

Determination of the antiproton-to-electron mass ratio by two-photon laser spectroscopy of antiprotonic helium atoms

D. Horváth Wigner Research Centre for Physics, Budapest, Hungary

email: Horvath.Dezso@wigner.mta.hu

ASACUSA @ CERN AD Atomic Spectroscopy And Collisions Using Slow Antiprotons

M. Hori, A. Sótér, D. Barna, A. Dax, R. Hayano, S. Friedrich, B. Juhász, T. Pask, E. Widmann, D. Horváth, L. Venturelli, N. Zurlo

(laser spectroscopy subgroup)

Funding agencies:

European Research Council Established by the European Commission

Hungarian Scientific Research Fund

D. HORVÁTH (TWO-PHOTON LASER SPECTROSCOPY OF ANTIPROTONIC HELIUM)

Antiprotonic helium atoms

Antiprotonic helium atom: 3-body bound system consisting of:

- helium nucleus
- electron in 1s-ground state,
- antiproton in Rydberg state *n*=30-40, *I*=*n*-1.

Long-lived (~3-4us) even in dense helium targets because:

- antiproton has negligible overlap with nucleus.
- electron cloud protects antiproton against collisions with other He.
- electron ionization is suppressed (large ionization potential 26 eV).

These characteristics make the atom amenable to laser spectroscopy!

By precision spectroscopy measurements of the transition frequencies and comparisons with 3-body QED calculations we obtained:

- antiproton-to-electron mass ratio to 1.3×10^{-9} . \rightarrow Dimensionless fundamental constant of nature.
- assuming CPT invariance the electron mass in a.u. to 1.3×10^{-9} \rightarrow One of the data points used in CODATA2010 average.

When combined with cyclotron frequency of antiprotons in a Penning trap measured by TRAP collaboration, comparison of antiproton and proton mass and charge to 7 x 10^{-10} \rightarrow CPT consistency test in PDG2012.

$(n,l)=(36,34) \rightarrow (34,32)$ V.I. Korobov

Non-relativistic energy	1 522 150 208.3 MHz
Relativistic correction of electron	-50 800.9
Anomalous magnetic moment of	electron 454.9
One transverse photon exchange	-84.9
Relativistic correction of heavy pa	rticles 105.7
Finite charge radius of helium nuc	leus 4.7
One-loop self-energy correction	7 311.0
Vacuum polarization	-243.0
Recoil corrections order $R_{\infty}a^3$ (m/	<i>M</i>) 1.4
All $R_{\infty} a^4$ order corrections	113.1
All $R_{\infty}a^5$ order corrections	-11.5
Transition frequency	1 522 107 058.9(2.1)(0.3) MHz

Several parts in 10¹⁰ seems feasible in the near future.

V.I. Korobov (PRA 77 042506 (2008))

Sub-Doppler two-photon spectroscopy

Systematic error from Doppler broadening of the atoms undergoing thermal motion limited experimental precision to 10⁻⁷-10⁻⁸

Atoms moving towards laser are blueshifted, those moving away are red-shifted. This broadens the spectral line.

New experiment:

Reduced broadening by 20x using two-photon spectroscopy:

- Two counter-propagating laser beam irradiated the atoms
- Atom absorb two photons simultaneously from each beam.

• By tuning "virtual" intermediate state near (within 10 GHz) a real state, transition probability enhanced by factor >10000.

$$\Delta v_{2\gamma} = \left| \frac{v_1 - v_2}{v_1 + v_2} \right| \Delta v_{\rm D}$$

PRA 81, 062508, (2010)

Experimental setup

Nature 475, 484 (2011)

Results of Sub-Doppler laser spectroscopy

Conventional single-photon laser spectroscopy. Doppler- and power-broadened lines.

New sub-Doppler two-photon spectroscopy. High resolution.

Hyperfine structure arising from spin-spin interaction between antiproton and electron.

Antiproton charge and mass over the years

D. HORVÁTH (TWO-PHOTON LASER SPECTROSCOPY OF ANTIPROTONIC HELIUM)

helium (Q²M)

results (Q/M)

- Achieved two-photon laser spectroscopy of antiprotonic helium.
- Partially cancelled Doppler broadening to measure sharp spectral lines and reach higher precision on the transition frequencies.
- By comparing to 3-body QED calculations, we determined the antiprotonto-electron mass ratio:

1836.1526736(23)

• Assuming CPT invariance, we determined the electron mass:

0.0005485799091 (7) u

