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Plan:
• Phenomenological  description of   phase 

transitions. 
• Hydrodynamical description of I order phase 

transition (on example of the hadron-quark  and 
hadron liquid-gas I order phase transitions). 
Demonstration of important role of non-zero 
viscosity and thermal conductivity.

• Liquid-gas or/and a scalar field condensation?



Phase Diagrams
Water and Nuclear Matter

Low density,low T: HIC (liquid-gas); 
excited nuclei (high spin, pairing); high density, low T: SN,NS: (NN-pairing, π,K,ρ-
condensates; CSC, quarkyonic); high T HIC: (chiral restoration, deconfinement), CEP

Crossover;   

I order tr.

cond

various phases

Supernova
CSC fluct.

NICA,

RHIC?

Variety of phases: 12 crystalline,
3 glass, liquid, vapor, CEP

Chapline et al. (2007)

-CEP

Mixed
phase

Quarkyonic?

NICA,
FAIR



Landau Phenomenological 
Description of Phase Transitions

Simplest case: one order parameter.
Expand free energy in Φ, grad. Φ,
and then coefficients, in T-Tcr near critical point:

Either cubic or linear term can be eliminated by the shift of the

order parameter. 
II order phase transition:

I order phase transition:
F= - α2(T-Tcr)2/4c, Φ2~ T-Tcr,

Specific heat Cv has finite value in crit. point 

a =α (T-Tcr ),

Φ has finite value,

near critical point

(usually b is put 
zero)

h0



Fluctuation region near Tcr
(thermodynamical treatment)

Ginzburg criterion: W~exp(-δF(T)Vfl/T),
energy loss δ FMF~ α2(T-Tcr)2/c, 

in minimal volume Vfl ~l03 , l0~1/(Tcr-T)1/2 

is coherence length. 

At T~Tfl the fluctuation formed in a minimal volume ~l03

is probable (W~1). Fluctuations are dominant for T 
near Tcr , |Tcr –Tfl |/Tcr <1 . Fl. region  is estimated by
Ginzburg number Gi = |Tcr –Tfl |/Tcr 

in clean metalic supercond. Gi ~10-8, fl. region is narrow , in He4, quark-

hadron and hadron liquid-gas phase tr.  (strong interaction) Gi ~1, fl.
region is broad

Energy variance diverges in critical point.



Dynamical description 

deviation from equilibrium  is proportional to a thermodynamical force

in condensed matter there always exist slowly dissipating modes:

a0=0 for conserved order parameter (like entropy)
a1 =0 for non-conserved order parameter (like density)

is expanded in gradients

+ white noise



Hydrodynamics of the first order 
phase transition:

V.Skokov, D.V. , arXiv 0811.3868, JETP Lett. 90 (2009) 223; 
Nucl. Phys. A828 (2009) 401; A847 (2010) 253.

We solve the system of non-ideal hydro equations describing non-
trivial fluctuations (droplets/bubbles, aerosol) in d=2 space +1 time 
dimensions numerically for van der Waals-like EoS, and for 
arbitrary d in the vicinity of the critical point  analytically.



Non-ideal non-relativistic 
hydrodynamics

In collective processes u is  usually small, 
therefore in analytical treatment we neglect u2 terms 

the less viscous the fluid is, the 
greater its ease of movement

The reciprocal of thermal 
conductivity is thermal resistivity



EoS and Constant entropy trajectories

- - - isothermal spinodal (ITS), - . - . - adiabatic spinodal (AS),   
Maxwell construction

Gi~1

SV
OL

AS,
region of instability

in ideal hydro

Tmax =0.6 Tcr for van der Waals EoS

ITSSV
●CEP



I order phase transition
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Near critical point:    

From Navier-Stokes and continuity equations
neglecting u2 terms: viscosities

See D.V. Phys.Scripta 47 (1993) 333 cf. Landau Eq.

neglecting u: T ∂s/ ∂ t = κ Δ T, s - is entropy density

δ F / δ ρ

ρ=mn, m is baryon mass, ρr is near ρcr

+ white noise

t T ~ R2 cv / κ



Peculiarities of hydro- description
Eq. is the 2-order in time derivatives -- beyond the standard 

Ginzburg-Landau description where:

However for a produced fluctuation two initial conditions 
should be fulfilled

initial stage of fluctuation dynamics is not described in 
Landau approximation; at large t one can use  the 
Landau approximation.

- thermodynamical force



typical time for  heat transport

for H-QGP phase transition Rfog~ 0.1-1 fm, for liquid-gas ~1-10 fm, 

R fog

Heat transport stage

t ρ > t T for  R (t) < R fog : Density evolution  stage

t T > t ρ for  R (t) > R fog :

-- typical seed size at which t ρ = t T

Thermal conductivity effects should be incorporated in hydro simulations of HIC

typical time for  density  fluctuation: t ρ ~ R   (constant velocity)
R (t) is the size of evolving seed

t T ~ R2 cv / κ , cv is specific heat density

We introduce

(isothermal)

Seeds with R~ R fog   are accumulated with passage of time:                fog stage

Qualitative analysis and rough estimates
Dynamics is controlled by the slowest mode



Dimension-less equation of motion, typical scales 

In dimensionless variables

processes  in the vicinity of the  critical point prove to be very slow

viscosities



Solution in the metastable region 

d-dimensionality of space (d=1, or,2,or 3), ε«1, ε>0:  

Critical radius:

δF/δψ F
ξcr



η/s ~1/4π:

Baryon-rich matter: η/s did not appear in  eqs of motion for fluctuations

for H-QGP phase transition:  β~0.02-0.2 , even for 

Effectively very viscous fluidity of density fluctuations in 
the course of the phase transitions in HIC!  

Dynamics of the density mode is controlled by “inertial” parameter β, entering  with the 
second derivative in time,  expressed in terms of the surface tension and viscosity

The larger viscosity and the smaller surface tension, 
the effectively more viscous (inertial) is the fluidity of seeds. 

β<<1   effectively viscous fluidity;           β >>1 almost perfect fluidity

Baryon-less matter: Flow-experiments at RHIC  indicate on very low viscosity
Conformal ADS/CFT theories show minimum η/s ~1/4π:

for liquid-gas phase transition β~0.01;

σ0 -surface tension for T<<Tc



(Tcr –T)/Tcr =0.15; Tcr=162 MeV; L=5 fm; β =0.2

Hadron-QGP phase transition: droplet/bubble evolution from metastable phases

R<RcrR>Rcr

droplet

For t ρ >> t T

t=5L/c=25 fm/c,
under-critical 
seeds dissolve 
more rapidly, 
overcritical-grow 
slowly



Change of the seed shape with time

Initially anisotropic droplet slowly acquires spherical form β =0.1<<1

Iso-lines of the density n/n    with increment 0.25cr



At CEP and on  isothermal spinodal  (f
0
=-1) normalized variance of 

particle number (volume) diverges (u
T

2 = 0),

Thermodynamical fluctuations of conserved charges

Sasaki, Friman, Redlich PRL99 (2007): 

scalar Landau parameter



Peculiarities of fluctuations in HIC 

● finite size effects: 

effectively reduced dimensionality: near  CEP :

2d if coherence length l ~1/|T
cr

-T|1/2 fulfills inequalities
R
║

> l >R
┴

, 

1d -for R
┴ 

>l >R
║

, 

0 d for l > R

In a narrow vicinity of Tc fluctuations behave as  for d<3

● critical slowing down (not enough time for critical thermal fluctuations 
to be developed)



Instabilities in spinodal region

From equations of non-ideal hydro:

aerosol of bubbles and droplets (dynamical mixed phase)

are speeds of sound



Three solutions
For small momenta:

Density mode

Thermal mode

in isothermal spinodal region, uT
2 <0, us

2 >0;             thermal mode γ3 is unstable 
in adiabatic spinodal region, us

2 <0 , uT
2<0; 

thermal and density modes γ2 , γ3  are unstable

with an increase of momentum situation changes



Limit of large thermal conductivity
instability arises for the density mode (at finite momentum!) , 
when trajectory crosses isothermal spinodal line

Far from critical point  fluctuations grow more rapidly 
–effect of warm Champagne

amplitude of the growing modes
for most rapidly
growing modes:

β=0.1 dash line, β=10 solid line 

Rm~1/pm

t=2L=10 fm (0.15 / δ Ť)Here δ Ť=(Tcr –T)/Tcr =0.15; Tcr=162 MeV,



Limit of small thermal conductivity
Instability arises when trajectory crosses isothermal spinodal line, but now for 
the thermal mode

Limit of κ =0 (like in ideal hydro. calculations) is special:
no thermal mode

Instability arises for the density mode, but only when trajectory crosses
adiabatic spinodal line

Solution is similar to that for the density modes at large κ, but now the entropy per 
baryon is fixed rather than the temperature.

ideal hydro (at least without taking of special care) cannot correctly 
describe dynamics of the first-order phase transition. 



Numerical simulations for conserved order parameter in Ginzburg-Landau 
approach 





Spinodal instability

Dynamics in spinodal 
region. 

Blue – hadrons, 
Red – quarks. 



Tcr calculated in thermal models might be significantly higher than the
value which may manifest in fluctuations in actual HIC

Heat transport effects play important role

Anomalies in thermal fluctuations near CEP (which are under extensive 
discussion)  may have not sufficient time to develop
Effective system dimensionality for description of fluctuations near CEP 
might be <3

the larger viscosity and the smaller surface tension 
the effectively more viscous is the fluidity 

Effects of spinodal decomposition can be easier observed via fluctuation effects 
since they require a shorter time to develop 

Since in reality κ is not zero, spinodal instabilities start to develop when the 
trajectory crosses the isothermal spinodal line rather than the adiabatic one as 
it were in ideal hydro, i.e. at essentially higher T. This favors observation of 
manifestation of spinodal decomposition in the Q-H transition in HIC



Liquid-gas spinodal instability vs.  
a  scalar field condensation (?)   

Kolomeitsev, Voskresensky., Eur. Phys. J. A (2016) 52: 362



Particle-hole interaction in Fermi liquid

interaction amplitude (low T)

Lindhard function

spectrum of low-lying excitations in
the scalar channel (k)- zero sound modes

scalar channel zeroth harmonics

f
0

may be slightly momentum dependent  quantity 



Scalar Landau parameters f0 (k=0) , f1 (k=0) in 
nuclear matter 

f
0

< - 1, Pomeranchuk instability  region

f0 < - 1 remains for T<<E F



Stability of Fermi liquid

Pomeranchuck conditions for stability of the Fermi liquid 
with respect of small perturbations

I.Ia. Pomeranchuk, Soviet Phys. JETP 35 (1958) 524.

For the scalar channel

0th harmonics of the scalar Landau parameter
are related to the incompressibility 

Isospin symmetric nuclear matter is unstable
for  n1< n <n2 < n0

The zero-sound mode is unstable:

The first sound is unstable

speed of sound

stableunstable



Bosonisation of the interaction
Massive boson or we may use 
Hubbard-Stratonovich transformation:

simplest form of the condensate field

minimum energy is realized for
a static condensate

equation of motion for the static field

For f 
0

<-1



1. For a given energy per particle

2. Mean-field energy with condensate (kc=0)

3. self-consistent Landau parameter

4. renormalized Landau parameter

5. reconstructed full energy per particle

6. limit                 then

meta-stable state

Application to isospin-symmetric nuclear matter

new minimum

finite system A=125



consider a peripheral nucleus-nucleus (A+A) collision in the frame associated with 
one of the nuclei (the target frame).

In peripheral collisions  in a certain region of impact parameter  first sound modes might 
be stable (no liquid-gas transition) but zero sound modes might be  unstable  

condensate of scalar modes 

Peripheral collisions



Spectra of scalar excitations in Fermi liquid are considered

Local 4-fermion interaction is bosonized and the effective Lagrangian for         
the scalar excitations is constructed

It is shown that the Pomeranchuck instability may lead to 
a condensation of scalar quanta.

In the presence of condensate instabilities are removed

Reconstruction of the equation of state for 
the isospin-symmetric nuclear matter is analysed. 

New (meta-)stable state is shown to be possible at small densities

In peripheral collisions instability may appear already for f0<-1/2



At NICA energies in HICs one may hope to 
observe non-monotonous behavior of different 
observables due to manifestation of non-trivial 
fluctuation  effects especially of spinodal
decomposition at I order hadron-quark  phase 
transition in some collision energy interval and 
might be of scalar field condensation,  e.g. in 
peripheral collisions.

Conclusion:


