Search for fine-structure constant variation in Ni II

Elena A. Konovalova

Petersburg Nuclear Physics Institute Gatchina 2-12-2014

Fine-structure constant variation

Absorption lines of Ni II spectrum are observed by astrophysicists in quasar QSO SDSS J 081634+144612 (R.Guimaraes et al., 2012).

The spectra of atoms and ions are used to identify star composition and to search for fundamental constant variations.

Spectroscopy is a test ground to probe temporal and spatial variations.

Method

1. To calculate spectrum of Ni II we used the configuration interaction method (CI-method) for the Dirac-Coulomb Hamiltonian in no-pair approximation:

- We describe electronic structure of the ion in terms of frozen core approximation;
- The corrections of valence-valence correlations are taken into account;
- Then we find the energy levels and the wave functions of the ion;
- The different atomic properties are calculated (E1-amplitude, *g*-factors and *q*-factors).

Expansion of transition frequency in α

2. To determine the coefficients of sensitivity to α -variation:

$$\omega_{i} = \omega_{i}^{(0)} + \omega_{i}^{(2)} \alpha^{2} + \dots = \omega_{i,\text{lab}} + q_{i}x + \dots,$$
$$\omega_{i,\text{lab}} = \omega_{i}^{(0)} + \omega_{i}^{(2)} \alpha_{0}^{2},$$
$$x = (\alpha/\alpha_{0})^{2} - 1, \quad q = \partial \omega/\partial x \Big|_{x=0}.$$

In order to detect α -variation we compare two transition frequencies:

$$\frac{\boldsymbol{\omega}_i}{\boldsymbol{\omega}_k} = \frac{\boldsymbol{\omega}_i^{(0)}}{\boldsymbol{\omega}_k^{(0)}} + \left(\frac{\boldsymbol{\omega}_i^{(2)} - \boldsymbol{\omega}_k^{(2)}}{\boldsymbol{\omega}_k^{(0)}}\right) \, \alpha^2 + O(\,\alpha^4)$$

To calculate the relativistic energy shifts (q-factors) numerically we use:

$$q \approx \frac{\omega(x_+) - \omega(x_-)}{x_+ - x_-}$$

Results

State		Exper	Experiment Theory		q-factor		
		ω	g	ω	g _{calc}	[1]	[2]
${}^{4}D_{7/2}$		51558	1.420	49002	1.423	-2490(150)	-2415
${}^{4}\mathbf{D}_{5/2}$		52739	1.365	50239	1.359	-1290(150)	-1231
${}^{4}\mathrm{D}^{3}_{/2}$		53635	1.186	51183	1.187	-310(150)	
${}^{4}G_{7/2}$		54263	1.025	51693	1.010	-1390(150)	-1361
${}^{4}G_{5/2}$		55019	0.616	52482	0.609	-470(150)	-394
${}^{4}\mathbf{F}_{7/2}$		55418	1.184	53008	1.194	-1180(150)	-1114
${}^{4}\mathbf{F}_{5/2}$		56075	0.985	53728	0.996	-410(150)	-333
${}^{2}G_{7/2}$	Α	56371*	0.940	53972	0.923	-250(300)	-124
${}^{4}\mathrm{F}_{3/2}$		56425	0.412	54140	0.420	-140(150)	
${}^{2}\mathbf{F}_{7/2}$	B	57081*	1.154	54817	1.134	-790(300)	-700(250)
${}^{2}\mathbf{D}_{5/2}$	C	57420*	1.116	55315	1.100	-1500(150)	-1400(250)
${}^{2}\mathbf{F}_{5/2}$	D	58493*	0.946	56376	0.966	-100(150)	-20(250)
${}^{2}\mathbf{D}_{3/2}$		58706*	0.795	56770	0.799	-370(150)	
${}^{4}\mathrm{P}_{5/2}$		66571*	1.480	66169	1.506	-2210(150)	
${}^{4}\mathbf{P}_{3/2}$	Ε	66580	1.550	66173	1.592	-2290(250)	
${}^{2}\mathbf{F}_{5/2}$		67695	0.960	67512	0.943	-1900(150)	
${}^{2}\mathrm{F}_{7/2}$	G	68131*	1.200	67921	1.186	-1600(200)	
${}^{2}\mathbf{D}_{3/2}$	F	68154*	1.020	68080	1.033	-1090(250)	
${}^{2}\mathbf{D}_{5/2}$		68736*	1.264	68753	1.242	-410(150)	
${}^{4}\mathrm{D}_{7/2}$	H	70778	1.385	70704	1.383	-750(200)	

[1] Konovalova et al., PRA **90**, 042512 (2014);

[2] Dzuba et al., PRA **66**, 022501 (2002).

The pairs of interacting levels

State		Experiment		Theory		q-factor	
		ω	g	ω	$g_{\rm calc}$	[1]	[2]
$^{2}G_{7/2}$	A	56371*	0.940	53972	0.923	-250(300)	-124
${}^{2}\mathbf{F}_{7/2}$	B	57081*	1.154	54817	1.134	-790(300)	-700(250)
$^{2}D_{5/2}$	C	57420*	1.116	55315	1.100	-1500(150)	-1400(250)
${}^{2}\mathbf{F}_{5/2}$	D	58493*	0.946	56376	0.966	-100(150)	-20(250)
⁴ P _{3/2}	E	66580	1.550	66173	1.592	-2290(250)	
${}^{2}\mathbf{D}_{3/2}$	F	68154*	1.020	68080	1.033	-1090(250)	
${}^{2}\mathbf{F}_{7/2}$	G	68131*	1.200	67921	1.186	-1600(200)	
⁴ D _{7/2}	H	70778	1.385	70704	1.383	-750(200)	

[1] Konovalova et al., PRA **90**, 042512 (2014);

[2] Dzuba et al., PRA **66**, 022501 (2002).

Sensitivity coefficients

– the dependence of the transition frequencies from the ground state on the parameter $(\alpha / \alpha_0)^2$.

The large difference in sensitivities of individual lines increases sensitivity of the observations to α -variation.

Oscillator strengths

State		f _{osc}					
	ω (cm -1)	L gauge	V gauge	Ref. [1]	Ref. [2]		
⁴ D _{7/2}	51558	2.99×10 ⁻⁸	9.83×10 ⁻¹¹				
⁴ F _{7/2}	55418	3.55×10⁻³	3.55×10⁻³	7.16×10⁻₃			
⁴ F _{5/2}	56075	5.39×10 ⁻⁴	5.33×10 ⁻⁴				
² G _{7/2}	56371*	2.22×10⁻₃	1.95×10⁻³	6.22×10⁻₃			
⁴ F _{3/2}	56425	6.13×10 ⁻⁵	6.92×10 ⁻⁵				
² F _{7/2}	57081*	2.75×10 ⁻²	2.53×10 ⁻²	2.77×10 ^{−2}	2.77×10 ^{−2}		
² D _{5/2}	57420*	5.05×10 ⁻²	5.03×10 ⁻²	4.27×10 ^{−2}	4.27×10 ⁻²		
² F _{5/2}	58493*	4.50×10 ⁻²	4.36×10 ⁻²	3.24×10 ^{−2}	3.24×10 ^{−2}		
² D _{3/2}	58706*	1.04×10 ⁻²	1.06×10 ⁻²	6.00×10 ⁻³	6.00×10 ⁻³		
⁴ P _{5/2}	66571*	5.24×10 ⁻³	4.76×10 ⁻³	6.00×10 ⁻³			
⁴ P _{3/2}	66580	4.40×10 ⁻⁴	3.12×10 ⁻⁴				
² F _{5/2}	67695	6.94×10 ⁻⁴	8.64×10 ⁻⁴		9.72×10 ⁻⁴		
² F _{7/2}	68131*	1.02×10 ⁻²	1.20×10 ⁻²	9.90×10 ^{−3}	9.90×10 ⁻³		
² D _{3/2}	68154*	8.87×10⁻³	8.03×10 ⁻³	6.30×10⁻³	6.30×10⁻³		
² D _{5/2}	68736*	3.03×10 ⁻²	2.87×10 ⁻²	2.76×10 ^{−2}	3.23×10 ⁻²		
⁴ D _{7/2}	70778	3.15×10⁻³	3.59×10 ^{−3}				

[1] H.Rahmani and R.Srianand (private letters), 2014; [2] D.C.Morton, ApJS149, 205, 2003.

Australian dipole

(Webb et. al, PRL, **107**, 191101, 2011)

The evaluation of systematic errors are given in: Whitmore J.B. and Murphy M.T., arXiv:1409.4467

Conclusion

- 1. We calculated the *q*-factors for several lines, which had not been studied theoretically before, but were observed in the high redshift quasar spectra.
- All calculated sensitivities for astrophysically relevant transitions in Ni II are negative. Two of these lines have relatively small *q*-factors (≈ -400 cm⁻¹) and one has q factor, which is one of the largest in absolute value, *q* = -2210 cm⁻¹. The comparison of lines with widely varied *q*-factors allows obtaining information concerning *α*-variation.
- 3. The present accuracy of our calculations is sufficient to analyze astrophysical data on the possible fine-structure constant variation.

Thank you for your attention!