hline & \frac{dN^{q+\bar{q}\to m}}{d^4 x \ d^4 n} = Tr_q Tr_{\bar{q}} \ \delta^4(p-p_q-p_{\bar{q}}) \ \delta^4\left(\frac{x_q+x_{\bar{q}}}{2}-x\right) \ \delta(flavor,color) \end{array}$

$$\cdot N_q(x_q, p_q) N_{\bar{q}}(x_{\bar{q}}, p_{\bar{q}}) \cdot \omega_q \rho_q(p_q) \cdot \omega_{\bar{q}} \rho_{\bar{q}}(p_{\bar{q}}) \cdot |M_{q\bar{q}}|^2 W_m(x_q - x_{\bar{q}}, p_q - p_{\bar{q}})$$

N_j(x,p) is the phase-space density of parton j at space-time position *x* and 4-momentum *p W_m* is the phase-space distribution of the formed ,pre-hadrons' (Gaussian in phase space)
 |M_{qq}|² is the effective quark-antiquark interaction from the DQPM

Strict 4-momentum and quantum number (flavour, color) conservation

IV. <u>Hadronic phase:</u> hadron-string interactions – off-shell HSD

QGP in equilibrium: Transport properties at finite (T, μ_q): η/s

,Bulk' properties in Au+Au

t = 0.15 fm/c

b = 2.2 fm – Section view

t = 2.55 fm/c

Au+Au @ 35 AGeV

b = 2.2 fm - Section view

t = 5.25 fm/c

Au+Au @ 35 AGeV

b = 2.2 fm - Section view

t = 6.55001 fm/c

b = 2.2 fm - Section view

t = 10.45 fm/c

b = 2.2 fm – Section view

- Quarks (23)
- Gluons (3)

Stages of a collision in PHSD

t = 13.55 fm/c

t = 23.0999 fm/c

Distribution in rapidity – Au+Au, 200 GeV

Distribution in $p_T - Au + Au$, 200 GeV

Non-equilibrium dynamics: description of A+A with PHSD

PHSD provides a good description of ,bulk' observables (y-, p_T -distributions, flow coefficients v_n , ...) from SIS to LHC

Time evolution of the partonic energy fraction vs energy at midrapidity

□ Strong increase of partonic phase with energy from AGS to RHIC

❑ SPS: Pb+Pb, 160 A GeV: only about 40% of the converted energy goes to partons; the rest is contained in the large hadronic corona and leading particles
 ❑ RHIC: Au+Au, 21.3 A TeV: up to 90% - QGP

W. Cassing & E. Bratkovskaya, NPA 831 (2009) 215 V. Konchakovski et al., Phys. Rev. C 85 (2012) 011902

Traces of QGP in observables

Central Pb + Pb at SPS energies

Central Au+Au at RHIC

PHSD gives harder m_T spectra and works better than HSD (wo QGP) at high energies – RHIC, SPS (and top FAIR, NICA)

□ however, at low SPS (and low FAIR, NICA) energies the effect of the partonic phase decreases due to the decrease of the partonic fraction

W. Cassing & E. Bratkovskaya, NPA 831 (2009) 215 E. Bratkovskaya, W. Cassing, V. Konchakovski, O. Linnyk, NPA856 (2011) 162

In-medium effects in hadronic observables

HADES data 2017 vs transport models

- Inclusion of repulsive KN potential reduces yield and <Apart> dependence
- □ Models w/o potential do not match low pt spectra
- □ Better description of kaon spectra with KN potential

***** Figures from the talk by Heidi Schuldes at QM-2017

Chiral symmetry restoration in heavy-ion collisions

Talk by Alessia Palmese

Electromagnetic probes of the QGP and in-medium effects: dileptons and thermal photons

Dilepton sources

! Advantage of dileptons:

additional "degree of freedom" (M) allows to disentangle various sources

Dileptons at SIS energies - HADES

HADES: dilepton yield dN/dM scaled with the number of pions $N_{\pi 0}$

Dominant hadronic sources at M>m $_{\pi}$:

- η, Δ Dalitz decays
- NN bremsstrahlung
- direct ρ decay

> ρ meson = strongly interacting resonance strong collisional broadening of the ρ width

• In-medium effects are more pronounced for heavy systems such as Ar+KCl than C+C • The peak at M~0.78 GeV relates to ω/ρ mesons decaying in vacuum

Dileptons at SIS energies: A+A vs. N+N

• ratio of AA/NN spectra (scaled by $N_{\pi 0}$) after subtracted η contribution

Strong enhancement of dilepton yield in A+A vs. NN is reproduced by HSD and IQMD for C+C at 1.0, 2.0 A GeV and Ar+KCI at 1.75 A GeV

Dileptons at SIS (HADES): A+A vs NN

□ Two contributions to the enhancement of dilepton yield in A+A vs. NN

1) the pN bremsstrahlung which scales with the number of collisions and not with the number of participants, i.e. pions;

2) the multiple Δ regeneration –

dilepton emission from intermediate Δ 's which are part of the reaction cycles $\Delta \rightarrow \pi N$; $\pi N \rightarrow \Delta$ and $NN \rightarrow N\Delta$; $N\Delta \rightarrow NN$

□ Enhancement of dilepton yield in A+A vs. NN increases with the system size!

E.B., J. Aichelin, M. Thomere, S. Vogel, and M. Bleicher, PRC 87 (2013) 064907

Dileptons at SIS (HADES): Au+Au

pN bremsstrahlung

E.B., J. Aichelin, M. Thomere, S. Vogel, M. Bleicher, PRC 87 (2013) 064907

Lessons from SPS: NA60

Dilepton invariant mass spectra:

NA60: Eur. Phys. J. C 59 (2009) 607

□ Inverse slope parameter T_{eff}:

spectrum from QGP is softer than from hadronic phase since the QGP emission occurs dominantly before the collective radial flow has developed

PHSD: Linnyk et al, PRC 84 (2011) 054917

Message from SPS: (based on NA60 and CERES data)

Low mass spectra - evidence for the in-medium broadening of ρ-mesons
 Intermediate mass spectra above 1 GeV - dominated by partonic radiation

3) The rise and fall of T_{eff} – evidence for the thermal QGP radiation

4) Isotropic angular distribution – indication for a thermal origin of dimuons

Dileptons at RHIC: STAR data vs model predictions

Message: STAR data are described by models within a **collisional broadening** scenario for the vector meson spectral function + **QGP**

Dileptons from RHIC BES: STAR

Message:

• BES-STAR data show a constant low mass excess (scaled with $N(\pi^0)$) within the measured energy range

 PHSD: excess increasing with decreasing energy due to a longer ρ-propagation in the high baryon density phase

Good perspectives for future experiments – CBM(FAIR) / MPD(NICA)

Dileptons at NICA/FAIR energies: predictions

Relative contribution of QGP versus charm increases with decreasing energy! Good perspectives for NICA!

^t Dynamical description of charm degrees of freedom in the PHSD (T. Song, 2015)

Chiral magnetic effect and evolution of the electromagnetic field in relativistic heavy-ion collisions

Talk by Vadim Voronyuk

Cluster and hypernuclei formation within PHQMD+FRIGA

Talks by Jörg Aichelin and Viktar Kireyev

Outlook

- How to describe a first-order phase transition in transport models?
- How to describe parton-hadron interactions in a ,mixed' phase?

Physics at NICA & BM@N

NICA & BM@N energies are well suited to study dense and hot nuclear matter :

- a phase transition to QGP
- in-medium effects of hadrons
- chiral symmetry restoration

Way to study:

Experimental energy scan of different observables in order to find an ,anomalous' behavior by comparison with theory

Dynamical models of HIC!

Thanks to:

GOETHE

UNIVERSITÄT FRANKFURT AM MAIN

Helmholtz International Center

HGS-HIRe for FAIR

für Bilduna

und Forschung

Deutsche

DAAD

Forschungsgemeinschaft

Bundesministerium

FIAS Frankfurt Institute

GSÍ

PHSD group -2017

GSI & Frankfurt University Elena Bratkovskaya Pierre Moreau Andrej Ilner Giessen University Wolfgang Cassing Thorsten Steinert Alessia Palmese Eduard Seifert Taesoo Song

External Collaborations

SUBATECH, Nantes University: Jörg Aichelin Christoph Hartnack Pol-Bernard Gossiaux Marlene Nahrgang

> Texas A&M University: Che-Ming Ko

JINR, Dubna: Viacheslav Toneev Vadim Voronyuk

Valencia University: Daniel Cabrera

Barcelona University: Laura Tolos Angel Ramos

> Duke University: Steffen Bass

JUSTUS-LIEBIG-

Universitat Autònoma de Barcelona

