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Introduction
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QQ̄ interaction

Static color charges are useful probes of the properties of
strongly interacting matter.

� Low temperatures: the Cornell potential

VQQ̄ = −αr + σr + O(
1

m2 )

describes the confining properties of the medium and the
spectrum of heavy bound states

� High temperatures: interaction screened by the medium in
the Quark-Gluon Plasma, dissociation of heavy quark
bound states [ Matsui and H. Satz, 1986]



5

QCD phase diagram
Screening effects can be influenced by external parameters
such as chemical potential or magnetic fields
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QQ̄ interaction on the lattice

At finite temperature T , correlator
between Polyakov loops

L(~x) =
1

Nc
Pe−ig

∫ 1/T
0 A0(~x,τ)dτ

CLL†(~x , T ) = 〈TrL(~0)TrL†(~x)〉

can be used to extract the free energy of a static QQ̄ pair

FQQ̄(~r , T ) = −T log CLL†(~x , T )

for a single quark
2FQ(T ) = −T log |〈L〉|2
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LQCD at finite µB

Introducing naively a finite baryon chemical potential µB on the
lattice causes the so-called sign problem

Our approach: imaginary chemical potential
� perform MC simulations with µB = iµB,i
� degenerate quark chemical potentials µf ,I = µI = µB,I/3
� introduced in the Dirac operator attaching suitable phases

to temporal gauge links
� analytic continuation to real values
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Imaginary µB phase diagram

At imaginary µB,I = 3µI the partition function of the system with
fermions is 2π/3 periodic in µI/T

Charge-conjugation recovered for µI = (2k + 1)/(3πT ) at low
temperatures but spontaneously broken above TRW ' 200MeV.



9

Screening masses
at finite density
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Definition of the masses

Naive approach: Debye masses (inverse screening length) from
the pole in the gluon self-energy propagator at leading order

mE
D =

(
NC
3 +

Nf
6

)1/2
gT +O(g2T )

� mE
D is the "electric" mass

� unscreened "magnetic" field (at this order) mB = 0

But at higher orders perturbation theory breaks down due to
non-perturbative contributions of magnetic gluons

[Nadkarni ’86]
� at small r � (g2T )−1 electric gluons dominates
� at larger r & (g2T )−1 the magnetic contribution is no longer

negligible
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Non-perturbative masses

Another approach needed: study the large distance behaviour
of a suitable gauge-invariant correlator in high T regime

[Nadkarni ’86, Arnold and Yaffe ’95, Braaten and Nieto ’94]

Consider the correlator between Polyakov loops

CLL†(~r , T ) = 〈TrL(~0)TrL†(~r)〉

and look at its decay
� with correlation length 1/mE dominant at small r

CLL†(~r , T ) ∼ e−mE (T )r/r

� with length 1/mM at larger distances

CLL†(~r , T ) ∼ e−mM(T )r/r
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Magnetic and electric correlators

How we can discern the two contributions? Using symmetries to
separate the electric and magnetic terms

[Arnold and Yaffe ’95, Maezawa et al. ’10, Borsányi et al. ’15]

Idea:
� Using Euclidean time-reversal Ai(~r , τ) and A0(~r , τ) are, respectively,

even and odd, hence

LM = (L + L†)/2 LE = (L− L†)/2

receive contributions only from magnetic or electric sectors
� Further decompose using charge conjugation L→ L∗

LM± = (LM ± L∗M)/2 LE± = (LE ± L∗E )/2
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Magnetic and electric correlators

...and define magnetic and electric correlators as

CM(~r , T ) = 〈TrLM+ (~0)TrLM+ (~r)〉 − |〈TrL〉|2

CE(~r , T ) = 〈TrLE−(~0)TrLE−(~r)〉

Some facts at zero chemical potential:
� Sectors related to the fluctuations in the imaginary plane:

TrLM+ = ReTrL and TrLE− = i ImTrL
� TrLM− = TrLE+ = 0 then no overlap with these sectors
� Expected behaviour at large distances is

CM(~r , T ) ∼ 1
r e−mM(T )r CE(~r , T ) ∼ 1

r e−mE (T )r



14

Magnetic and electric correlators
Some results:

� mE > mM with mE/mM ' 1.5− 2
� masses grow linearly with T
� mE/T ' 7− 8 and mM/T ' 4− 4.5

[Maezawa et al. ’10, Borsányi et al. ’15 (lat), Hart et al. ’00 (EFT)]

Picture from [Borsányi et al. ’15]
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Mixed correlators with chemical potential

when µB 6= 0 charge conjugation symmetry is explicitely broken
–> magnetic and electric sectors are not separate anymore

The correlators to be considered are

CM(~r , T ) = 〈ReTrL(~0)ReTrL(~r)〉 − 〈ReTrL〉2

CE (~r , T ) = 〈ImTrL(~0)ImTrL(~r)〉 − 〈ImTrL〉2

CX (~r , T ) = 〈ReTrL(~0)ImTrL(~r)〉 − 〈ReTrL〉〈ImTrL〉

physical fluctuations diagonalize the matrix(
CM(~r , T ) CX (~r , T )
CX (~r , T ) CE (~r , T )

)

C1,2 =
1
2 (CM + CE )±

[
(CM −CE )2 + 4C2

X

]1/2
associated to two new masses m1 and m2. [Andreoli et al. ’18]
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Method and numerical setup

Idea: at large r the two new correlators go similarly to the
magnetic and electric at µ = 0

C1(~r , T ) ∼ e−m1(T ,µ)r

r C2(~r , T ) ∼ e−m2(T ,µ)r

r

then extract the masses fitting the correlators

Numerical setup:
� Nf=2+1 QCD with rooted staggered fermions + stout
� tree level Symanzic improved gauge action
� 323x8 lattices with four spacings / temperatures above Tc
� four µI/πT between 0 and 1/3
� ∼5000 configurations for each run
� fit correlators with the model above + systematics on range
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Results: correlators

T = 217MeV at µ/πT = 0, 0.32; Picture from [Andreoli et al. ’18]

� At µ = 0 standard hierachy mM < mE and CX ∼ 0
� At µ > 0 there is a mixing CX 6= 0
� Diagonalized correlators C1 and C2 verify the fit ansatz
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Results: correlators

T = 217MeV; Picture from [Andreoli et al. ’18]

� Both the correlators grow with µI
� Less steep decrease <–> smaller correlation lengths
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Results: masses
Diagonalized masses are well described by

m1,2(µB, T )

T = a1,2(T )

(
1 + b1,2(T )

(µB
πT

)2)
with b1,2(T ) ∼ b ∼ const for both masses.

� masses increase with real chemical potential
� mass ratio constant with µ (within errors)

Picture from [Andreoli et al. ’18]
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Results: near the RW transition
At µB/πT = 1 charge conjugation is spontaneously broken for
T > TRW , while recovered below

� Above TC the correlators are reflected about 2π/3
� Below TC we can keep the magnetic CM and electric CE

correlator definitions
� Hierarchy inverted, ImTrL order parameter of RW
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other extreme conditions: magnetic field
a comparison: screening masses with external constant |e|B

� external parameter increases the masses
� effect larger approaching TC
� compatible with decreasing TC due to B

Picture from [Bonati et al. ’17]
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Static quark free energy
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Static quark free energy

The free energy FQ of a single quark is given by

2FQ(T ) = −T log |〈L〉|2

i.e. the asymptotic value of the Polyakov loop correlator.

The quantity we measure is

∆FQ(T , µB, β)

T =
FQ(T , µB, β)− FQ(T , 0, β)

T

= − log

(
|〈TrL〉(T , µB, β)|
|〈TrL〉(T , 0, β)|

)
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Results: free energy

� chemical potential enhances deconfinement
� FQ decreases with µB, good description with

|〈TrL〉(T , µB)|
|〈TrL〉(T , 0)| = exp

(
−2∆FQ(T , µB)

T

)
= 1−χQ,µ2

B

(µB
T
)2

+O
(

(µB/T )4
)
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Computing the curvature of FQ
What happens to

χQ,µ2
B

=
∂2FQ/T
∂(µB/T )2

near Tc?

Picture from [Andreoli et al. ’18]
� chemical potential drives the transition
� L is not an order parameter, but modifications arise near the

critical temperature
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Computing the curvature of FQ

PRELIMINARY STUDY OF χQ,µ2B

Two methods:
� analytic continuation: compute |L|2 for several imaginary
µs, then fit and extract the (minus) quadratic term

PROS: simple
CONS: limited range between TC and TRW , systematic on
the fits, simulations with many µs

� Taylor exp.: compute directly the second derivative of FQ

PROS: straightforward
CONS: very noisy and costly observable on the lattice
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Computing the curvature of FQ

A direct computation of the curvature

χQ,µB =
1
2
∂2

∂µ2
|〈TrL(µ, T )〉|2

|〈TrL(0, T )〉|2

leads to

1
2
∂2|〈TrL〉|2
∂µ2 = 〈ReTrLn〉2 + 3〈ReTrL〉2〈n〉2 − 4〈ReTrL〉〈ReTrLn〉〈n〉2

+ 〈ReTrL〉〈ReTrLn2〉 − 〈ReTrLn〉2〈n2〉

+ 〈ReTrL〉〈ReTrLn′〉 − 〈ReTrL〉2〈n′2〉+ (ReTrL↔ ImTrL)

with same µ for the flavours f = u,d, s

n =
∑

f

nf =
∑

f

1
4Tr
(

M−1
f
∂Mf
∂µ

)
n′ =

∂n
∂µ
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Results
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� Data seem to confirm the presence of a peak
� TODO: more data, several volumes and spacings
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Conclusions
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Conclusions

� Extension of the definition of non-perturbative screening
masses in the presence of chemical potential

� Screening properties modified by µB:
masses increase <–> system moves away from the transition

� Single quark free energy grows with µB

� TODO: study of the curvature χQ,µ2
B
of FQ

THANK YOU
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Backup
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check of renormalization of ∆FQ

Chemical potential is not expected to introduce further
divergencies. Checks:

� With and without smearing on Polyakov loops (HYP)
� Different spacings
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Correlators mixing angle

Mixing angle of the correlators is given by

θ(r) =
1
2atan

(
2CX (r)

CM(r)−CE(r)

)

(left: T = 217MeV), Picture from [Andreoli et al. ’18]
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