

1

Measurements of $e+e- \rightarrow$ hadrons cross sections with CMD-3 at VEPP-2000

Fedotovich G.V., Shemyakin D.N. (on behalf of the CMD-3 Collaboration)

Outline Introduction Collider & Detector Preliminary Results Conclusion

Introduction

Measurement of the cross section e+e- \rightarrow hadrons in the low energy range up to 2 GeV is interesting for:

- > measurement of parameters of light vector mesons ρ , ω , ϕ , ϕ' , ρ' , ρ'' , ω'' , ω''
- > search of exotics (light hybrids and glueballs)
- CVC test in comparison with spectral functions of tau decays

> measurement of R(s):
$$R(s) = \frac{\sigma(e^+e^- \to \gamma^* \to hadrons)}{\sigma(e^+e^- \to \gamma^* \to \mu^+\mu^-)}$$

It is essential for the interpretation of precision measurements of the (g-2) of muon - good test of SM

Main channels which contribute to precision at Vs<1.8 GeV M. Davier et al., Eur. Phys. J. C71 (2011) 1515

		π+π-	505.65 ± 3.09					
		π+π-2π0	18.62 ± 1.15					
		π+π–π0	47.38 ± 0.99 (mostly from ome	ega region)				
		2π+2π-	13.64 ± 0.36 (BaBar)					
		К+К-	22.95 ± 0.26 (BaBar)					
	Isospin relations: 5.98 \pm 0.42 for not measured KK π , KK2 π , 2 π 4 π 0, 2 π 3 π 0							
	(12.46 ± 0.76 for √s<2 GeV HLMNT 11 , J. Phys. G 38, 085003 (2011))							
		Rqcd[2-11GeV]	41.19 <mark>± 0.82</mark>					
5	5 6	LBL Th. TOTAL 11 65 9	10.5 <mark>± 2.6</mark> 9 180.2 ± 4.9	New g-2 experiments at FNAL and J-PARC have plans to reduce error to 1.5x10 ⁻¹⁰	4			

δа

1 2 3 4

0

VEPP-2000 e⁺e⁻ collider

 $L = \frac{\pi \gamma^2 \xi_x \xi_y \varepsilon_x f}{r_e^2 \beta_y^*} \left(1 + \frac{\sigma_y}{\sigma_x} \right)^2$

	$\rho_{\mathbf{z}}$ (cm)	O	0.3	0.0	
)	ξx	0.016	0.075	0.075	
	ξz	0.050	0.075	0.075	
	$\mathcal{L}(cm^{-2}s^{-1})$	$3\cdot\mathbf{10^{30}}$	$1\cdot\mathbf{10^{31}}$	$1\cdot 10^{32}$	
/		TATE			
T	TAKAN	VEP	2-200	no-C	
		14	- and		MAX ANA DE
			The state of	S.M.	
	a Sole a				
				1 X	
		The party			
6					
P		ANT	Q R		
					2218287
q	Contraction of the second seco		As		
2	Still .		ER	15	RANK
	Vig Sin	ME	a bi		
					11/1 -

VEPP-2M

510

1788

40

3

40

-

E (MeV)

 Π (cm)

 $\mathcal{I}^+, \mathcal{I}^-$

 (\mathbf{mA}) $\varepsilon \cdot \mathbf{10^5}$

 $(\mathbf{cm} \cdot \mathbf{rad})$

 $\beta_{\mathbf{x}}$ (cm)

VEPP-2000

900

2235

200

1.6

6.3

0.0

510

2235

34

0.5

6.3

0.0

liters), 7 – calorimeter CsI (1152 crystals), 8 –iron yoke, 9 – solenoids of VEPP-2000, (not shown) muon range system (scintillation counters) and TOF system.

Collinear Events @ CMD-3 ($E_{c.m.} = 1.95 \text{ GeV}$)

8

Collected Luminosity

At high energies luminosity is limited by a deficit of positrons and maximum energy of the booster (800 MeV now)

In 2013 we reached 2 × 160 MeV, the smallest energy ever measured at ee colliders

Energy measurement by Compton back scattering

Nucl. Inst. Meth. A744 (2014) 35-40

$e {+} e {-} {\rightarrow} \pi {+} \pi {-}$ by CMD3

Clean collinear events (mostly without background)

Plans to reduce systematic error from 0.6% -> 0.3%:

- x Event separation will be checked by different methods 0.2%
- x Better test of Radiative corrections 0.2% -> 0.1%
- x Determination of fiducial volume controlled independently by LXe and ZC subsystems (0.1%)

Process $e^+e^- \rightarrow 3(\pi^+\pi^-)$

We have very clean selection of 6 and 5 pions

Phys.Lett. B723 (2013) 82-89

We study dynamics, pure phase space doesn't work, three models with JPC = 1⁻⁻, each with one ρ^0 /event:

• $\rho(1450)(2\pi^+2\pi^-)_{S-wave} \rightarrow a_1(1260)^{\pm}\pi\pi\pi^+\pi^- \rightarrow \rho^0 2(\pi^+\pi^-) \rightarrow 3(\pi^+\pi^-)$

• $\rho(770)(2\pi^+2\pi^-)_{S-wave} \to 3(\pi^+\pi^-)$

3 options for $2\pi^+2\pi^-$: phase space, $f^0(1370)$, $f^0(1500)$

• $\rho(770)f_2(1270) \rightarrow 3(\pi^+\pi^-)$

The best description is with one p(770) and 4 pions in S-wave

Process $e^+e^- \rightarrow 2(\pi^+\pi^-\pi^0)$

We have relatively clean selection of 2 and 1 π^0 in addition to four charged tracks

many intermediate states are seen, systematic errors are under study.

Example of $\omega f^{0}(980)$ signal in $\omega \pi^{+}\pi^{-}$ final state.

Detailed analysis is coming...

 π^0

Process $e^+e^- \rightarrow 2(\pi^+\pi^-)$

We confirm a1(1260) π dominance. Some other states ($\rho(770)f0(600), \rho(770)f0(980)$) are seen.

Statistical errors are at the level of 1-2% per point. Analysis of systematic errors is in progress.

We have statistical errors at the level of 1-2% per point. Systematic errors are under study.

m(π⁻π⁰) (MeV)

Preliminary results on $e^+e^- \rightarrow pp$

Process $e^+e^- \rightarrow K^+K^-\pi^+\pi^-$

19

Conclusion

- ✓ New accelerator concepts used at the VEPP-2000 collider were successfully proved. First three experimental runs generated considerable amount of data which analysis is in progress now. The second detector, SND, with very good photon detection collected similar statistics and has a lot of various results on hadronic cross sections, particularly on channels with neutrals.
- ✓ The last experimental run ended in the middle of July 2013. Then a long shutdown for ~1.5 years to increase the booster energy to 1 GeV and commission the new injection complex to reach 10³² cm⁻²s⁻¹
- ✓ Hopefully, in the next 5-10 years the VEPP-2000 will produce the integrated luminosity ~ 1 fb⁻¹ which should provide new precise interesting results on the hadron production in e⁺e⁻ annihilation.

Thank You