Theoretical study of ThO for the electron electric dipole moment search

Leonid V. Skripnikov

A.N. Petrov, A.V. Titov http://qchem.pnpi.spb.ru

PETERSBURG NUCLEAR PHYSICS INSTITUTE and St.-Petersburg State University, St.-Petersburg, RUSSIA

Why diatomics?

• Fundamental experiments to search for an electron electric dipole moment:

actual systems: YbF, HfF⁺, ThF⁺, WC, ThO^{*}, PbF, PbO^{*}; new candidates are of interest

• Nuclear EDM / Schiff moment:

RaO (Flambaum 2008: 500 times enhancement compared to TIF)

- Search for variation of "fundamental constants" α; m_p/m_e in laboratory experiments (PbF, HfF⁺ etc.);
- Studying the chemical properties of synthesized superheavy atoms
- in JINR (Dubna), GSI (Darmstadt) & LBNL (Berkeley) from «island of stability», dimers and other compounds of elements (111) (122) etc.
- Cooling, trapping, Bose-condensation of molecules (spectroscopy, dipole moments, cross-sections, hyperfine constants, g-factors etc. are of interest for many *exotic* systems, e.g., *metal alkaline-earth cations* like **RbBa**⁺);

ThO molecule

Working state ${}^{3}\Delta_{1}$:

- lifetime~ 2 ms
- g-factor~ 0
- Fully polarization at ~ 10 V/cm
- Large effective electric field

Ground rotational level J=1 for diatomics with $\Omega=1$

	Ω =1			Ω=-1	
 M=-1	 M=0	 M=1	M=-1	M=0	 M=1

Ground rotational level J=1 for diatomics with $\Omega=1$

$$|e\rangle = |\Omega=1\rangle - |\Omega=-1\rangle$$
, $J=1^{\circ}$ (negative)

If > = $| \Omega = 1 > + | \Omega = -1 >$, J=1⁺ (positive) M=-1 M=0 M=1

Ground rotational level J=1 for diatomics with Ω =1

$$|e\rangle = |\Omega=1\rangle - |\Omega=-1\rangle, J=1$$
 (negative)

 \wedge

If> = $|\Omega = 1> + |\Omega = -1>$, J=1⁺ (positive)

Ground rotational level J=1/2 for diatomics with Ω =1/2

$le > = |\Omega = 1/2 > - |\Omega = -1/2 >, J = 1/2$ (negative)

If > = | Ω =1/2> + | Ω =-1/2>, J=1/2⁺ (positive) M=-1/2 M=1/2

Ground rotational level J=1 for diatomics with Ω =1 in the presence of Electric field

$$\psi = \left(\left| M = 1 \right\rangle + \left| M = -1 \right\rangle \right) / \sqrt{2}$$

$$\psi = \left(e^{-i\varphi} | M = 1 \right) + e^{i\varphi} | M = -1 \right) / \sqrt{2}$$
$$\varphi \sim \tau E_{eff} d_e$$

Goals of theoretical calculations

✓ Scheme of energy levels. What is the ground state, etc.?

✓ Transition probabilities.

Parameters of P,T-odd interactions
 for interpretation of experimental measurements
 in terms of fundamental quantities such as the electron EDM

✓ Hyperfine structure constants,

✓ oscillation frequency, g-factors, etc.

Th: $...5s^2 5p^6 5d^{10} 6s^2 6p^6 7s^2 6d^2 5f^0$ O: $1s^2 2s^2 2p^4$

Th – actinide => strong correlation and spin-orbit effects

Methods outline

Two-step method

The coupled clusters method

Accounting for correlation effects

$$\begin{split} \Psi &= e^{\hat{T}} \Phi_0 \\ e^{\hat{T}} &= 1 + \hat{T} + \frac{\hat{T}^2}{2!} + \frac{\hat{T}^3}{3!} + \cdots \end{split}$$

 $\hat{T} = \hat{T}_1 + \hat{T}_2 \quad \rightarrow \boldsymbol{CCSD}$

 $\hat{T} = \hat{T}_1 + \hat{T}_2 + \hat{T}_3 \rightarrow CCSDT$ $\hat{T}_1 = \sum_i \hat{t}_i = \sum_{i,a} t_i^a a_a^+ a_i$ $\hat{T}_2 = \frac{1}{2} \sum_{ij} \hat{t}_{ij} = \frac{1}{4} \sum_{ijab} t_{ij}^{ab} a_a^+ a_b^+ a_j a_i$

• more effective than CI: t(CISD) ~ t(CCSD)

Ab initio calculation of $H^{3}\Delta_{1}$ state of ThO

[L.V. Skripnikov, A.N.Petrov, A.V. Titov, J. Chem. Phys. **139**, 221103 (2013) L.V. Skripnikov, A.V. Titov http://arxiv.org/abs/1410.2485 (2014)]

Method	T _e , cm⁻¹	Dipole, D	E _{eff} , GV/cm	
scalar-relativistic CCSD	6321	4.30	72.9	
scalar-relativistic CCSD(T)	6698	4.23	71.0	
relativistic CCSD	5210	4.28	83.2	
relativistic CCSD(T)	5525	4.21	81.7	
CCSDT(Q)-CCSD(T) & basis set corrections	-122	-0.10	-0.2	
Final (RCCSD(T)+basis corr.+correlation corr.)	5403	4.19	81.5	
Experiment	5337	4.24 ± 0.1	_	

Experiment: [Vutha et al., PRA 84, 034502 (2011)]

Estimation of theoretical uncertainty

[T. Fleig and M. K. Nayak, Journal of Molecular Spectroscopy 300, 16 (2014)]: Eeff=75.2 GV/cm with 3% uncertainty

[L.V. Skripnikov, A.V. Titov arxiv.1410.2485 (2014)]:

										F leig and	l Nayak <u>30</u>	CBas	basis set ,	
										4-comp.			1-comp.	
#	#	Reference		H	Excitat	ion ty	ypes		Method	$E_{\text{eff}},$	$A_{ },$	$E_{\text{eff}},$	$A_{ },$	Energy,
	\mathbf{of}	space	1v,	10,	102v,	202v	30,	40		$\mathrm{GV/cm}$	$\frac{\mu_{\rm Th}}{\mu_{\rm N}} \cdot MHz$	GV/cm	$\frac{\mu_{\rm Th}}{\mu_{\rm N}} \cdot MHz$	Hartree
	act.		2v	20,	201v,		301v				FN		FN	
	els.			lo1v										
1	2	Single ref.	+	-	-	-	-	-	CISD	0.0	0	0.0	0	0
		a								(68.5)	(-2809)	(59.4^{b})	(-3001)	
2	18	$3 \text{ OS} (s, 6d_{\delta})$	+	+	-	-	-	-	MR(3)-CISD	12.5	-62	12.5	-58	-0.329
3	18	3 OS+9 virt.	+	+	±	±	-	-	MR(12)-CISD ^c	6.7	-167			
4	18	3 OS+all virt.	+	+	+	+	-	-	$MR(\infty)$ -CISD			7.8	-129	-0.335
5	18	3 OS+all virt.	+	+	+	+	+	-	$(MR(\infty)-CISDT)_4$			11.3	-129	-0.356
6	18	Single ref.	+	+	+	+	+	+	CISDTQ			12.1	-83	-0.381
7	18	3 OS+all occ.							MR_3^{+T} -CISD ^f	$12.3^{d,e}$	$-36^{d,e}$			
8	18	3 OS+all occ.							MR_3^{+TQ} -CISD ^g			13.0	-49	-0.331
9	18	3 OS	+	+	+	-	-	-	MR ₃ -CISDT	6.1^{d}	-189^{d}			
10	18	3 OS	+	+	+	-	+,-	-	MR(3)-CISDT			13.3	-104	-0.346
6a	18	Single ref.	+	+	-	-	-	-	CISD			12.4	-48	-0.329
6b	18	Single ref.	+	+	+	-	+,-	-	CISDT			14.5	-117	-0.342
6	18	Single ref.	+	+	+	+	+	+	CISDTQ			12.1	-83	-0.381
11	18	Single ref.	+	+	(+)	(+)	(+)	(+)	CCSD			12.8	-115	-0.368
12	18	Single ref.	+	+	+	(+)	+,(+)	(+)	$\operatorname{CCSD}(\mathbf{T})$			11.0	-103	-0.387
13	18	Single ref.	+	+	+	(+)	+,(+)	(+)	CCSDT			10.6	-96	-0.387
14	18	Single ref.	+	+	+	+	+	+	CCSDTQ			10.4	-93	-0.388
15	18	3 OS+all virt.	+	+	+	+	(+)	(+)	$MR(\infty)$ -CCSD			10.0	-98	-0.374
16	18	3 OS+all virt.	+	+	+	+	+	(+)	$(MR(\infty)-CCSDT)_4$			10.3	-91	-0.388

Estimation of theoretical uncertainty

[T. Fleig and M. K. Nayak, Journal of Molecular Spectroscopy 300, 16 (2014)]: Eeff=75.2 GV/cm with 3% uncertainty

[L.V. Skripnikov, A.V. Titov arxiv.1410.2485 (2014)]: OC Th: $...5s^2 5p^6 5d^{10} 6s^2 6p^6 7s^2 6d^2$ O: $1s^2 2s^2 2p^4$

	Fleig & Nayak	This work
	18e-MR(12)-	38e-CCSD(T) +
Method	CISD	18e-CCSDT(Q) correction
Correlation	7%	< 1%
OC contribution	5%	-
Basis set	<4%	< 1%
one-electron spinors	7%	< 1%
Other uncertainty	???	5%

ThO results

[ACME Collaboration, Science. 343 269. (2014)]:

$$d_{e} < \frac{\Delta E}{81.5} = 9 \cdot 10^{-29} e \cdot cm$$

[L.V. Skripnikov, A.N.Petrov, A.V. Titov, J. Chem. Phys. **139**, 221103 (2013) L.V. Skripnikov, A.V. Titov http://arxiv.org/abs/1410.2485 (2014)]

Electron EDM status

Other T,P-odd experiments

Atoms: $|d_e| < 1.6 \times 10^{-27} e \cdot cm$

[Regan et. al. *PRL* **88**, 071805 (2002)] **Molecules:** $|\mathbf{d}_{e}| < 9 \times 10^{-29} e \cdot cm$ [ACME Collaboration, arXiv:1310.7534 (2013)] **Crystals:** $|\mathbf{d}_{e}| < 6.05 \times 10^{-25} e \cdot cm$

Молекулы:

- ✓ ThO* beam (ACME collaboration: D.DeMille:Yale Uni.; J.Doyle & G.Gabrielse: Harvard); $|d_e| < 9 \times 10^{-29} e \cdot cm$ (2014)
- ✓ YbF-radical beam (E.Hinds: Imperial college, London,UK); $|d_{\bullet}| < 1.0 \times 10^{-27} \text{ e·cm}$ (2011)
- ✓ HfF⁺ (& ThF⁺, PtH⁺ …) trapped cations (E.Cornell: JILA, Boulder);
- ✓ WC ($^{3}\Delta_{1}$ ground state) molecular beam (A.E.Leanhard: Michigan U.)
- ✓ PbO (${}^{3}\Sigma^{+}$) (Eckel, DeMille et al Yale Uni)

 $|d_e| < 1.7 \times 10^{-26} \, e \cdot cm \ (2013)$

Твёрдые тела:

- ✓ $Eu_{0.5}Ba_{0.5}TiO_3$ (ferroelectric structure) (S. Eckel, A.O.Sushkov, S. Lamoreaux: Yale Uni). $|d_e| < 6.05 \times 10^{-25} e \cdot cm$ (2011)
- ✓ Gd-Ga Garnet (S. Lamoreaux: LANL ; C.-Y. Liu: Indiana)
- ✓ Gd-Iron Garnet
 (L. Hunter: Amherst),

Thank you!