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Motivation 1
1. Traditionally, the deconfinement in SU(N) color  gluodynamics is described 
2.                                   as the break down of Z(N) symmetry

   However,           such a language is well suited for the phase transitions  
of solid-liquid and solid-solid types.   

!
 Furthermore,        i) hadronic matter at low energy densities is a gas! 

!
    ii)  at high energy densities the QGP is (probably) the most perfect fluid!  

=> we need a language which is suited for GAS-to-LIQUID  phase transition (PT)

Moreover,   i) the language of symmetry breaking does not work for deconfinement 
PT in presence of quarks  

!
ii) the same is true for the chiral symmetry restoration PT, if  

one uses non-vanishing quark masses 

=> we need a language which can be used in presence of quarks with realistic 
masses



Motivation 1I
There are several exactly solvable cluster models for the LIQUID-GAS PT:

Fisher Droplet Model and its successors for ordinary liquid-gas PT 
	
 .	
 M. E. Fisher, Physics 3, 255 (1967)            

Statistical Multifragmentation Model for nuclear liquid-gas PT   
	
 .	
 K. A. Bugaev, M. I. Gorenstein, I. N. Mishustin and W. Greiner, Phys. Rev. 62 (2000) 	
            

Quark-Gluon Bags with Surface Tension Model of deconfinement PT   
	
 .	
 K. A. Bugaev, Phys. Rev. C 76, 014903 (2007)             

	
 K. A. Bugaev, V. K. Petrov and G. M. Zinovjev, Phys. Atom. Nucl. 76 (2013), 341   

However,  to use this framework we need to know  
                                                                                              i) the T-dependence of surface tension of QGP bags 

 ii) the Fisher exponent of QGP bags 

=> Lattice QCD allows us to determine all these quantities and 
to verify whether the known cluster models are suited to study deconfinement PT



Motivation III
These exactly solvable cluster models for the LIQUID-GAS PT 

have different mechanisms of 1-st and 2-nd order PTs!

The MOST IMPORTANT COMMON FEATURE  
of Quark-Gluon Bags with Surface Tension Model (QGBSTM) 

 of deconfinement PT is that above T_cep the surface tension of bags 
must be negative. This feature explains the cross-over existence!  

Furthermore, Lattice SU(2) gluodynamics allows us to study the properties of  the 
2-nd order PT which is expected to exist at (3)CEP  and  at which experimental 
programs of heavy ion collisions planned at RHIC, NICA, FAIR and J-PARK  

are aimed

=> Lattice QCD allows us to verify these models and to readjust them.

	
 K. A. Bugaev, Phys. Rev. C 76, 014903 (2007)     Model with tricritical endpoint (3CEP)

	
 K. A. Bugaev, V. K. Petrov and G. M. Zinovjev, Phys. Atom. Nucl. 76 (2013), 341   

Model with critical endpoint (CEP)



Goals 

Using the cluster approach to LQCD we hope  

3.  to formulate the signals of 2-nd order LIQUID-GAS PT which maybe        

observed  in the experiments and will help to locate (tri)CEP

1.  to give a physical meaning to the concept of QGP bags 

2.  to formulate  appropriate order parameters  of this PT 



Definition of Polyakov loop

SU(2) Polyakov loop L (x) = Continuous Spin 

1. If  L > +|L    | it is spin Up, cut
2. If  L < -|L    | it is spin Down, cut
3. If  L: -|L    | < L <  |L    |  it is aux. Vacuum. cut cut

Similarly to Gattringer  we define spins via cut-off     L_cut
	
  C. Gattringer, Phys. Lett. B 690, (2010) 179. 	
   

	
  C. Gattringer and A. Schmidt, JHEP 1101 (2011) 051.   

Geometrical clusterization

Properties of clusters

New order parameters

Svetitsky-Jaffe conjecture

Deconfinement transitions in (d+1)dimensional SU(N) gluodynamics is
equivalent to magnetic transition in the d-dimensional Z(N) spin system
L. G. Yaffe and B. Svetitsky, PRD, 26, 963, 1982

SU(2) gluodynamics , Ising spin model

Local Polyakov loop - gauge invariant analog of continuous spin

L(x̃) = Tr

N⌧�1Y

t=0

U

4

(x̃, t)

U

4

(x̃, t)� temporal gauge link

defined by gluon field

SU(2) ) L(x̃) 2 [�1, 1], real

Geometrical clusterization and deconfinement phase transition in SU(2) gluodynamics

 existing at each spatial point of latticeL.G. Yaffe, B. Svetitsky, Phys. Rev. D 26 (1982) 963

(will not be discussed)



Geometrical cluster of N same sign spin monomers	

  is surrounded by opposite sign spins or aux Vac: 

Monomer Up  has all neighbors spin Down or auxVac. 

Dimer Up =Two neighboring monomers Up have	

 all other neighbors spin Down or auxVac. 

Definition of Polyakov loop Clusters
Geometrical clusterization

Properties of clusters

New order parameters

Identification of geometrical clusters

Definition of (anti)clusters

|L(x̃)| < L

cut

) auxiliary vacuum

|L(x̃)| � L

cut

) (anti)clusters

L

cut

� vacuum cut� o↵ parameter

C. Gattringer, PLB, 690, 179 (2010)
C. Gattringer, A. Schmidt, JHEP 1101, 051, 2011

(Anti)clusters can be either “spin up"or “spin down"ones
Largest fragment - “anticluster liquid droplet"
Next to largest fragment of opposite sign - “cluster liquid droplet"
Gas of (anti)clusters has the same Polykov loop sign as their “liquids"

Geometrical clusterization and deconfinement phase transition in SU(2) gluodynamics

Geometrical clusterization

Properties of clusters

New order parameters

Identification of geometrical clusters

Definition of (anti)clusters

|L(x̃)| < L

cut

) auxiliary vacuum

|L(x̃)| � L

cut

) (anti)clusters

L

cut

� vacuum cut� o↵ parameter

C. Gattringer, PLB, 690, 179 (2010)
C. Gattringer, A. Schmidt, JHEP 1101, 051, 2011

(Anti)clusters can be either “spin up"or “spin down"ones
Largest fragment - “anticluster liquid droplet"
Next to largest fragment of opposite sign - “cluster liquid droplet"
Gas of (anti)clusters has the same Polykov loop sign as their “liquids"

Geometrical clusterization and deconfinement phase transition in SU(2) gluodynamics



Size Distributions of Clusters I

βc = 2.5115 In thermodynamic limit the critical value is

Geometrical clusterization

Properties of clusters

New order parameters

Size distributions of (anti)clusters
Numerical simulations at 3 + 1 dimensional lattice of size N� = 24, N⌧ = 8

13 values of inverse coupling � 2 [2.31, 3] ) 13 values of physical temperature
vacuum cut-off parameter L

cut

= 0.1 and 0.2
Average over 1600 independent configurations for all � and L

cut

Distributions at low �  �
c

' 2.52 (phase of restored global Z(2) symmetry)

symmetry between (anti)cluster distributions
gas and “liquid"domains are well separated

Distributions at high � > �
c

' 2.52 (phase of broken global Z(2) symmetry)

no symmetry between (anti)cluster distributions
“cluster liquid"evaporates to cluster gas
anticluster gas condensates to “anticluster liquid"
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size (volume) of cluster in lattice units 
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I. ABSTRACT
A novel approach to identify the geometrical (anti)clusters formed by the Polyakov loops of the same sign, to study their properties and to analyze their size distributions in the
lattice SU(2) gluodynamics is developed. Using the suggested approach, we explain the phase transition in SU(2) gluodynamics as a transition between two liquids during
which one of the liquid droplets (the largest cluster of a certain Polyakov loop sign) experiences a condensation, while another droplet (the next to the largest cluster of
opposite Polyakov loop sign) evaporates. The clusters of smaller sizes form two accompanying gases, which behave oppositely to their liquids. The liquid droplet formula is
used to analyze the size distributions of the gas (anti)clusters. It is shown that surface tension of gaseous (anti)clusters can serve as an order parameter of the deconfinement
phase transition in SU(2) gluodynamics. The Fisher topological exponent ⌧ of (anti)clusters is found to have the same value 1.806 ± 0.008, which agrees with an exactly
solvable model of the nuclear liquid-gas phase transition [2] and disagrees with the Fisher droplet model [3], which may evidence for the fact that the SU(2) gluodynamics and
the model [2] are in the same universality class.

II. IDENTIFICATION OF (ANTI)CLUSTERS

I Polyakov loop - gauge invariant analog of continuous spin

L(~x) = Tr

N⌧�1Y

t=0

U4(~x , t) 2 [�1, 1]

|L(~x)| < L

cut

) auxiliary vacuum

|L(~x)| � L

cut

) (anti)clusters

U4(~x , t)� temporal gauge link

L

cut

� vacuum cut � off parameter

I Largest fragment - “anticluster liquid droplet”
I Next to the largest fragment - “cluster liquid droplet”
I Gas (anti)clusters correspond to their “liquids”
I Liquid Droplet Formula for average number of gas (anti)clusters [3]

n

k�k

min

= C exp
⇣
⌫k � �k

2/3 � ⌧ ln k

⌘

C - normalization factor, ⌫ - reduced chemical potential, � - reduced
surface tension coefficient, ⌧ - Fisher topological exponent, k

min

- size
of the minimal (anti)cluster described by the liquid droplet formula

IV. DETERMINATION OF k

min

AND ⌧

I Fit of distributions with four parameters (C, ⌫, �, ⌧ ) for different k
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�nexp
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I Quality of the data description is almost the same for all k

min

� 2

I
k

min

= 2 ) ⌧ is independent on � for both clusters and anticlusters

k

min

= 2 and ⌧ = 1.806 ± 0.008, which agrees with Ref. [2] (⌧ < 2)

III. SIZE DISTRIBUTIONS

Numerical simulations:
I 3 +1 dimensional lattice with N� = 24, N⌧ = 8
I 13 values of inverse coupling � 2 [2.3115, 3]
I vacuum cut-off parameter L

cut

= 0.1 and 0.2
I 1600 independent configurations for all �, L

cut

Distributions for �  �c ' 2.52
I symmetry between (anti)cluster distributions
I gas and “liquid” domains are well separated

Distributions for � > �c ' 2.52
I no symmetry between (anti)cluster distributions
I “cluster liquid” evaporates to cluster gas
I anticluster gas condensates to “anticluster liquid”

V. NEW ORDER PARAMETERS
I Average maximal (anti)cluster

max K =
X

k

k

1+⌧
n

k

.X

k

k

⌧
n

k

� > �
c

: max K (�)� max K (�
c

) = a · (�
c

� �)b

L

cut

type a b �2/dof

0.1 Cl �3056 ± 246 0.2964 ± 0.0284 16.32/4 ' 4.08
0.1 aCl 2129 ± 160 0.3315 ± 0.0269 8.94/4 ' 2.235
0.2 Cl �4953 ± 443 0.3359 ± 0.0289 12.3/3 ' 4.01
0.2 aCl 2462 ± 87.7 0.3750 ± 0.0129 2.068/4 ' 0.517

Critical exponent �: 0.3265 for 3D Ising model [4]
0.335 for simple liquids [5]

I Reduced surface tension coefficient

� > �
c

: �(�)� �(�
c

) = d · (�
c

� �)B

L

cut

type d B �2/dof

0.1 Cl �0.485 ± 0.014 0.2920 ± 0.0012 1.43/4 ' 0.36
0.1 aCl 2.059 ± 0.028 0.4129 ± 0.0077 1.68/4 ' 0.48
0.2 Cl �0.2796 ± 0.0118 0.2891 ± 0.0016 1.11/4 ' 0.28
0.2 aCl 1.344 ± 0.033 0.4483 ± 0.0021 0.66/2 ' 0.33

I Volume fraction

K

tot

=

8
<

:

P
k

kn

(a)Cl

k

, (anti)clusters

1 � K

aCl

tot

� K

Cl

tot

, auxiliary vacuum

Volume fraction of vacuum is independent on �.
Is vacuum incompressible?

VI. CONCLUSIONS

I The approach to study the properties of the Polyakov loop geometrical (anti)clusters is developed.

I It is shown that the deconfinement phase transition can be explained by the condensation/evaporation of large
anticluster/cluster “liquid droplet”, which corresponds to Z(2) global symmetry breaking.

I The size distributions of the gas of (anti)clusters are analyzed on the basis of the Liquid Droplet Model. It is
shown that even dimers are described within this approach with high accuracy.

I The Fisher topological constant ⌧ is found to be 1.806 ± 0.008, which agrees with Ref. [2].

I It is shown that the reduced surface tension of (anti)clusters can serve as an order parameter which is able to
distinguish the phases of restored and broken Z(2) global symmetry.

VII. REFERENCES

1. L.Moretto et al., Phys. Rev. Lett. 94, 202701 (2005).

2. V.Sagun, A.Ivanytskyi, K.Bugaev and I.Mishustin,
Nucl.Phys.A 924, 24 (2014).

3. M.E. Fisher, Physics 3, 255 (1967).

4. M. Campostrini, A. Pelissetto, P. Rossi and E. Vicari,
Phys. Rev. E 65, 066127 (2002).

5. K. Huang, Statistical Mechanics, Wiley, New York, 1987.

Geometrical clusterization in SU(2) gluodynamics and liquid-gas phase transition
A.I.Ivanytskyi1, K.A.Bugaev1, E.G. Nikonov2,E.-M. Ilgenfritz2,

D.R.Oliinychenko1,3,V.V.Sagun1, I.N. Mishustin3, V.K. Petrov1 and G.M. Zinovjev1

1 Bogolyubov Institute for Theoretical Physics, Ukraine
2Joint Institute for Nuclear Research, Russia

3Frankfurt Institute for Advanced Studies, Goethe-University, Germany

I. ABSTRACT
A novel approach to identify the geometrical (anti)clusters formed by the Polyakov loops of the same sign, to study their properties and to analyze their size distributions in the
lattice SU(2) gluodynamics is developed. Using the suggested approach, we explain the phase transition in SU(2) gluodynamics as a transition between two liquids during
which one of the liquid droplets (the largest cluster of a certain Polyakov loop sign) experiences a condensation, while another droplet (the next to the largest cluster of
opposite Polyakov loop sign) evaporates. The clusters of smaller sizes form two accompanying gases, which behave oppositely to their liquids. The liquid droplet formula is
used to analyze the size distributions of the gas (anti)clusters. It is shown that surface tension of gaseous (anti)clusters can serve as an order parameter of the deconfinement
phase transition in SU(2) gluodynamics. The Fisher topological exponent ⌧ of (anti)clusters is found to have the same value 1.806 ± 0.008, which agrees with an exactly
solvable model of the nuclear liquid-gas phase transition [2] and disagrees with the Fisher droplet model [3], which may evidence for the fact that the SU(2) gluodynamics and
the model [2] are in the same universality class.

II. IDENTIFICATION OF (ANTI)CLUSTERS

I Polyakov loop - gauge invariant analog of continuous spin

L(~x) = Tr

N⌧�1Y

t=0

U4(~x , t) 2 [�1, 1]

|L(~x)| < L

cut

) auxiliary vacuum

|L(~x)| � L

cut

) (anti)clusters

U4(~x , t)� temporal gauge link

L

cut

� vacuum cut � off parameter

I Largest fragment - “anticluster liquid droplet”
I Next to the largest fragment - “cluster liquid droplet”
I Gas (anti)clusters correspond to their “liquids”
I Liquid Droplet Formula for average number of gas (anti)clusters [3]

n

k�k

min

= C exp
⇣
⌫k � �k

2/3 � ⌧ ln k

⌘

C - normalization factor, ⌫ - reduced chemical potential, � - reduced
surface tension coefficient, ⌧ - Fisher topological exponent, k

min

- size
of the minimal (anti)cluster described by the liquid droplet formula

IV. DETERMINATION OF k

min

AND ⌧

I Fit of distributions with four parameters (C, ⌫, �, ⌧ ) for different k

min

�2

dof

= (k
max

� k

min

� 3)�1
k

maxX

k=k

min

 
n

th

k

� n

exp

k

�nexp

k

!2

I Quality of the data description is almost the same for all k

min

� 2

I
k

min

= 2 ) ⌧ is independent on � for both clusters and anticlusters

k

min

= 2 and ⌧ = 1.806 ± 0.008, which agrees with Ref. [2] (⌧ < 2)

III. SIZE DISTRIBUTIONS

Numerical simulations:
I 3 +1 dimensional lattice with N� = 24, N⌧ = 8
I 13 values of inverse coupling � 2 [2.3115, 3]
I vacuum cut-off parameter L

cut

= 0.1 and 0.2
I 1600 independent configurations for all �, L

cut

Distributions for �  �c ' 2.52
I symmetry between (anti)cluster distributions
I gas and “liquid” domains are well separated

Distributions for � > �c ' 2.52
I no symmetry between (anti)cluster distributions
I “cluster liquid” evaporates to cluster gas
I anticluster gas condensates to “anticluster liquid”

V. NEW ORDER PARAMETERS
I Average maximal (anti)cluster

max K =
X

k

k

1+⌧
n

k

.X

k

k

⌧
n

k

� > �
c

: max K (�)� max K (�
c

) = a · (�
c

� �)b

L

cut

type a b �2/dof

0.1 Cl �3056 ± 246 0.2964 ± 0.0284 16.32/4 ' 4.08
0.1 aCl 2129 ± 160 0.3315 ± 0.0269 8.94/4 ' 2.235
0.2 Cl �4953 ± 443 0.3359 ± 0.0289 12.3/3 ' 4.01
0.2 aCl 2462 ± 87.7 0.3750 ± 0.0129 2.068/4 ' 0.517

Critical exponent �: 0.3265 for 3D Ising model [4]
0.335 for simple liquids [5]

I Reduced surface tension coefficient

� > �
c

: �(�)� �(�
c

) = d · (�
c

� �)B

L

cut

type d B �2/dof

0.1 Cl �0.485 ± 0.014 0.2920 ± 0.0012 1.43/4 ' 0.36
0.1 aCl 2.059 ± 0.028 0.4129 ± 0.0077 1.68/4 ' 0.48
0.2 Cl �0.2796 ± 0.0118 0.2891 ± 0.0016 1.11/4 ' 0.28
0.2 aCl 1.344 ± 0.033 0.4483 ± 0.0021 0.66/2 ' 0.33

I Volume fraction

K

tot

=

8
<

:

P
k

kn

(a)Cl

k

, (anti)clusters

1 � K

aCl

tot

� K

Cl

tot

, auxiliary vacuum

Volume fraction of vacuum is independent on �.
Is vacuum incompressible?

VI. CONCLUSIONS

I The approach to study the properties of the Polyakov loop geometrical (anti)clusters is developed.

I It is shown that the deconfinement phase transition can be explained by the condensation/evaporation of large
anticluster/cluster “liquid droplet”, which corresponds to Z(2) global symmetry breaking.

I The size distributions of the gas of (anti)clusters are analyzed on the basis of the Liquid Droplet Model. It is
shown that even dimers are described within this approach with high accuracy.

I The Fisher topological constant ⌧ is found to be 1.806 ± 0.008, which agrees with Ref. [2].

I It is shown that the reduced surface tension of (anti)clusters can serve as an order parameter which is able to
distinguish the phases of restored and broken Z(2) global symmetry.

VII. REFERENCES

1. L.Moretto et al., Phys. Rev. Lett. 94, 202701 (2005).

2. V.Sagun, A.Ivanytskyi, K.Bugaev and I.Mishustin,
Nucl.Phys.A 924, 24 (2014).

3. M.E. Fisher, Physics 3, 255 (1967).

4. M. Campostrini, A. Pelissetto, P. Rossi and E. Vicari,
Phys. Rev. E 65, 066127 (2002).

5. K. Huang, Statistical Mechanics, Wiley, New York, 1987.



Size Distributions of Clusters II

Geometrical clusterization

Properties of clusters

New order parameters

Size distributions of (anti)clusters
Numerical simulations at 3 + 1 dimensional lattice of size N� = 24, N⌧ = 8

13 values of inverse coupling � 2 [2.31, 3] ) 13 values of physical temperature
vacuum cut-off parameter L

cut

= 0.1 and 0.2
Average over 1600 independent configurations for all � and L

cut

Distributions at low �  �
c

' 2.52 (phase of restored global Z(2) symmetry)

symmetry between (anti)cluster distributions
gas and “liquid"domains are well separated

Distributions at high � > �
c

' 2.52 (phase of broken global Z(2) symmetry)

no symmetry between (anti)cluster distributions
“cluster liquid"evaporates to cluster gas
anticluster gas condensates to “anticluster liquid"

Geometrical clusterization and deconfinement phase transition in SU(2) gluodynamics

The liquid cluster 
disappeared

Geometrical clusterization

Properties of clusters

New order parameters

Size distributions of (anti)clusters
Numerical simulations at 3 + 1 dimensional lattice of size N� = 24, N⌧ = 8

13 values of inverse coupling � 2 [2.31, 3] ) 13 values of physical temperature
vacuum cut-off parameter L

cut

= 0.1 and 0.2
Average over 1600 independent configurations for all � and L

cut

Distributions at low �  �
c

' 2.52 (phase of restored global Z(2) symmetry)

symmetry between (anti)cluster distributions
gas and “liquid"domains are well separated

Distributions at high � > �
c

' 2.52 (phase of broken global Z(2) symmetry)

no symmetry between (anti)cluster distributions
“cluster liquid"evaporates to cluster gas
anticluster gas condensates to “anticluster liquid"

Geometrical clusterization and deconfinement phase transition in SU(2) gluodynamics

Geometrical clusterization

Properties of clusters

New order parameters

Size distributions of (anti)clusters
Numerical simulations at 3 + 1 dimensional lattice of size N� = 24, N⌧ = 8

13 values of inverse coupling � 2 [2.31, 3] ) 13 values of physical temperature
vacuum cut-off parameter L

cut

= 0.1 and 0.2
Average over 1600 independent configurations for all � and L

cut

Distributions at low �  �
c

' 2.52 (phase of restored global Z(2) symmetry)

symmetry between (anti)cluster distributions
gas and “liquid"domains are well separated

Distributions at high � > �
c

' 2.52 (phase of broken global Z(2) symmetry)

no symmetry between (anti)cluster distributions
“cluster liquid"evaporates to cluster gas
anticluster gas condensates to “anticluster liquid"

Geometrical clusterization and deconfinement phase transition in SU(2) gluodynamics

=> Distributions are rather sensitive to value of β!

Can we describe the gas distributions by the liquid droplet formula? 

size (volume) of cluster in lattice units 



 Liquid Droplet Formula

Free fitting parameters:  C, μ, σ, τ 

Since a priori  k-min is unknown we perform a free fit  of

(anti)cluster size distributions for all k-min    

according to Liquid Drop Model

3

if monomers (clusters with volume k=1) are excluded. This fact takes place for all lattice � or temperatures. It
simply means that model distribution of (anti)clusters (1) is, in fact, valid already for kmin � 2.
Fig. 2 also demonstrates the stability of results. Indeed, the observed variations of C, µ, � and ⌧ for di↵erent
� and kmin are reasonably small, i.e. we do not have variations of a few orders of magnitude. One of the
main assumptions of cluster models [2, 3, 5] is that the Fisher term ⌧ = const does not depend of �. Such
an assumption allows us to find kmin. From Fig. 2 it is seen that all values of ⌧(�) approximately coincide
at kmin = 2 for clusters and at kmin = 2 or 3 for anticlusters. Hence, assuming the universality of the Fisher
topological exponent we conclude that the most adequate description for all data can be achieved for kmin = 2.
In other words, even the dimers can be described within the present model. However, the case kmin = 3 is also
interesting, at least to compare it with kmin = 2 one. Fig. 3 demonstrates how C, µ, � and ⌧ depends on � for
kmin = 2 and 3.
It is important to emphasize that in both of these cases we got ⌧ < 2 for all �, which is unusual for the
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• Data

The table of data contains information about size of clusters k, their occupancies nk and their errors �k. The
distributions of clusters are marked as clp dstr... .dat, whereas for anticlusters they are marked as cln dstr...

.dat. The data used here do not contain occupancies of the largest (anti)cluster.

• Model

Our main goal was to describe the volume distributions of physical clusters built up from positive and negative
Polyakov loops on the basis of the liquid droplet model and to determine the � = a�N� dependence of the
surface tension of these clusters. At this stage of research we wanted to analyze the raw lattice data and to look
at the possible analog of phase transition on the language of liquid-gas phase transition.
The Polyakov loops were taken because of their analogy to spins. For spin systems one can calculate the partition
function over all clusters which are built up from the neighboring spins pointing to the same direction. Some
useful references on the Ising spin models can be found in [1]. The Polyakov loop clusters are defined like for
the spins [1] with the only di↵erence that we introduced the cut-o↵ for the minimal (maximal) value for positive
(negative) Polyakov loops at a given 3-dimensional point. In this calculations we used the cut-o↵ 0.2.
The theoretical expression for occupancy reads as

n

th
k = C exp (µk � �k

 � ⌧ ln k) , (1)

where µ, � and ⌧ are reduced chemical potential (i.e. measured in the units of temperature T ), reduced surface
tension and the Fisher topological exponent respectively. The surface of large cluster is taken into account for
by the parameter  2 (0, 1), whereas C is the normalization coe�cient. In the present analysis  was fixed to
be equal 2/3 due to 3-dimensional nature of clusters.
Usually, Eq. (1) is valid for large clusters (k � 1) within the frame work of Fisher droplet model [2], the
statistical multifragmentation model [3] or other cluster models [4, 5].
This expression does not account either for the finite size of the system nor the presence of the liquid droplet
(complement). Accounting for the complement corrections will be one of our next tasks.
A few typical distributions of clusters and anticlusters (see the figure caption) are shown in Fig. 1. As one can
see the symmetry between positive and negative clusters observed at low values of lattice inverse temperature
� is lost at higher values of �, when one of two largest droplets is melted away (or evaporated).

• 4-parametric fit scheme

The fit procedure corresponds to minimization of �

2
/dof with respect to parameters C, µ, � and ⌧ , where

�

2 =
X

k

(nth
k � nk)2

�

2
k

. (2)

If the vector of parameters p = (C, µ,�, ⌧) is given at some step of iteration procedure, then the next approxi-
mation is defined as

p! p� ✏ ·rp �

2
/dof. (3)

Here rp is the gradient operator, whereas ✏ = diag(✏C , ✏µ, ✏�, ✏⌧ ) is diagonal matrix with positive elements. This
simple scheme corresponds to searches for the local extremum rp�

2
/dof = 0, where �

2
/dof has a minimum.

It is necessary to stress that the obtained result demonstrate a high stability with respect to the random
variation of the initial values of the parameters p. For each minimization search 5 to 6 di↵erent initial values
of the parameters p were taken which led to the same minimum. Only after fulfillment of this criterion the
minimization was stopped. Hence, we are sure that the found minima are the global ones.

k > k-min - 1

normalization bulk surface Fisher index

0.667

μ and σ are reduced chemical potential and surface tension coeff. 



For SU(2) (anti)clusters with volume k ≥ 2  
Fisher Exponent τ=1.806

Very important finding,	

since in exactly solvable models τ defines the universality class: 

Fisher droplet model: for d=2 => τ=2.07;    for d=3 => τ=2.209    

SMM and QGBags with surface tension with 3CEP: τ=1.825±0.025    

 QGBags with surface tension with  CEP: τ >2    

However, at the moment we cannot say that QCD has 3CEP!  



 For fixed τ=1.806 Fit Results For Cut-off  0.2
Geometrical clusterization

Properties of clusters

New order parameters

Reduced chemical potential and surface tension

At � = 2.52 global Z(2) symmetry breaks down )
chemical nonequilibrium between (anti)clusters (µ

Cl

6= µ
aCl

)

Geometrical clusterization and deconfinement phase transition in SU(2) gluodynamics
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TABLE I: Two-loop � dependence of the spatial lattice spacing a

�

(�) given by the ratio to a

�

(�1
c

)

as function of the physical temperature T in units of the critical temperature T

1
c

.

� a

�

(�)/a
�

(�1
c

) T/T

1
c

2.3115 1.7132 0.5837

2.3850 1.4057 0.7114

2.4500 1.1783 0.8487

2.5115 1.0000 1.0000

2.5200 0.9774 1.0231

2.5300 0.9514 1.0510

2.5500 0.9016 1.1092

2.5930 0.8030 1.2453

2.6300 0.7269 1.3757

2.6770 0.6405 1.5612

2.7325 0.5516 1.8128

2.8115 0.4459 2.2423

3.0000 0.2685 3.7244

The �-dependence of physical surface tension defined as

�

phys

A

(�) ⌘ T

�

A

(�)

[ a
�

(�) ]2
= T

1
c

a

�

(�1
c

)

a

�

(�)

�

A

(�)

[ a
�

(�) ]2
, (7)

where in the last step we have used the following relation for the temperature T = T

1
c

a

�

(�

1
c

)

a

�

(�)

[37]. Such a surface tension has the correct physical dimension, but it is more convenient to

use the dimensionless ratio �
A

(�) a
�

(�1
c

)/�
A

(�1
c

)/a
�

(�) because such a ratio, as one can see

from Fig. 9, clearly demonstrates the di↵erent behavior on two sides of the point � = �

1
c

.

Also in this case one does not need to care about an exact value of a coe�cient relating the

volume and the surface of (anti)clusters. To find this ratio from Eq. (7) we used the second

column of Table I.

We would like to stress that in contrast to all known cluster models the physical surface

tension of clusters has a peak at about �

1
c

while the surface tension of anticlusters has a

the inverse coupling constant squared �, it is a good approximation above �

1
c .

Geometrical clusterization

Properties of clusters

New order parameters

Reduced chemical potential and surface tension

At � = 2.52 global Z(2) symmetry breaks down )
chemical nonequilibrium between (anti)clusters (µ

Cl

6= µ
aCl

)

Geometrical clusterization and deconfinement phase transition in SU(2) gluodynamics

Fit quality Normalization

Reduced chem. potential Reduced surface tension

=> Break down of symmetry leads to bifurcations in gas quantities!

Fitting parameters:  C, μ, σ 

=>Any quantity with bifurcation can be used as an order parameter!



 1. Exactly solvable models of surface deformations of physical clusters show that 
EIGEN surface tension coefficient must be negative at high T, since 

Eigen Surface Free Energy:  F = E -TS
To find eigen surface F one has to count for ALL surface deformations together with energy costs

Can be exactly done within Hills and Dales Model for v-volume cluster:  
                                                                                                     K.A.B. et al, PRE 72 (2005)

= + + + + +

Source of Source of SSurface urface EEntropyntropy
Is the surface deformations of the bag of !xed volume v !

One has to count ALL surfaces of the bag of !xed volume v !

Done EXACTLY within the Hills and Dales model for clusters in GCE
"approx. v conserv., small amplitudes of deformations#. K.A.B. et al PRE 72 "2005#

Simplest case "M. Fisher#

Checked on d =2 & 3 dimensional Ising clusters! Moretto et al PRL 94 "2005#,

K.A.B. & Elliott, Ukr. J. Phys. 52 "2007#

mean
cluster

  K.A.B. & Elliott,  UJP 52 (2007)
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Statistical probability of QGP phase

wQ = e
pQ V

T

e
pQ V

T +e
pH V

T

, pQ [pH] – Q [H] phase pressure;

V – system volume; T – temperature

RHIC and NICA are planned to search for the mixed phase,

but there are TWO MIXED PHASES! 1) deconfinement mixed phase;
2) cross-over mixed phase

Di�erence:

1) deconfinement:
concentration changes
at fixed T, µ, pQ

2)cross-over:
concentration changes
by varying T, µ, pQ

wQ = 0 wQ = 1 wQ = 1
2

wQ < 1

⌅(T ) =

�
⌅⇤

⌅⇥

⌅0 ·
⇧

Tc�T
Tc

⌃�

, T ⇤ Tc , �FDM = 1, �SMM = 5
4
, ⌅0 > 0

0, T > Tc .

Also one can find supremum and infimum for surface F and surface partition

⌅0(1 � ⇥LT ) v
2
3 ⌅ F ⌅ ⌅0(1 � ⇥UT ) v

2
3 , ⇥L ⇧ 0.28 T �1

c , ⇥U ⇧ 1.06 T �1
c

Thus, there is NOTHING wrong, if  surface F < 0 above critical T! 
This means only that entropy dominates! 

 and since at high T the surface entropy is huge.  Entropy is 
produced by the hedgehog shapes of clusters.  

	
 K. A. Bugaev et al., Phys. Rev. E 72 (2005); UJP  52 (2007)   
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RHIC and NICA are planned to search for the mixed phase,

but there are TWO MIXED PHASES! 1) deconfinement mixed phase;
2) cross-over mixed phase

Di�erence:

1) deconfinement:
concentration changes
at fixed T, µ, pQ

2)cross-over:
concentration changes
by varying T, µ, pQ

wQ = 0 wQ = 1 wQ = 1
2

wQ < 1

⇤(T ) =

�
⌅⇤

⌅⇥

⇤0 ·
⇧

Tc�T
Tc

⌃�

, T ⇥ Tc , �FDM = 1, �SMM = 5
4
, ⇤0 > 0

0, T > Tc .

Also one can find supremum and infimum for surface F and surface partition

⇤0(1 � ⇥LT ) v
2
3 ⇤ F ⇤ ⇤0(1 � ⇥UT ) v

2
3 , ⇥L ⌅ 0.28 T �1

c , ⇥U ⌅ 1.06 T �1
c
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Negative Surface Tension Should Exist since

Hills and Dales Model of mean cluster:



Negative Surface Tension Should Exist since
 2. Cylindrical bag model for confining color tube also shows that at the moment of 

tube break off its surface tension coefficient MUST BE NEGATIVE.
	
 K. A. Bugaev and G. M. Zinovjev, Nucl. Phys. A 848 (2010)  443   

Due to  negative value of surface tension coefficient there must appear the 
FRACTAL ripples on the surface of color tube. This explains a huge # of dof

However, the ripples must disappear,  when the tube occupies  the whole 
volume and, hence, it leaves no free surface!

Mysterious maximumConsider confining string between static q & anti q of length L and radius R<<L

Its free energy measured from Polyakov loop correlator is 

3

Fstr = ⇥strL

Fcyl(T, L, R) ⇥ � pv(T )�R2L⌥ ⌃⇧ �
thermal

+ ⇥surf(T )2�RL⌥ ⌃⇧ �
surface

+ T ⇤ ln
V

V0⌥ ⌃⇧ �
small

.

Deconfinement means that 
string tension vanishes

Can be rigorously  found by Lattice QCD

Introduction Free energies Checks and Balances Free energy at infinite separation Entropy and Internal Energy Renormalized Polyakov Loop Quarkonia (quenched) Charmonium Summary
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• No medium effects up to 0.3fm
• Strong effects at r > 0.4fm

Coulomb part confining part
L

L

q q-

color anticolor

outer pressure Ptot

Confinement means infinite free 
energy for infinite L 
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• big jump in critical region

• in potential models would mean two or three-fold increase in

effective mass

• food for thought.

4

This state is part of all string configurations, contained in LQCD data

⌅ Assume: we can apply our results to LQCD data with L ⇥ R

For ⇥str ⇤ 0 ⌅ R ⇤ 2 ⇥surf

pv
and lattice entropy is

Slat

L
= � 1

L
⌅Flat

⌅T
⇤ � stot k ⇥strR

⇥surf
= � stot k ⇤k

⇥surfRk�1 ⇤ t��1

⌅ again ⇥surf < 0

⌅ Slat diverges for � < 1 and R ⇤ ⇧

⌅ Slat has a sharp inclease for � < 1 and R ⇤ Rlat < ⇧

Can we verify this result with LQCD data?

Similarly, consider the fall down of Slat due to strong stot decrease

This explains ‘a mysterious maximum in Slat’ (E. Shuryak)

31

In Edward Shuryak lectures  Prog. Part. Nucl. Phys. 62:48-101 (2009)	

A HUGE maximum in color tube entropy S was called Mysterious	

because it was unclear what are the dof with  #dof = exp (S=20) = 485 000 000 



 Surface Free Energy of Anticluster Liquid 
Droplet (shown in blue)

Can be deduced from locations of gaseous clusters (shown in red) 

23

with the growth of maxK
acl

and that in this case the volume of gas of anticlusters decreases

simultaneously with the reduction of maxK
cl

. For � = 3.0 this statement can be nicely

illustrated using the following estimates. Indeed, comparing the relative packing fraction of

the gaseous anticlusters inside the largest cluster ⇢

acl/cl

= V

gas

acl

/maxK
cl

' 0.399 and the

one of the gaseous clusters inside the largest anticluster ⇢
cl/acl

' 0.39, one finds almost the

same values. In addition, an existence of the Swiss Cheese structure would naturally explain

the fact of the fractal dimension of the largest (anti)clusters [6, 34]. Therefore, one should

distinguish between the volume of the largest (anti)cluster and its geometrical size, which

can be essentially larger, than its volume due to presence of the non-native gas. Hence, the

surface free energy of the largest (anti)cluster should have the following form

F

surf

A

= ⌃outer

A

"
maxK

A

+
gX

k

k n

¯

A

(k)

#D

A

�1
D

A

� T�

¯

A

gX

k

k

2
3
n

¯

A

(k) , (11)

where the notation Ā means the summation over the gaseous clusters which are non-native

for the largest (anti)cluster and D

A

is the fractal dimension [47] of the largest cluster of

sort A. The first term on the right hand side accounts for the outer surface of maximal

(anti)cluster containing the non-native gas with the outer surface tension coe�cient ⌃outer

A

,

while the second term on the right hand side of (11) accounts for the surface free energy of

all cavities made by the non-native clusters. Now it is also clear that inside the (anti)clusters

which are smaller than the largest one there may exist the non-native gas, but this problem

requires a separate investigation.

V. SURFACE TENSION COEFFICIENT AS A NEW ORDER PARAMETER

From Figs. 6-9 one can immediately learn that in the phase of unbroken Z(2) symmetry,

i.e. for �  �

1
c

, the behavior of the thermodynamical functions µ
A

, �
A

, C
A

, hk
A

i
gas

, hk
A

i
tot

and maxK
A

for clusters and anticlusters is absolutely identical within the error bars, while

in the phase of broken Z(2) symmetry these functions are entirely di↵erent. Therefore, one

can use the following combination

P

q

=

����
q

acl

� q

cl

q

acl

+ q

cl

���� , (12)

for any of the quantities q
A

2 {µ
A

, �

A

, C

A

, hk
A

i
gas

, hk
A

i
tot

,maxK
A

} as an order parameter

of PT between the phases with unbroken and broken symmetry. We, however, would like

}total geometrical volume of  
liquid anticluster }

total free energy of inner 
gaseous clusters of Polyakov  

loop of other sign

surface tension 
of outer surface

fractal 
dimension

Due to periodic boundary conditions at T >> Tc there is no outer surface for 
anticluster LIQUID  DROPLET!

=> at T >> Tc  the largest droplet (liquid) may have  
                                                                                               NEGATIVE  SURFACE TENSION! 

T >> Tc

A. I. Ivanytskyi,	
 K. A. Bugaev et al.,  Nuclear Physics A 960 (2017) 90;  arXiv:1606.047 [hep-lat]

This is true for T >> T_c, but what about T ≥ T_c, as it was expected?



 Properties of Monomers
Idea: introduce effective volume and surface of monomers and fit their 

multiplicities!
A priori we do not know, if the Liquid Gas Model formula can work… 

5

all the other n-mers of the same spin sign (being smaller in size) are considered as the “gas of

anticlusters”. Similarly, we call the largest n-mers of the opposite sign as a “cluster droplet”,

whereas other clusters of the same sign (which are smaller in size) are considered as a “gas

of clusters”.

The first question which had to be clarified whether or not the monomers could be

described using the same LDM parameterization (3) as for all bigger clusters. In our inves-

tigation we have tried three di↵erent approaches to treat monomers to reveal the best one.

Criterion of the best fit was a �

2
/dof minimality with respect to parameters g

A

, V

A

and S

A

.

The expression for �

2 and dof values consist of two parts which are related to monomers

and all other clusters, as

Include the monomers into fit

�

2
A

=

N

�X

i=1

0

BB@

⇥
A

n

th

k=1 �
A

n

k=1

⇤2

[�
A

n

k=1]2| {z }
monomers

+
k

max

(�)X

k=2

⇥
A

n

th �
A

n

⇤2

[�
A

n]2

1

CCA , (5)

dof = N

�

� 3 +

N

�X

i=1

(k
max

� 2 � 3) =

N

�X

i=1

k

max

� 4N

�

� 3 (6)

i counts for all � values: N

�

is their number

. Here A stands for clusters (A=cl) and anticlusters (A=acl). The quantities �

A

n

k=1 and

�

A

n denote the statistical error in defining the average multiplicity
A

n

k=1 for monomers and

A

n for all other clusters, correspondingly. The estimation of dof in (6) consist of monomers

contribution N

�

�3 and the contribution other clusters k

max

�k

min

�3 with k

min

= 2. Note,

that all parameters for k > 1 were taken from the previous findings [2], including �

2
A

and

dof values.



 Properties of Monomers
6

The minimum of �

2
A

values for monomers were found using the maximum-likelihood

method. At first, for convenience we rewrote Eq. (3) in the following way

Assume ln

�
A

n

th

k=1

�
= ln C

A

+ ln g

A| {z }
correction

+ µ

A

· V

A| {z }
effective V

� �

A

· S

A| {z }
effective S

(7)

parameters C

A

, µ

A

and �

A
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Parameterization of monomer multiplicity with 
 effective volume and effective surface

in order to assure full thermal and chemical equilibrium!
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parameters for monomers presented in table III. As one can see, independent fit

scheme for all types of monomers within the LDM formula (3) gives rather good

description. As was mentioned above the relation between S

A

and ln g

A

stays

approximately equal to 3.0. The physical reason for such a relation needs further

clarification. As will be discussed in Section IV, this could be interpreted as an

induced surface tension of monomers due to their interaction with the medium.

These findings clearly demonstrate a good applicability of such a fit technique

to monomers with the description quality
�

2
A

dof

which is very close to 1, except for

anticlusters with L

cut

= 0.1 (see table II). Such a discrepancy of the fit results

is not new. As was discussed in [2] the number of anticlusters with L

cut

= 0.1

is very small which is due to raw statistics.

TABLE II: The fit parameters of the independent fit of all types of monomers.

data cut � off ln g

A

V

A

S

A

S

A

ln g

A

�

2
A

dof

Anticlusters 0.1 0.30578±0.00103 0.42274±0.00927 0.85643±0.00099 2.80083 1.4685

Clusters 0.1 0.22039±0.00068 0.46265±0.04176 0.70556±0.00179 3.20143 0.8952

Anticlusters 0.2 0.29712±0.00081 0.27362±0.00952 0.84625±0.00115 2.84820 0.9567

Clusters 0.2 0.17568±0.00056 0.99028±0.05024 0.52508±0.00288 2.98878 0.9173

Simultaneous fit of monomers using relation between S

A

and V

A

. Searching

for the relation between fit parameters we found the relation between S

A

and

V

A

plotted on fig. 3. The points on this plot were taken from the previous fit

as the best one. It is seen that for all points except the point which is devoted

to anticlusters for L

cut

= 0.1 the linear dependence is exact. As was previously

mentioned this point stands out from all the rest and need further corrections.

Hence, we suppose that the found relation (9) is precisely fulfilled for all data

sets. From fig. 3 one can clearly see that the approximation below is reproduced

well the existing points.

S

A

= D · V

�0.4
A

, (9)

where D is a new fit parameter. Thus, using such an approximation (9) we could

Total fit quality is good!  This ratio is puzzling since it is about 3!!!

Please mark 
small volume 

and  
small surface 
of monomers!
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As was presented in tables I,II, III the relation between the surface and

degeneracy factor of monomers stays approximately equal to 3.0 in all fit schemes

(see sixth column). Based on this fact we could rewrite expression (7) and

regroup the surface terms as

g

A

is nearly the same for both cut-o↵s and for both types of clusters (±7%)

It seems that the correction of normalization g

A

is redundant!

Then one can get rid of it

ln

�
A

n

th

k=1

�
' ln C

A

+ µ

A

V

A

� S

A

✓
�

A

�
1

3

◆

This finding allow us to conclude that the additional degeneracy factor of

monomers in LDM formula (3) could be interpreted as an induced surface ten-

sion of monomers due to their interaction with the medium. Furthermore, the

new term in surface free energy part of the monomer‘s distribution reduce �

A

value which is related to attraction between the constituents.

V. CONCLUSIONS

In this paper we present three schemes how to treat monomers formed by the

Polyakov loops in lattice formulation of QCD. As a result, the monomer multi-

plicities are reproduced with high quality within the LDM formula which gives

us a possibility to find their surface and volume free energy parts. In addition

a new relation between the surface part and degeneracy factor was found for

all fit techniques. As was discussed, such a result could be interpreted as an

appearance of the induced surface tension of monomers due to their interaction

with the medium. Our analysis of the free energy terms of monomers show that

the surface part play a significant role in critical point inducement at � = 2.520

in SU(2) gluodynamics. This result is fully supported by the findings [15, 16] in

which the first order phase transition is a surface tension induced one.

Acknowledgements. A.I.I., K.A.B., V.V.S. acknowledge a partial financial

support of this work by the National Academy of Sciences of Ukraine and by

the NAS of Ukraine grant of GRID simulations for high energy physics. D.R.O.

 Total Surface Tension of Monomers 

 total surface tension

 For monomer anticlusters the total surface tension > 0 always!

 But for monomer clusters the total surface tension < 0 for β > βc!

1/31/3
 total surface tension < 0  total surface tension < 0

cutoff = 0.1 cutoff = 0.2



 Why Only the Monomer Clusters Have 
Negative Surface Tension? 

 The Hills and Dales Model of mean cluster and Cylindrical Bag Model 
are dealing with Eigen Surface Tension of a separate mean cluster! 

!
However, in a medium the clusters should have an additional Surface Tension 

Induced by the hard-core repulsion between them!

	
 V.V. Sagun, A.I. Ivanytskyi, K.A.B., I.N. Mishustin, Nucl. Phys. A 848 (2010)  443   

 Consider vacuum-like reactions of clusters: L. G. Moretto, K.A.B. et al., PRL 94 (2005) 202701

Repulsion: presence of third party affects the decay/fusion probability of a cluster  
and its liquid droplet!

This is one finite size effect!



 Why Only the Monomer Clusters Have 
Negative Surface Tension? 

 There are cluster reactions due to the presence of third party:

 Moreover, one should remember that reactions change  
the free energy of anticluster liquid!

 In addition to vacuum-like reactions: L. G. Moretto, K.A.B. et al., PRL 94 (2005) 202701

Which create the other finite size effect (kind of attraction)!



 Why Only the Monomer Clusters Have 
Negative Surface Tension? 

=> At the moment there is NO COMPLETE UNDERSTANDING of this fact 
due to an interplay of short range interaction and finite size effects. 

!
!

Working guess: due to smaller volume (<1 lattice units) and  
smaller surface (<<6 lattice units) 

they are least affected by the presence of third party!? 
!
!

=> This direction is open for exploration! 



Fluctuations of  (Anti)Cluster Multiplicities 	

near 2-nd order Phase Transition (PT)

Motivation: Experimental searchers for (Tri)critical Endpoint ((3)CEP) in 
Heavy Ion Collisions, which is expected to have a 2-nd order PT
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I. ABSTRACT
A novel approach to identify the geometrical (anti)clusters formed by the Polyakov loops of the same sign, to study their properties and to analyze their size distributions in the
lattice SU(2) gluodynamics is developed. Using the suggested approach, we explain the phase transition in SU(2) gluodynamics as a transition between two liquids during
which one of the liquid droplets (the largest cluster of a certain Polyakov loop sign) experiences a condensation, while another droplet (the next to the largest cluster of
opposite Polyakov loop sign) evaporates. The clusters of smaller sizes form two accompanying gases, which behave oppositely to their liquids. The liquid droplet formula is
used to analyze the size distributions of the gas (anti)clusters. It is shown that surface tension of gaseous (anti)clusters can serve as an order parameter of the deconfinement
phase transition in SU(2) gluodynamics. The Fisher topological exponent ⌧ of (anti)clusters is found to have the same value 1.806 ± 0.008, which agrees with an exactly
solvable model of the nuclear liquid-gas phase transition [2] and disagrees with the Fisher droplet model [3], which may evidence for the fact that the SU(2) gluodynamics and
the model [2] are in the same universality class.

II. IDENTIFICATION OF (ANTI)CLUSTERS

I Polyakov loop - gauge invariant analog of continuous spin

L(~x) = Tr

N⌧�1Y

t=0

U4(~x , t) 2 [�1, 1]

|L(~x)| < L

cut

) auxiliary vacuum

|L(~x)| � L

cut

) (anti)clusters

U4(~x , t)� temporal gauge link

L

cut

� vacuum cut � off parameter

I Largest fragment - “anticluster liquid droplet”
I Next to the largest fragment - “cluster liquid droplet”
I Gas (anti)clusters correspond to their “liquids”
I Liquid Droplet Formula for average number of gas (anti)clusters [3]
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I Quality of the data description is almost the same for all k
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I
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= 2 ) ⌧ is independent on � for both clusters and anticlusters

k

min

= 2 and ⌧ = 1.806 ± 0.008, which agrees with Ref. [2] (⌧ < 2)

III. SIZE DISTRIBUTIONS

Numerical simulations:
I 3 +1 dimensional lattice with N� = 24, N⌧ = 8
I 13 values of inverse coupling � 2 [2.3115, 3]
I vacuum cut-off parameter L

cut

= 0.1 and 0.2
I 1600 independent configurations for all �, L

cut

Distributions for �  �c ' 2.52
I symmetry between (anti)cluster distributions
I gas and “liquid” domains are well separated

Distributions for � > �c ' 2.52
I no symmetry between (anti)cluster distributions
I “cluster liquid” evaporates to cluster gas
I anticluster gas condensates to “anticluster liquid”

V. NEW ORDER PARAMETERS
I Average maximal (anti)cluster
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0.1 Cl �3056 ± 246 0.2964 ± 0.0284 16.32/4 ' 4.08
0.1 aCl 2129 ± 160 0.3315 ± 0.0269 8.94/4 ' 2.235
0.2 Cl �4953 ± 443 0.3359 ± 0.0289 12.3/3 ' 4.01
0.2 aCl 2462 ± 87.7 0.3750 ± 0.0129 2.068/4 ' 0.517

Critical exponent �: 0.3265 for 3D Ising model [4]
0.335 for simple liquids [5]

I Reduced surface tension coefficient
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cut
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0.1 Cl �0.485 ± 0.014 0.2920 ± 0.0012 1.43/4 ' 0.36
0.1 aCl 2.059 ± 0.028 0.4129 ± 0.0077 1.68/4 ' 0.48
0.2 Cl �0.2796 ± 0.0118 0.2891 ± 0.0016 1.11/4 ' 0.28
0.2 aCl 1.344 ± 0.033 0.4483 ± 0.0021 0.66/2 ' 0.33
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Is vacuum incompressible?

VI. CONCLUSIONS

I The approach to study the properties of the Polyakov loop geometrical (anti)clusters is developed.

I It is shown that the deconfinement phase transition can be explained by the condensation/evaporation of large
anticluster/cluster “liquid droplet”, which corresponds to Z(2) global symmetry breaking.

I The size distributions of the gas of (anti)clusters are analyzed on the basis of the Liquid Droplet Model. It is
shown that even dimers are described within this approach with high accuracy.

I The Fisher topological constant ⌧ is found to be 1.806 ± 0.008, which agrees with Ref. [2].

I It is shown that the reduced surface tension of (anti)clusters can serve as an order parameter which is able to
distinguish the phases of restored and broken Z(2) global symmetry.
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Multiplicities of small clusters (were shown)

size (volume) of cluster in lattice units 



Fluctuations of  (Anti)Cluster Liquid Droplet 
Multiplicity  near 2-nd order PT

βc = 2.5115 In thermodynamic limit the critical value is

βc ~ 2.52 For finite volumes the critical value is

For βc ~ 2.51-2.52 there are strong fluctuations of Polyakov loop sign 
of both liquid droplets! Looks like a mitosis!? 



Scaled Variance of (Anti)Cluster Multiplicities 	

near 2-nd order PT
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ABSTRACT
A novel approach to identify the geometrical (anti)clusters formed by the Polyakov loops of the same sign allows us to study their properties and to analyze their size
distributions in the lattice SU(2) gluodynamics [1]. Using the suggested approach, we explain the phase transition in SU(2) gluodynamics as a transition between two liquids
during which one of the liquid droplets (the largest cluster of a certain Polyakov loop sign) experiences a condensation, while another droplet (the next to the largest cluster of
opposite Polyakov loop sign) evaporates. In contrast to earlier works [2, 3], the properties of smaller clusters, which form two accompanying gases, are also studied. Above
the 2-nd order phase transition one can identify the liquid anticluster droplet as a medium filled by the smaller gluonic bags [1-3]. Here we analyze the fluctuation patterns of
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solvable model of the nuclear liquid-gas phase transition [2] and disagrees with the Fisher droplet model [3], which may evidence for the fact that the SU(2) gluodynamics and
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I Liquid Droplet Formula for average number of gas (anti)clusters [3]
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C - normalization factor, � - reduced chemical potential, � - reduced
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I Quality of the data description is almost the same for all kmin � 2

I kmin = 2 � � is independent on � for both clusters and anticlusters

kmin = 2 and � = 1.806 ± 0.008, which agrees with Ref. [2] (� < 2)

III. SIZE DISTRIBUTIONS

Numerical simulations:
I 3 +1 dimensional lattice with N� = 24, N� = 8
I 13 values of inverse coupling � � [2.3115, 3]
I vacuum cut-off parameter Lcut = 0.1 and 0.2
I 1600 independent configurations for all �, Lcut

Distributions for � � �c � 2.52
I symmetry between (anti)cluster distributions
I gas and “liquid” domains are well separated

Distributions for � > �c � 2.52
I no symmetry between (anti)cluster distributions
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I anticluster gas condensates to “anticluster liquid”
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VI. CONCLUSIONS

I The approach to study the properties of the Polyakov loop geometrical (anti)clusters is developed.

I It is shown that the deconfinement phase transition can be explained by the condensation/evaporation of large
anticluster/cluster “liquid droplet”, which corresponds to Z(2) global symmetry breaking.

I The size distributions of the gas of (anti)clusters are analyzed on the basis of the Liquid Droplet Model. It is
shown that even dimers are described within this approach with high accuracy.

I The Fisher topological constant � is found to be 1.806 ± 0.008, which agrees with Ref. [2].

I It is shown that the reduced surface tension of (anti)clusters can serve as an order parameter which is able to
distinguish the phases of restored and broken Z(2) global symmetry.
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I C. Numerical simulations were done for 13 values of inverse coupling � 2 [2.3115, 3] on 3 +1 dimensional lattice with N� = 24, N⌧ = 8

MULTIPLICITY AND SCALED VARIANCE OF SMALL (ANTI)CLUSTERS AND THEIR LIQUID DROPLETS

I At the vicinity of the 2-nd order phase transition the multiplicity of (anti)cluster n(k) of volume k units and the scaled variance !(k) = �(k)2

<n(k)> (the standard deviation for

(anti)cluster of size k is �(k) =
p

< n(k)2 > � < n(k) >2) of small and medium size (anti)clusters and their droplets demonstrate essentially different behavior.

I Multiplicities of liquid droplets exhibit ⌧mitosis� (above). Strong fluctuations of small clusters at phase transition. �!(k) ⌘ (!(k) � 1) · 103 is similar to n(k) (above).

SKEWNESS AND KURTOSIS OF SMALL (ANTI)CLUSTERS AND THEIR LIQUID DROPLETS

I At the vicinity of the 2-nd order phase transition the skewness �(k) = <n(k)3>�3 n(k) �(k)2�n(k)3

�(k)3 and the kurtosis Kurt = <n(k)4>
�(k)4 of small and medium size (anti)clusters and

their droplets also exhibit different behavior.
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I For � � 2.51 skewness is negative for k = 1, 2-clusters only, while kurtosis negative for k = 1-clusters (above) . �!(k) ⌘ (!(k) � 1) · 103 is similar to n(k) (above).
I Similarly to multiplicities, the skewness and kurtosis of liquid droplets show the ⌧mitosis� near phase transition region (above right).

CONCLUSIONS
I The monomer clusters show strong fluctuations at the 2-nd order phase transition and negative

skewness and kurtosis at and above it. Strong fluctuations are seen within very narrow range of
temperature ±0.003Tc, which makes it hard to detect them experimentally.

I The liquid droplet fluctuations demonstrate highly nontrivial similarity between n(k), �!(k), �
and Kurt which has no explanation yet.
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ABSTRACT
A novel approach to identify the geometrical (anti)clusters formed by the Polyakov loops of the same sign allows us to study their properties and to analyze their size
distributions in the lattice SU(2) gluodynamics [1]. Using the suggested approach, we explain the phase transition in SU(2) gluodynamics as a transition between two liquids
during which one of the liquid droplets (the largest cluster of a certain Polyakov loop sign) experiences a condensation, while another droplet (the next to the largest cluster of
opposite Polyakov loop sign) evaporates. In contrast to earlier works [2, 3], the properties of smaller clusters, which form two accompanying gases, are also studied. Above
the 2-nd order phase transition one can identify the liquid anticluster droplet as a medium filled by the smaller gluonic bags [1-3]. Here we analyze the fluctuation patterns of
(anti)clusters of all sizes near the analog of phase transition in a finite system. The most interesting patterns are found for the monomer clusters and for the liquid droplets of
both signs of Polyakov loop. In particular, the monomer clusters have largest value of scaled variance at the phase transition region and negative skewness and kurtosis at
and above it. At the same time the liquid droplets show bimodal behavior (or a ⌧mitosis�) at phase transition region due to sudden change of the Polyakov loop sign of the
dominant configuration. The region of phase transition is very narrow and this teaches us that it will be very hard to detect such patterns in heavy ion collisions.

II. IDENTIFICATION OF (ANTI)CLUSTERS IN SU(2) GLUODYNAMICS
I A. Definitions: B. Examples of (anti)cluster size distributions:

For infinite lattice the critical coupling is �1
c = 2.5115, while for finite lattice �c ' 2.52
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kmin = 2 and � = 1.806 ± 0.008, which agrees with Ref. [2] (� < 2)
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VI. CONCLUSIONS

I The approach to study the properties of the Polyakov loop geometrical (anti)clusters is developed.

I It is shown that the deconfinement phase transition can be explained by the condensation/evaporation of large
anticluster/cluster “liquid droplet”, which corresponds to Z(2) global symmetry breaking.

I The size distributions of the gas of (anti)clusters are analyzed on the basis of the Liquid Droplet Model. It is
shown that even dimers are described within this approach with high accuracy.

I The Fisher topological constant � is found to be 1.806 ± 0.008, which agrees with Ref. [2].

I It is shown that the reduced surface tension of (anti)clusters can serve as an order parameter which is able to
distinguish the phases of restored and broken Z(2) global symmetry.
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I C. Numerical simulations were done for 13 values of inverse coupling � 2 [2.3115, 3] on 3 +1 dimensional lattice with N� = 24, N⌧ = 8

MULTIPLICITY AND SCALED VARIANCE OF SMALL (ANTI)CLUSTERS AND THEIR LIQUID DROPLETS

I At the vicinity of the 2-nd order phase transition the multiplicity of (anti)cluster n(k) of volume k units and the scaled variance !(k) = �(k)2

<n(k)> (
the standard deviation for (anti)cluster of size k is �(k) =

p
< n(k)2 > � < n(k) >2

) of small and medium size (anti)clusters and their droplets demonstrate essentially different behavior.

I Multiplicities of liquid droplets exhibit ⌧mitosis� (above). Strong fluctuations of small clusters at phase transition. �!(k) ⌘ (!(k) � 1) · 103 is similar to n(k) (above).

SKEWNESS AND KURTOSIS OF SMALL (ANTI)CLUSTERS AND THEIR LIQUID DROPLETS

I At the vicinity of the 2-nd order phase transition the skewness �(k) = <n(k)3>�3 n(k) �(k)2�n(k)3

�(k)3 and the kurtosis Kurt = <n(k)4>
�(k)4 of small and medium size (anti)clusters and

their droplets also exhibit different behavior.
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I For � � 2.51 skewness is negative for k = 1, 2-clusters only, while kurtosis negative for k = 1-clusters (above) . �!(k) ⌘ (!(k) � 1) · 103 is similar to n(k) (above).
I Similarly to multiplicities, the skewness and kurtosis of liquid droplets show the ⌧mitosis� near phase transition region (above right).

CONCLUSIONS
I The monomer clusters show strong fluctuations at the 2-nd order phase transition and negative

skewness and kurtosis at and above it. Strong fluctuations are seen within very narrow range of
temperature ±0.003Tc, which makes it hard to detect them experimentally.

I The liquid droplet fluctuations demonstrate highly nontrivial similarity between n(k), �!(k), �
and Kurt which has no explanation yet.
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ABSTRACT
A novel approach to identify the geometrical (anti)clusters formed by the Polyakov loops of the same sign allows us to study their properties and to analyze their size
distributions in the lattice SU(2) gluodynamics [1]. Using the suggested approach, we explain the phase transition in SU(2) gluodynamics as a transition between two liquids
during which one of the liquid droplets (the largest cluster of a certain Polyakov loop sign) experiences a condensation, while another droplet (the next to the largest cluster of
opposite Polyakov loop sign) evaporates. In contrast to earlier works [2, 3], the properties of smaller clusters, which form two accompanying gases, are also studied. Above
the 2-nd order phase transition one can identify the liquid anticluster droplet as a medium filled by the smaller gluonic bags [1-3]. Here we analyze the fluctuation patterns of
(anti)clusters of all sizes near the analog of phase transition in a finite system. The most interesting patterns are found for the monomer clusters and for the liquid droplets of
both signs of Polyakov loop. In particular, the monomer clusters have largest value of scaled variance at the phase transition region and negative skewness and kurtosis at
and above it. At the same time the liquid droplets show bimodal behavior (or a ⌧mitosis�) at phase transition region due to sudden change of the Polyakov loop sign of the
dominant configuration. The region of phase transition is very narrow and this teaches us that it will be very hard to detect such patterns in heavy ion collisions.

II. IDENTIFICATION OF (ANTI)CLUSTERS IN SU(2) GLUODYNAMICS
I A. Definitions: B. Examples of (anti)cluster size distributions:

For infinite lattice the critical coupling is �1
c = 2.5115, while for finite lattice �c ' 2.52
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I C. Numerical simulations were done for 13 values of inverse coupling � 2 [2.3115, 3] on 3 +1 dimensional lattice with N� = 24, N⌧ = 8

MULTIPLICITY AND SCALED VARIANCE OF SMALL (ANTI)CLUSTERS AND THEIR LIQUID DROPLETS
I At the vicinity of the 2-nd order phase transition the multiplicity of (anti)cluster n(k) of volume k units and the scaled variance !(k) = �(k)2

<n(k)> ( the standard deviation for

(anti)cluster of size k is �(k) =
p

< n(k)2 > � < n(k) >2) of small and medium size (anti)clusters and their droplets demonstrate essentially different behavior.

I Multiplicities of liquid droplets exhibit ⌧mitosis� (above). Strong fluctuations of small clusters at phase transition. �!(k) ⌘ (!(k) � 1) · 103 is similar to n(k) (above).

SKEWNESS AND KURTOSIS OF SMALL (ANTI)CLUSTERS AND THEIR LIQUID DROPLETS

I At the vicinity of the 2-nd order phase transition the skewness �(k) = <n(k)3>�3 n(k) �(k)2�n(k)3

�(k)3 and the kurtosis Kurt = <n(k)4>
�(k)4 of small and medium size (anti)clusters and

their droplets also exhibit different behavior.
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I For � � 2.51 skewness is negative for k = 1, 2-clusters only, while kurtosis negative for k = 1-clusters (above) . �!(k) ⌘ (!(k) � 1) · 103 is similar to n(k) (above).
I Similarly to multiplicities, the skewness and kurtosis of liquid droplets show the ⌧mitosis� near phase transition region (above right).

CONCLUSIONS
I The monomer clusters show strong fluctuations at the 2-nd order phase transition and negative

skewness and kurtosis at and above it. Strong fluctuations are seen within very narrow range of
temperature ±0.003Tc, which makes it hard to detect them experimentally.

I The liquid droplet fluctuations demonstrate highly nontrivial similarity between n(k), �!(k), �
and Kurt which has no explanation yet.
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is very similar to n(k) of droplets! In grand canonical ensemble ω=1  
means conservation of the number of droplet. 
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ABSTRACT
A novel approach to identify the geometrical (anti)clusters formed by the Polyakov loops of the same sign allows us to study their properties and to analyze their size
distributions in the lattice SU(2) gluodynamics [1]. Using the suggested approach, we explain the phase transition in SU(2) gluodynamics as a transition between two liquids
during which one of the liquid droplets (the largest cluster of a certain Polyakov loop sign) experiences a condensation, while another droplet (the next to the largest cluster of
opposite Polyakov loop sign) evaporates. In contrast to earlier works [2, 3], the properties of smaller clusters, which form two accompanying gases, are also studied. Above
the 2-nd order phase transition one can identify the liquid anticluster droplet as a medium filled by the smaller gluonic bags [1-3]. Here we analyze the fluctuation patterns of
(anti)clusters of all sizes near the analog of phase transition in a finite system. The most interesting patterns are found for the monomer clusters and for the liquid droplets of
both signs of Polyakov loop. In particular, the monomer clusters have largest value of scaled variance at the phase transition region and negative skewness and kurtosis at
and above it. At the same time the liquid droplets show bimodal behavior (or a ⌧mitosis�) at phase transition region due to sudden change of the Polyakov loop sign of the
dominant configuration. The region of phase transition is very narrow and this teaches us that it will be very hard to detect such patterns in heavy ion collisions.

II. IDENTIFICATION OF (ANTI)CLUSTERS IN SU(2) GLUODYNAMICS
I A. Definitions: B. Examples of (anti)cluster size distributions:

For infinite lattice the critical coupling is �1
c = 2.5115, while for finite lattice �c ' 2.52
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which one of the liquid droplets (the largest cluster of a certain Polyakov loop sign) experiences a condensation, while another droplet (the next to the largest cluster of
opposite Polyakov loop sign) evaporates. The clusters of smaller sizes form two accompanying gases, which behave oppositely to their liquids. The liquid droplet formula is
used to analyze the size distributions of the gas (anti)clusters. It is shown that surface tension of gaseous (anti)clusters can serve as an order parameter of the deconfinement
phase transition in SU(2) gluodynamics. The Fisher topological exponent � of (anti)clusters is found to have the same value 1.806 ± 0.008, which agrees with an exactly
solvable model of the nuclear liquid-gas phase transition [2] and disagrees with the Fisher droplet model [3], which may evidence for the fact that the SU(2) gluodynamics and
the model [2] are in the same universality class.
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I Quality of the data description is almost the same for all kmin � 2

I kmin = 2 � � is independent on � for both clusters and anticlusters

kmin = 2 and � = 1.806 ± 0.008, which agrees with Ref. [2] (� < 2)
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Numerical simulations:
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I 13 values of inverse coupling � � [2.3115, 3]
I vacuum cut-off parameter Lcut = 0.1 and 0.2
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VI. CONCLUSIONS

I The approach to study the properties of the Polyakov loop geometrical (anti)clusters is developed.

I It is shown that the deconfinement phase transition can be explained by the condensation/evaporation of large
anticluster/cluster “liquid droplet”, which corresponds to Z(2) global symmetry breaking.

I The size distributions of the gas of (anti)clusters are analyzed on the basis of the Liquid Droplet Model. It is
shown that even dimers are described within this approach with high accuracy.

I The Fisher topological constant � is found to be 1.806 ± 0.008, which agrees with Ref. [2].

I It is shown that the reduced surface tension of (anti)clusters can serve as an order parameter which is able to
distinguish the phases of restored and broken Z(2) global symmetry.
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MULTIPLICITY AND SCALED VARIANCE OF SMALL (ANTI)CLUSTERS AND THEIR LIQUID DROPLETS
I At the vicinity of the 2-nd order phase transition the multiplicity of (anti)cluster n(k) of volume k units and the scaled variance !(k) = �(k)2

<n(k)> ( the standard deviation for

(anti)cluster of size k is �(k) =
p

< n(k)2 > � < n(k) >2) of small and medium size (anti)clusters and their droplets demonstrate essentially different behavior.

I Multiplicities of liquid droplets exhibit ⌧mitosis� (above). Strong fluctuations of small clusters at phase transition. �!(k) ⌘ (!(k) � 1) · 103 is similar to n(k) (above).

SKEWNESS AND KURTOSIS OF SMALL (ANTI)CLUSTERS AND THEIR LIQUID DROPLETS

I At the vicinity of the 2-nd order phase transition the skewness �(k) = <n(k)3>�3 n(k) �(k)2�n(k)3

�(k)3 and the kurtosis Kurt = <n(k)4>
�(k)4 of small and medium size (anti)clusters and

their droplets also exhibit different behavior.
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I For � � 2.51 skewness is negative for k = 1, 2-clusters only, while kurtosis negative for k = 1-clusters (above) . �!(k) ⌘ (!(k) � 1) · 103 is similar to n(k) (above).
I Similarly to multiplicities, the skewness and kurtosis of liquid droplets show the ⌧mitosis� near phase transition region (above right).

CONCLUSIONS
I The monomer clusters show strong fluctuations at the 2-nd order phase transition and negative

skewness and kurtosis at and above it. Strong fluctuations are seen within very narrow range of
temperature ±0.003Tc, which makes it hard to detect them experimentally.

I The liquid droplet fluctuations demonstrate highly nontrivial similarity between n(k), �!(k), �
and Kurt which has no explanation yet.
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ABSTRACT
A novel approach to identify the geometrical (anti)clusters formed by the Polyakov loops of the same sign allows us to study their properties and to analyze their size
distributions in the lattice SU(2) gluodynamics [1]. Using the suggested approach, we explain the phase transition in SU(2) gluodynamics as a transition between two liquids
during which one of the liquid droplets (the largest cluster of a certain Polyakov loop sign) experiences a condensation, while another droplet (the next to the largest cluster of
opposite Polyakov loop sign) evaporates. In contrast to earlier works [2, 3], the properties of smaller clusters, which form two accompanying gases, are also studied. Above
the 2-nd order phase transition one can identify the liquid anticluster droplet as a medium filled by the smaller gluonic bags [1-3]. Here we analyze the fluctuation patterns of
(anti)clusters of all sizes near the analog of phase transition in a finite system. The most interesting patterns are found for the monomer clusters and for the liquid droplets of
both signs of Polyakov loop. In particular, the monomer clusters have largest value of scaled variance at the phase transition region and negative skewness and kurtosis at
and above it. At the same time the liquid droplets show bimodal behavior (or a ⌧mitosis�) at phase transition region due to sudden change of the Polyakov loop sign of the
dominant configuration. The region of phase transition is very narrow and this teaches us that it will be very hard to detect such patterns in heavy ion collisions.

II. IDENTIFICATION OF (ANTI)CLUSTERS IN SU(2) GLUODYNAMICS
I A. Definitions: B. Examples of (anti)cluster size distributions:

For infinite lattice the critical coupling is �1
c = 2.5115, while for finite lattice �c ' 2.52
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I no symmetry between (anti)cluster distributions
I “cluster liquid” evaporates to cluster gas
I anticluster gas condensates to “anticluster liquid”

V. NEW ORDER PARAMETERS
I Average maximal (anti)cluster
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��
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k �nk

� > �c : max K (�)�max K (�c) = a · (�c � �)b

Lcut type a b �2/dof
0.1 Cl �3056 ± 246 0.2964 ± 0.0284 16.32/4 � 4.08
0.1 aCl 2129 ± 160 0.3315 ± 0.0269 8.94/4 � 2.235
0.2 Cl �4953 ± 443 0.3359 ± 0.0289 12.3/3 � 4.01
0.2 aCl 2462 ± 87.7 0.3750 ± 0.0129 2.068/4 � 0.517

Critical exponent �: 0.3265 for 3D Ising model [4]
0.335 for simple liquids [5]

I Reduced surface tension coefficient

� > �c : �(�)� �(�c) = d · (�c � �)B

Lcut type d B �2/dof
0.1 Cl �0.485 ± 0.014 0.2920 ± 0.0012 1.43/4 � 0.36
0.1 aCl 2.059 ± 0.028 0.4129 ± 0.0077 1.68/4 � 0.48
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0.2 aCl 1.344 ± 0.033 0.4483 ± 0.0021 0.66/2 � 0.33
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�
�
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�
k

kn(a)Cl
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1� K aCl
tot � K Cl

tot , auxiliary vacuum

Volume fraction of vacuum is independent on �.
Is vacuum incompressible?

VI. CONCLUSIONS

I The approach to study the properties of the Polyakov loop geometrical (anti)clusters is developed.

I It is shown that the deconfinement phase transition can be explained by the condensation/evaporation of large
anticluster/cluster “liquid droplet”, which corresponds to Z(2) global symmetry breaking.

I The size distributions of the gas of (anti)clusters are analyzed on the basis of the Liquid Droplet Model. It is
shown that even dimers are described within this approach with high accuracy.

I The Fisher topological constant � is found to be 1.806 ± 0.008, which agrees with Ref. [2].

I It is shown that the reduced surface tension of (anti)clusters can serve as an order parameter which is able to
distinguish the phases of restored and broken Z(2) global symmetry.
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I C. Numerical simulations were done for 13 values of inverse coupling � 2 [2.3115, 3] on 3 +1 dimensional lattice with N� = 24, N⌧ = 8

MULTIPLICITY AND SCALED VARIANCE OF SMALL (ANTI)CLUSTERS AND THEIR LIQUID DROPLETS
I At the vicinity of the 2-nd order phase transition the multiplicity of (anti)cluster n(k) of volume k units and the scaled variance !(k) = �(k)2

<n(k)> ( the standard deviation for

(anti)cluster of size k is �(k) =
p

< n(k)2 > � < n(k) >2) of small and medium size (anti)clusters and their droplets demonstrate essentially different behavior.

I Multiplicities of liquid droplets exhibit ⌧mitosis� (above). Strong fluctuations of small clusters at phase transition. �!(k) ⌘ (!(k) � 1) · 103 is similar to n(k) (above).

SKEWNESS AND KURTOSIS OF SMALL (ANTI)CLUSTERS AND THEIR LIQUID DROPLETS

I At the vicinity of the 2-nd order phase transition the skewness �(k) = <n(k)3>�3 n(k) �(k)2�n(k)3

�(k)3 and

the kurtosis Kurt = <n(k)4>
�(k)4 of small and medium size (anti)clusters and their droplets also exhibit different behavior.
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I For � � 2.51 skewness is negative for k = 1, 2-clusters only, while kurtosis negative for k = 1-clusters (above) . �!(k) ⌘ (!(k) � 1) · 103 is similar to n(k) (above).
I Similarly to multiplicities, the skewness and kurtosis of liquid droplets show the ⌧mitosis� near phase transition region (above right).

CONCLUSIONS
I The monomer clusters show strong fluctuations at the 2-nd order phase transition and negative

skewness and kurtosis at and above it. Strong fluctuations are seen within very narrow range of
temperature ±0.003Tc, which makes it hard to detect them experimentally.

I The liquid droplet fluctuations demonstrate highly nontrivial similarity between n(k), �!(k), �
and Kurt which has no explanation yet.
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For β > 2.51 the skewness is NEGATIVE  
for k=1, 2 clusters only! 

For anticlusters skewness is always positive.

For β > 2.51 the kurtosis is NEGATIVE  
for k=1 clusters only! 

For anticlusters it is always positive.
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ABSTRACT
A novel approach to identify the geometrical (anti)clusters formed by the Polyakov loops of the same sign allows us to study their properties and to analyze their size
distributions in the lattice SU(2) gluodynamics [1]. Using the suggested approach, we explain the phase transition in SU(2) gluodynamics as a transition between two liquids
during which one of the liquid droplets (the largest cluster of a certain Polyakov loop sign) experiences a condensation, while another droplet (the next to the largest cluster of
opposite Polyakov loop sign) evaporates. In contrast to earlier works [2, 3], the properties of smaller clusters, which form two accompanying gases, are also studied. Above
the 2-nd order phase transition one can identify the liquid anticluster droplet as a medium filled by the smaller gluonic bags [1-3]. Here we analyze the fluctuation patterns of
(anti)clusters of all sizes near the analog of phase transition in a finite system. The most interesting patterns are found for the monomer clusters and for the liquid droplets of
both signs of Polyakov loop. In particular, the monomer clusters have largest value of scaled variance at the phase transition region and negative skewness and kurtosis at
and above it. At the same time the liquid droplets show bimodal behavior (or a ⌧mitosis�) at phase transition region due to sudden change of the Polyakov loop sign of the
dominant configuration. The region of phase transition is very narrow and this teaches us that it will be very hard to detect such patterns in heavy ion collisions.

II. IDENTIFICATION OF (ANTI)CLUSTERS IN SU(2) GLUODYNAMICS
I A. Definitions: B. Examples of (anti)cluster size distributions:

For infinite lattice the critical coupling is �1
c = 2.5115, while for finite lattice �c ' 2.52
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I. ABSTRACT
A novel approach to identify the geometrical (anti)clusters formed by the Polyakov loops of the same sign, to study their properties and to analyze their size distributions in the
lattice SU(2) gluodynamics is developed. Using the suggested approach, we explain the phase transition in SU(2) gluodynamics as a transition between two liquids during
which one of the liquid droplets (the largest cluster of a certain Polyakov loop sign) experiences a condensation, while another droplet (the next to the largest cluster of
opposite Polyakov loop sign) evaporates. The clusters of smaller sizes form two accompanying gases, which behave oppositely to their liquids. The liquid droplet formula is
used to analyze the size distributions of the gas (anti)clusters. It is shown that surface tension of gaseous (anti)clusters can serve as an order parameter of the deconfinement
phase transition in SU(2) gluodynamics. The Fisher topological exponent � of (anti)clusters is found to have the same value 1.806 ± 0.008, which agrees with an exactly
solvable model of the nuclear liquid-gas phase transition [2] and disagrees with the Fisher droplet model [3], which may evidence for the fact that the SU(2) gluodynamics and
the model [2] are in the same universality class.

II. IDENTIFICATION OF (ANTI)CLUSTERS

I Polyakov loop - gauge invariant analog of continuous spin

L(�x) = Tr
N��1�

t=0

U4(�x , t) � [�1, 1]

|L(�x)| < Lcut � auxiliary vacuum
|L(�x)| � Lcut � (anti)clusters
U4(�x , t)� temporal gauge link
Lcut � vacuum cut � off parameter

I Largest fragment - “anticluster liquid droplet”
I Next to the largest fragment - “cluster liquid droplet”
I Gas (anti)clusters correspond to their “liquids”
I Liquid Droplet Formula for average number of gas (anti)clusters [3]

nk�kmin = C exp
�
�k � �k2/3 � � ln k

�

C - normalization factor, � - reduced chemical potential, � - reduced
surface tension coefficient, � - Fisher topological exponent, kmin - size
of the minimal (anti)cluster described by the liquid droplet formula

IV. DETERMINATION OF kmin AND �

I Fit of distributions with four parameters (C, �, �, � ) for different kmin

�2

dof
= (kmax � kmin � 3)�1

kmax�

k=kmin

�
nth

k � nexp
k

�nexp
k

�2

I Quality of the data description is almost the same for all kmin � 2

I kmin = 2 � � is independent on � for both clusters and anticlusters

kmin = 2 and � = 1.806 ± 0.008, which agrees with Ref. [2] (� < 2)

III. SIZE DISTRIBUTIONS

Numerical simulations:
I 3 +1 dimensional lattice with N� = 24, N� = 8
I 13 values of inverse coupling � � [2.3115, 3]
I vacuum cut-off parameter Lcut = 0.1 and 0.2
I 1600 independent configurations for all �, Lcut

Distributions for � � �c � 2.52
I symmetry between (anti)cluster distributions
I gas and “liquid” domains are well separated

Distributions for � > �c � 2.52
I no symmetry between (anti)cluster distributions
I “cluster liquid” evaporates to cluster gas
I anticluster gas condensates to “anticluster liquid”

V. NEW ORDER PARAMETERS
I Average maximal (anti)cluster

max K =
�

k

k1+�nk

��

k

k �nk

� > �c : max K (�)�max K (�c) = a · (�c � �)b

Lcut type a b �2/dof
0.1 Cl �3056 ± 246 0.2964 ± 0.0284 16.32/4 � 4.08
0.1 aCl 2129 ± 160 0.3315 ± 0.0269 8.94/4 � 2.235
0.2 Cl �4953 ± 443 0.3359 ± 0.0289 12.3/3 � 4.01
0.2 aCl 2462 ± 87.7 0.3750 ± 0.0129 2.068/4 � 0.517

Critical exponent �: 0.3265 for 3D Ising model [4]
0.335 for simple liquids [5]

I Reduced surface tension coefficient

� > �c : �(�)� �(�c) = d · (�c � �)B

Lcut type d B �2/dof
0.1 Cl �0.485 ± 0.014 0.2920 ± 0.0012 1.43/4 � 0.36
0.1 aCl 2.059 ± 0.028 0.4129 ± 0.0077 1.68/4 � 0.48
0.2 Cl �0.2796 ± 0.0118 0.2891 ± 0.0016 1.11/4 � 0.28
0.2 aCl 1.344 ± 0.033 0.4483 ± 0.0021 0.66/2 � 0.33

I Volume fraction

Ktot =

�
�

�

�
k

kn(a)Cl
k , (anti)clusters

1� K aCl
tot � K Cl

tot , auxiliary vacuum

Volume fraction of vacuum is independent on �.
Is vacuum incompressible?

VI. CONCLUSIONS

I The approach to study the properties of the Polyakov loop geometrical (anti)clusters is developed.

I It is shown that the deconfinement phase transition can be explained by the condensation/evaporation of large
anticluster/cluster “liquid droplet”, which corresponds to Z(2) global symmetry breaking.

I The size distributions of the gas of (anti)clusters are analyzed on the basis of the Liquid Droplet Model. It is
shown that even dimers are described within this approach with high accuracy.

I The Fisher topological constant � is found to be 1.806 ± 0.008, which agrees with Ref. [2].

I It is shown that the reduced surface tension of (anti)clusters can serve as an order parameter which is able to
distinguish the phases of restored and broken Z(2) global symmetry.
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I Liquid Droplet Formula for average number of gas (anti)clusters [3]

nk�kmin = C exp
�
�k � �k2/3 � � ln k

�

C - normalization factor, � - reduced chemical potential, � - reduced
surface tension coefficient, � - Fisher topological exponent, kmin - size
of the minimal (anti)cluster described by the liquid droplet formula

IV. DETERMINATION OF kmin AND �

I Fit of distributions with four parameters (C, �, �, � ) for different kmin

�2

dof
= (kmax � kmin � 3)�1

kmax�

k=kmin

�
nth

k � nexp
k

�nexp
k

�2

I Quality of the data description is almost the same for all kmin � 2

I kmin = 2 � � is independent on � for both clusters and anticlusters

kmin = 2 and � = 1.806 ± 0.008, which agrees with Ref. [2] (� < 2)

III. SIZE DISTRIBUTIONS

Numerical simulations:
I 3 +1 dimensional lattice with N� = 24, N� = 8
I 13 values of inverse coupling � � [2.3115, 3]
I vacuum cut-off parameter Lcut = 0.1 and 0.2
I 1600 independent configurations for all �, Lcut

Distributions for � � �c � 2.52
I symmetry between (anti)cluster distributions
I gas and “liquid” domains are well separated

Distributions for � > �c � 2.52
I no symmetry between (anti)cluster distributions
I “cluster liquid” evaporates to cluster gas
I anticluster gas condensates to “anticluster liquid”

V. NEW ORDER PARAMETERS
I Average maximal (anti)cluster

max K =
�

k

k1+�nk

��

k

k �nk

� > �c : max K (�)�max K (�c) = a · (�c � �)b

Lcut type a b �2/dof
0.1 Cl �3056 ± 246 0.2964 ± 0.0284 16.32/4 � 4.08
0.1 aCl 2129 ± 160 0.3315 ± 0.0269 8.94/4 � 2.235
0.2 Cl �4953 ± 443 0.3359 ± 0.0289 12.3/3 � 4.01
0.2 aCl 2462 ± 87.7 0.3750 ± 0.0129 2.068/4 � 0.517

Critical exponent �: 0.3265 for 3D Ising model [4]
0.335 for simple liquids [5]

I Reduced surface tension coefficient

� > �c : �(�)� �(�c) = d · (�c � �)B

Lcut type d B �2/dof
0.1 Cl �0.485 ± 0.014 0.2920 ± 0.0012 1.43/4 � 0.36
0.1 aCl 2.059 ± 0.028 0.4129 ± 0.0077 1.68/4 � 0.48
0.2 Cl �0.2796 ± 0.0118 0.2891 ± 0.0016 1.11/4 � 0.28
0.2 aCl 1.344 ± 0.033 0.4483 ± 0.0021 0.66/2 � 0.33

I Volume fraction

Ktot =

�
�

�

�
k

kn(a)Cl
k , (anti)clusters

1� K aCl
tot � K Cl

tot , auxiliary vacuum

Volume fraction of vacuum is independent on �.
Is vacuum incompressible?

VI. CONCLUSIONS

I The approach to study the properties of the Polyakov loop geometrical (anti)clusters is developed.

I It is shown that the deconfinement phase transition can be explained by the condensation/evaporation of large
anticluster/cluster “liquid droplet”, which corresponds to Z(2) global symmetry breaking.

I The size distributions of the gas of (anti)clusters are analyzed on the basis of the Liquid Droplet Model. It is
shown that even dimers are described within this approach with high accuracy.

I The Fisher topological constant � is found to be 1.806 ± 0.008, which agrees with Ref. [2].

I It is shown that the reduced surface tension of (anti)clusters can serve as an order parameter which is able to
distinguish the phases of restored and broken Z(2) global symmetry.

VII. REFERENCES

1. L.Moretto et al., Phys. Rev. Lett. 94, 202701 (2005).

2. V.Sagun, A.Ivanytskyi, K.Bugaev and I.Mishustin,
Nucl.Phys.A 924, 24 (2014).

3. M.E. Fisher, Physics 3, 255 (1967).

4. M. Campostrini, A. Pelissetto, P. Rossi and E. Vicari,
Phys. Rev. E 65, 066127 (2002).

5. K. Huang, Statistical Mechanics, Wiley, New York, 1987.

I C. Numerical simulations were done for 13 values of inverse coupling � 2 [2.3115, 3] on 3 +1 dimensional lattice with N� = 24, N⌧ = 8

MULTIPLICITY AND SCALED VARIANCE OF SMALL (ANTI)CLUSTERS AND THEIR LIQUID DROPLETS
I At the vicinity of the 2-nd order phase transition the multiplicity of (anti)cluster n(k) of volume k units and the scaled variance !(k) = �(k)2

<n(k)> ( the standard deviation for

(anti)cluster of size k is �(k) =
p

< n(k)2 > � < n(k) >2) of small and medium size (anti)clusters and their droplets demonstrate essentially different behavior.

I Multiplicities of liquid droplets exhibit ⌧mitosis� (above). Strong fluctuations of small clusters at phase transition. �!(k) ⌘ (!(k) � 1) · 103 is similar to n(k) (above).

SKEWNESS AND KURTOSIS OF SMALL (ANTI)CLUSTERS AND THEIR LIQUID DROPLETS

I At the vicinity of the 2-nd order phase transition the skewness �(k) = <n(k)3>�3 n(k) �(k)2�n(k)3

�(k)3 and the kurtosis Kurt = <n(k)4>
�(k)4 of small and medium size (anti)clusters and

their droplets also exhibit different behavior.
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I For � � 2.51 skewness is negative for k = 1, 2-clusters only, while kurtosis negative for k = 1-clusters (above) . �!(k) ⌘ (!(k) � 1) · 103 is similar to n(k) (above).
I Similarly to multiplicities, the skewness and kurtosis of liquid droplets show the ⌧mitosis� near phase transition region (above right).

CONCLUSIONS
I The monomer clusters show strong fluctuations at the 2-nd order phase transition and negative

skewness and kurtosis at and above it. Strong fluctuations are seen within very narrow range of
temperature ±0.003Tc, which makes it hard to detect them experimentally.

I The liquid droplet fluctuations demonstrate highly nontrivial similarity between n(k), �!(k), �
and Kurt which has no explanation yet.
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ABSTRACT
A novel approach to identify the geometrical (anti)clusters formed by the Polyakov loops of the same sign allows us to study their properties and to analyze their size
distributions in the lattice SU(2) gluodynamics [1]. Using the suggested approach, we explain the phase transition in SU(2) gluodynamics as a transition between two liquids
during which one of the liquid droplets (the largest cluster of a certain Polyakov loop sign) experiences a condensation, while another droplet (the next to the largest cluster of
opposite Polyakov loop sign) evaporates. In contrast to earlier works [2, 3], the properties of smaller clusters, which form two accompanying gases, are also studied. Above
the 2-nd order phase transition one can identify the liquid anticluster droplet as a medium filled by the smaller gluonic bags [1-3]. Here we analyze the fluctuation patterns of
(anti)clusters of all sizes near the analog of phase transition in a finite system. The most interesting patterns are found for the monomer clusters and for the liquid droplets of
both signs of Polyakov loop. In particular, the monomer clusters have largest value of scaled variance at the phase transition region and negative skewness and kurtosis at
and above it. At the same time the liquid droplets show bimodal behavior (or a ⌧mitosis�) at phase transition region due to sudden change of the Polyakov loop sign of the
dominant configuration. The region of phase transition is very narrow and this teaches us that it will be very hard to detect such patterns in heavy ion collisions.

II. IDENTIFICATION OF (ANTI)CLUSTERS IN SU(2) GLUODYNAMICS
I A. Definitions: B. Examples of (anti)cluster size distributions:

For infinite lattice the critical coupling is �1
c = 2.5115, while for finite lattice �c ' 2.52
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I Polyakov loop - gauge invariant analog of continuous spin

L(�x) = Tr
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t=0

U4(�x , t) � [�1, 1]

|L(�x)| < Lcut � auxiliary vacuum
|L(�x)| � Lcut � (anti)clusters
U4(�x , t)� temporal gauge link
Lcut � vacuum cut � off parameter

I Largest fragment - “anticluster liquid droplet”
I Next to the largest fragment - “cluster liquid droplet”
I Gas (anti)clusters correspond to their “liquids”
I Liquid Droplet Formula for average number of gas (anti)clusters [3]

nk�kmin = C exp
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�k � �k2/3 � � ln k
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C - normalization factor, � - reduced chemical potential, � - reduced
surface tension coefficient, � - Fisher topological exponent, kmin - size
of the minimal (anti)cluster described by the liquid droplet formula

IV. DETERMINATION OF kmin AND �
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I Quality of the data description is almost the same for all kmin � 2

I kmin = 2 � � is independent on � for both clusters and anticlusters

kmin = 2 and � = 1.806 ± 0.008, which agrees with Ref. [2] (� < 2)

III. SIZE DISTRIBUTIONS

Numerical simulations:
I 3 +1 dimensional lattice with N� = 24, N� = 8
I 13 values of inverse coupling � � [2.3115, 3]
I vacuum cut-off parameter Lcut = 0.1 and 0.2
I 1600 independent configurations for all �, Lcut

Distributions for � � �c � 2.52
I symmetry between (anti)cluster distributions
I gas and “liquid” domains are well separated

Distributions for � > �c � 2.52
I no symmetry between (anti)cluster distributions
I “cluster liquid” evaporates to cluster gas
I anticluster gas condensates to “anticluster liquid”

V. NEW ORDER PARAMETERS
I Average maximal (anti)cluster
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0.335 for simple liquids [5]

I Reduced surface tension coefficient
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0.1 aCl 2.059 ± 0.028 0.4129 ± 0.0077 1.68/4 � 0.48
0.2 Cl �0.2796 ± 0.0118 0.2891 ± 0.0016 1.11/4 � 0.28
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the model [2] are in the same universality class.

II. IDENTIFICATION OF (ANTI)CLUSTERS

I Polyakov loop - gauge invariant analog of continuous spin

L(�x) = Tr
N��1�

t=0

U4(�x , t) � [�1, 1]

|L(�x)| < Lcut � auxiliary vacuum
|L(�x)| � Lcut � (anti)clusters
U4(�x , t)� temporal gauge link
Lcut � vacuum cut � off parameter

I Largest fragment - “anticluster liquid droplet”
I Next to the largest fragment - “cluster liquid droplet”
I Gas (anti)clusters correspond to their “liquids”
I Liquid Droplet Formula for average number of gas (anti)clusters [3]

nk�kmin = C exp
�
�k � �k2/3 � � ln k

�

C - normalization factor, � - reduced chemical potential, � - reduced
surface tension coefficient, � - Fisher topological exponent, kmin - size
of the minimal (anti)cluster described by the liquid droplet formula

IV. DETERMINATION OF kmin AND �

I Fit of distributions with four parameters (C, �, �, � ) for different kmin

�2

dof
= (kmax � kmin � 3)�1

kmax�

k=kmin

�
nth

k � nexp
k

�nexp
k

�2

I Quality of the data description is almost the same for all kmin � 2

I kmin = 2 � � is independent on � for both clusters and anticlusters

kmin = 2 and � = 1.806 ± 0.008, which agrees with Ref. [2] (� < 2)

III. SIZE DISTRIBUTIONS

Numerical simulations:
I 3 +1 dimensional lattice with N� = 24, N� = 8
I 13 values of inverse coupling � � [2.3115, 3]
I vacuum cut-off parameter Lcut = 0.1 and 0.2
I 1600 independent configurations for all �, Lcut

Distributions for � � �c � 2.52
I symmetry between (anti)cluster distributions
I gas and “liquid” domains are well separated

Distributions for � > �c � 2.52
I no symmetry between (anti)cluster distributions
I “cluster liquid” evaporates to cluster gas
I anticluster gas condensates to “anticluster liquid”

V. NEW ORDER PARAMETERS
I Average maximal (anti)cluster

max K =
�

k

k1+�nk

��

k

k �nk

� > �c : max K (�)�max K (�c) = a · (�c � �)b

Lcut type a b �2/dof
0.1 Cl �3056 ± 246 0.2964 ± 0.0284 16.32/4 � 4.08
0.1 aCl 2129 ± 160 0.3315 ± 0.0269 8.94/4 � 2.235
0.2 Cl �4953 ± 443 0.3359 ± 0.0289 12.3/3 � 4.01
0.2 aCl 2462 ± 87.7 0.3750 ± 0.0129 2.068/4 � 0.517

Critical exponent �: 0.3265 for 3D Ising model [4]
0.335 for simple liquids [5]

I Reduced surface tension coefficient

� > �c : �(�)� �(�c) = d · (�c � �)B

Lcut type d B �2/dof
0.1 Cl �0.485 ± 0.014 0.2920 ± 0.0012 1.43/4 � 0.36
0.1 aCl 2.059 ± 0.028 0.4129 ± 0.0077 1.68/4 � 0.48
0.2 Cl �0.2796 ± 0.0118 0.2891 ± 0.0016 1.11/4 � 0.28
0.2 aCl 1.344 ± 0.033 0.4483 ± 0.0021 0.66/2 � 0.33

I Volume fraction

Ktot =

�
�

�

�
k

kn(a)Cl
k , (anti)clusters

1� K aCl
tot � K Cl

tot , auxiliary vacuum

Volume fraction of vacuum is independent on �.
Is vacuum incompressible?

VI. CONCLUSIONS

I The approach to study the properties of the Polyakov loop geometrical (anti)clusters is developed.

I It is shown that the deconfinement phase transition can be explained by the condensation/evaporation of large
anticluster/cluster “liquid droplet”, which corresponds to Z(2) global symmetry breaking.

I The size distributions of the gas of (anti)clusters are analyzed on the basis of the Liquid Droplet Model. It is
shown that even dimers are described within this approach with high accuracy.

I The Fisher topological constant � is found to be 1.806 ± 0.008, which agrees with Ref. [2].

I It is shown that the reduced surface tension of (anti)clusters can serve as an order parameter which is able to
distinguish the phases of restored and broken Z(2) global symmetry.
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I C. Numerical simulations were done for 13 values of inverse coupling � 2 [2.3115, 3] on 3 +1 dimensional lattice with N� = 24, N⌧ = 8

MULTIPLICITY AND SCALED VARIANCE OF SMALL (ANTI)CLUSTERS AND THEIR LIQUID DROPLETS
I At the vicinity of the 2-nd order phase transition the multiplicity of (anti)cluster n(k) of volume k units and the scaled variance !(k) = �(k)2

<n(k)> ( the standard deviation for

(anti)cluster of size k is �(k) =
p

< n(k)2 > � < n(k) >2) of small and medium size (anti)clusters and their droplets demonstrate essentially different behavior.

I Multiplicities of liquid droplets exhibit ⌧mitosis� (above). Strong fluctuations of small clusters at phase transition. �!(k) ⌘ (!(k) � 1) · 103 is similar to n(k) (above).

SKEWNESS AND KURTOSIS OF SMALL (ANTI)CLUSTERS AND THEIR LIQUID DROPLETS

I At the vicinity of the 2-nd order phase transition the skewness �(k) = <n(k)3>�3 n(k) �(k)2�n(k)3

�(k)3 and

the kurtosis Kurt = <n(k)4>
�(k)4 of small and medium size (anti)clusters and their droplets also exhibit different behavior.

���������	���
������

������
�������
������
������

��
��
�
��
�

�

��

��

��

��

�������	����

� �� �� �� �� ���

���������	���
������

������
�������
������
������

�
�
��
�
��
�

�

���

����

����

����

����

�������	����

� �� ��� ���� ���

I For � � 2.51 skewness is negative for k = 1, 2-clusters only, while kurtosis negative for k = 1-clusters (above) . �!(k) ⌘ (!(k) � 1) · 103 is similar to n(k) (above).
I Similarly to multiplicities, the skewness and kurtosis of liquid droplets show the ⌧mitosis� near phase transition region (above right).

CONCLUSIONS
I The monomer clusters show strong fluctuations at the 2-nd order phase transition and negative

skewness and kurtosis at and above it. Strong fluctuations are seen within very narrow range of
temperature ±0.003Tc, which makes it hard to detect them experimentally.

I The liquid droplet fluctuations demonstrate highly nontrivial similarity between n(k), �!(k), �
and Kurt which has no explanation yet.
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Figure 7: Skewness of the liquid anticluster for �= 2.45, 2.5115, 2.52, 2.53.

Similarly to multiplicities the skewness and  kurtosis of (anti)cluster liquid droplets 
demonstrate a mitosis!



• The cluster approach based on Polyakov loop geometrical clusters is generalized 
to monomer (anti)clusters. 

• In terms of liquid-gas cluster model the PT in SU(2) gluodynamics is an 
evaporation of smaller liquid droplet into corresponding gas and condensation of 
another gas onto the largest liquid droplet. 

• The Fisher topological constant τ is found to be 1.806 ± 0.008 which disagrees 
with the Fisher Droplet Model value, but agrees with SMM and QGP bag with 
surface tension model with 3CEP. 

• Any quantity which shows bifurcation can be used as the order parameter. 

• In contrast to the existing cluster models of quark-gluon-hadron PT the lattice 
surface tension of dimers and larger clusters does not vanish above PT. Only the 
surface tension coefficient of monomer clusters is negative above βc. Still there 
is no understanding of this issue. 

Conclusions A



Conclusions B

• Fluctuation patterns of (anti)cluster multiplicities demonstrate peculiar behavior. 

• Bad news for experimentalists: strong fluctuations of small clusters and their 
droplets can be seen within a very narrow range of temperatures ~ 0.003 Tc.  

• Good news for experimentalists: there is a similarity of n(k), σ^2(k), γ(k) and 
Kurt (k) of (anti)cluster liquid droplets.  Hence, one can hope to measure (with 
good precision!) n(k) fluctuations only to recover γ(k) and Kurt (k). But at the 
moment it is unclear what and how to measure (deutrons? tritons? helium3?).



Thank you for your attention!
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This value of τ = const of β  as required by LDM!



  Surface Tension in Physical Units	

for Fixed τ=1.806
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TABLE I: Two-loop � dependence of the spatial lattice spacing a

�

(�) given by the ratio to a

�

(�1
c

)

as function of the physical temperature T in units of the critical temperature T

1
c

.

� a

�

(�)/a
�

(�1
c

) T/T

1
c

2.3115 1.7132 0.5837

2.3850 1.4057 0.7114

2.4500 1.1783 0.8487

2.5115 1.0000 1.0000

2.5200 0.9774 1.0231

2.5300 0.9514 1.0510

2.5500 0.9016 1.1092

2.5930 0.8030 1.2453

2.6300 0.7269 1.3757

2.6770 0.6405 1.5612

2.7325 0.5516 1.8128

2.8115 0.4459 2.2423

3.0000 0.2685 3.7244

The �-dependence of physical surface tension defined as

�

phys

A

(�) ⌘ T

�

A

(�)

[ a
�

(�) ]2
= T

1
c

a

�

(�1
c

)

a

�

(�)

�

A

(�)

[ a
�

(�) ]2
, (7)

where in the last step we have used the following relation for the temperature T = T

1
c

a

�

(�

1
c

)

a

�

(�)

[37]. Such a surface tension has the correct physical dimension, but it is more convenient to

use the dimensionless ratio �
A

(�) a
�

(�1
c

)/�
A

(�1
c

)/a
�

(�) because such a ratio, as one can see

from Fig. 9, clearly demonstrates the di↵erent behavior on two sides of the point � = �

1
c

.

Also in this case one does not need to care about an exact value of a coe�cient relating the

volume and the surface of (anti)clusters. To find this ratio from Eq. (7) we used the second

column of Table I.

We would like to stress that in contrast to all known cluster models the physical surface

tension of clusters has a peak at about �

1
c

while the surface tension of anticlusters has a

the inverse coupling constant squared �, it is a good approximation above �

1
c .
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is more convenient 

Horn at βc Kink at βc
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clusters

�

phys

cl

(T ) =
Const

[ a
�

(�) ]2
⇠ T

2 for 1.25T1
c

< T  3.7T1
c

. (9)

The validity of this estimate is clearly seen from Fig. 9, which demonstrates that the ratio

�

cl

(�) a
�

(�1
c

)/�
cl

(�1
c

)/a
�

(�) saturates at � � 2.6. Also we found the following estimate

�

phys

acl

(T ) ⇠ T

4 for the physical surface tension of anticlusters at temperatures belonging

to the range 1.25T1
c

< T  3.7T1
c

. However, one should keep in mind that, in contrast

to clusters, for which µ

cl

! 0 in this temperature range, the quantity �

phys

acl

(T ) may also

include an unknown dependence on reduced chemical potential µ
acl

, which for anticlusters

strongly increases with T (see Fig. 6).

One important di↵erence between the present consideration and the traditional cluster

models is that the largest Polyakov loop cluster (anticluster) is not homogeneous inside and

it looks like a Swiss Cheese, since it is filled by the gas of anticlusters (clusters). A similar

conclusion for the largest anticluster was recently suggested in [47]. Note, however, that

in traditional cluster models, including the Fisher droplet model [8], such a possibility is

usually ignored. Let us demonstrate this important new feature for the cut-o↵ L

cut

= 0.2

and � = 3.0. At high values of � the treatment gets simpler, since the gas of anticlusters

is practically absent and the largest cluster is rather small. Indeed, for � = 3.0 one finds

that the volume of largest anticluster is maxK
acl

= 7300, the volume of largest cluster is

maxK
cl

= 223, the total volume of the gas of anticlusters is only V

gas

acl

= gP
k

k n

acl

(k) =

89, while the total volume of the gas of clusters is V

gas

cl

= gP
k

k n

cl

(k) = 2848 and the

volume of auxiliary vacuum is V

vac

= 1707. Hereafter the sums with tilde indicate that

the summation does not include that largest (anti)cluster. In order to find out where the

gaseous clusters are located, let us first estimate the number of nearest neighbors for the

gas of clusters. Since in the gas of clusters the number of monomers is n

cl

(1) ' 550, the

number of dimers is n
cl

(2) ' 130 and the number of trimers and fourmers are, respectively,

n

cl

(3) ' 60 and n

cl

(4) ' 35, then one can estimate the number of their nearest neighbors as

N

near

cl

' 6n
cl

(1)+10 (n
cl

(2)+n

cl

(3)+n

cl

(4)) ' 5600. Here we have taken into account that

each monomer has 6 nearest neighbors, each dimer has 10 nearest neighbors, while the larger

clusters have at least 10 nearest neighbors. According to definition, the nearest neighbors of

a gaseous cluster cannot be the other gaseous clusters themselves or the largest cluster, but

should be only the anticlusters or vacuum. However, the gas of anticlusters is practically
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 Other Important Findings
In contrast to existing exactly solvable models of cluster type 
the physical surface tension of Polyakov loop (anti)clusters 

 DOES NOT VANISH above PT! 

=> Hence SU(2) gluodynamics may have a different mechanism 	

for 2-nd order PT!

However, the KINKs in physical surface tension are known 
from 

existing cluster models!
	
 K. A. Bugaev, V. K. Petrov and G. M. Zinovjev, Phys. Atom. Nucl. 76 (2013), 341   

This is the surface tension induced PT which was invented to	

generate the CEP! 



 Properties of Liquid (Anti)Cluster

The mean value of Polyakov loop <L> is an order parameter in gluodynamics

One can show that 
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Average maximal (anti)cluster
Average Polyakov loop is SU(2) gluodynamics order parameter, not observable
Largest (anti)cluster occupies almost all lattice ) |L| ⇠ max K
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0.2 aCl 2462± 87.7 0.3750± 0.0129 2.068/4 ' 0.517

Exponent b coinside with b
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of the Ising model - Svetitsky-Jaffe conjecture
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is the mean liquid (=largest) (anti)cluster
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aCl
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b

L

cut

type a b �2/dof

0.1 Cl �3056± 246 0.2964± 0.0284 16.32/4 ' 4.08
0.1 aCl 2129± 160 0.3315± 0.0269 8.94/4 ' 2.235
0.2 Cl �4953± 443 0.3359± 0.0289 12.3/3 ' 4.01
0.2 aCl 2462± 87.7 0.3750± 0.0129 2.068/4 ' 0.517

Exponent b coinside with b

Ising

of the Ising model - Svetitsky-Jaffe conjecture
Geometrical clusterization and deconfinement phase transition in SU(2) gluodynamicsExcept for aCL with cut-off 0.2  the exponent b corresponds to 3-d Ising model! 

strong  
fluctuations



 Space Inhomogeneity
Geometrical clusterization

Properties of clusters

New order parameters

Space inhomogeneity

Geometrical clusterization and deconfinement phase transition in SU(2) gluodynamics

Example:  β  = 3 and cut-off  0.2  

Assuming  DENSE PACKING of  all clusters one needs at least 3100  
surrounding anticlusters or aux. Vacuum, but one can get 1796 only! 

Geometrical clusterization

Properties of clusters

New order parameters

Space inhomogeneity

Geometrical clusterization and deconfinement phase transition in SU(2) gluodynamics

Since at hight T the surface tension and  
chem. potential of clusters is about 0, 
then size distribution is a power like!

=> Gaseous clusters are located inside of anticluster LIQUID droplet! 

=> High T is not an exception, hence,  the clusters are located inside  
of anticluster LIQUID droplet and vice versa! 


