Electric dipole moment search in molecular beam of thorium monoxide

B.P. KONSTANTINOV PNPI, ST.-PETERSBURG STATE UNIVERSITY, ST.-PETERSBURG, RUSSIA

TI-beam exp-t: $|d_e| < 1.6 \times 10^{-27} e \cdot cm$ [B. Regan et al.,**PRL 88**, 071805 (2002)]**YbF-beam exp-t:** $|d_e| < 1.05 \times 10^{-27} e \cdot cm$ [J. Hudson et al.,**Nature 473**, 493(2011)]**ThO-beam exp-t:** $|d_e| < 8.7 \times 10^{-29} e \cdot cm$

[ACME Collaboration, Science 1248213 [DOI:10.1126/science.1248213], arXiv:1310.7534]

Experimental detection of an EDM

Sensitivity problem

Suppose $d_e = 8.7 \cdot 10^{-29} e \cdot cm$ (current limit) In a field 100 kv/cm $\omega \sim nHz$

The magnetic field problem

Suppose $d_e = 8.7 \cdot 10^{-29} e \cdot cm$ (current limit) In a field 100 kv/cm $\omega \sim nHz$ When $\mu_B B$ equal this ? $B \sim fG$

Solution: Atoms and Molecules

Statistical sensitivity to EDM

N uncorrelated systems with coherence time au

$$\delta\omega = \frac{1}{\tau\sqrt{N}}$$

$$\delta d_e = \frac{1}{2E_{eff}\tau\sqrt{N}}$$

Statistical sensitivity to EDM

ThO:

Photon counts/pulse: $N_0=8.2 \cdot 10^3$ Ablation laser repetition rate: R=10 Hz N=N_0RT

E_{eff}=84 GV/cm

Coherence time (time of flight): τ = 1.5 ms

$$\delta d_e = 3 \cdot 10^{-29} e \cdot cm / \sqrt{D}$$

Statistical sensitivity to EDM

YbF new experiment

(Tarbut et. al. arXiv:1302.2870):

Laser cooling \rightarrow

1/2 sec flight time (τ) instead of 1/2 ms

$$\delta d_e = 3 \cdot 10^{-31} e \cdot cm / \sqrt{D}$$

Systematic errors

- Change of electric field magnitude on reversal
- Motional magnetic field
- Geometric phase
- etc

Ground rotational level J=1 for diatomics with $\Omega=1$

	Ω=1		Ω=-1		
M=-1	M=0	M=1	M=-1	M=0	M=1

Ground rotational level J=1 for diatomics with $\Omega=1$

$$|e\rangle = |\Omega = 1\rangle - |\Omega = -1\rangle, J = 1^{-} \text{ (negative)}$$

$$\int \Omega \text{ doubling} = 10 - 50 \text{ MHz}$$

$$|f\rangle = |\Omega = 1\rangle + |\Omega = -1\rangle, J = 1^{+} \text{ (positive)}$$

$$M = -1 \qquad M = 0 \qquad M = 1$$

Ground rotational level J=1 for diatomics with $\Omega=1$

$$| c = | \Omega = 1 > - | \Omega = -1 >, J = 1 \text{ (negative)}$$

$$\Omega \text{ doubling} = 10 - 50 \text{ MHz}$$

$$| f > = | \Omega = 1 > + | \Omega = -1 >, J = 1^{+} \text{ (positive)}$$

$$M = -1$$

$$M = 1$$

Ground rotational level J=1/2 for diatomics with Ω =1/2

If > = $|\Omega = 1/2 > + |\Omega = -1/2 >$, J=1/2⁺ (positive) M=-1/2 M=1/2

Ground rotational level J=1 for diatomics with Ω =1 in the presence of Electric field

EDM shift in external electric field

EDM shift in external electric field

Ground rotational level J=1 for diatomics with Ω =1 in the presence of Electric field

Ground rotational level J=1 for diatomics with Ω =1 in the presence of Electric field Blue lines are EDM shifts

Ground rotational level J=1 for diatomics with Ω =1 in the presence of Electric and Magnetic Fields Blue lines are EDM and Zeeman shifts

Ground rotational level J=1 for diatomics with Ω =1 in the presence of Electric and Magnetic Fields Blue lines are EDM and Zeeman shifts

g factors for ThO (in units 10⁻³)

	Exper. (ACME)				
J	g	g _e	g _f	g	g
1	-4.144	-4.409	-4.391	-4.400	-4.40(5)
2	-1.381	-2.628	-2.609	-2.618	-2.7(1)
3	-0.691	-2.182	-2.164	-2.173	-2.4(2)

Difference between g factors for "e" and "f" levels of J=1 a(1) PbO

Experiment:

 g_f - g_e=0.0030(8)
 [D. Kawall, F. Bay, S. Bickman,

 Y. Jiang, and D. DeMille

 PRL 92, 133007 (2004)]

Calculation : g_f - g_e=0.0037 [A.N. Petrov, PRA 83, 024502 (2011)]

D. Kawall, F. Bay, S. Bickman, Y. Jiang, and D. DeMille, PRL **92**, 133007 (2004) S. Bickman, P. Hamilton, Y. Jiang, and D. DeMille PRA **80**, 023418 (2009)

ThO $^{3}\Delta_{1}$, J=1

ThO $^{3}\Delta_{1}$, J=2, $|M_{J}|=1$

Difference between g factors for ThO in external electric field

Ω-doublet spacing ~ 1MHz
 Rotational energy ~ 40 GHz
 Electronic Energy ~ 25 THz

$\Delta g(J) = \eta(J)|E|$

Заключение

Для поиска электрического дипольного момента электрона (ЭДМ) полярные молекулы имеют ряд преимуществ по сравнению с атомами включая большее электрическое поле (E_{eff}) действующее на ЭДМ и возможность устранять важные систематические эффекты. ThO имеет дополнительные преимущества благодаря существованию близких уровней противоположной четности (так называемых Ω-дублетов). Измерение ЭДМ может быть выполнено на разных уровнях Ω-дублета, что очень существенно подавляет многие систематические эффекты связанные с магнитным полем или геометрической фазой и при этом удваивает ЭДМ сигнал. Однако верхние и нижние уровни Ω-дублетов имеют несколько различные g-факторы и поэтому, в действительности, систематические эффекты связанные с неучтенным магнитным полем и геометрической фазой полностью не устраняются. Вместе с тем, разница между g-факторами зависит от лабораторного электрического поля и соответствующие систематические эффекты могут быть подавлены в еще большей степени при проведении эксперимента в соответствующем электрическом поле. Поэтому, выяснение закона зависимости g-факторов от внешнего электрического поля важно для анализа возможных систематических эффектов и дальнейшего увеличения (текущее значение d₂<8.7·10⁻²⁹ е·см) точности эксперимента на молекуле ThO. В работе [1] совместно с АСМЕ коллаборацией мы рассмотрели g-факторы для Ω-дублетов J=1,2 вращательных уровней ThO во внешнем электрическом поле. Нами обнаружено, что Δg для J=2 обращается в ноль для E~50 B/см (комфортного для проведения эксперимента) электрического поля и много меньше чем Δg для J=1 для других электрических полей. Малое значение для Δg означает, что измерения ЭДМ на J=2 является еще более устойчивым к проявлению ложных эффектов чем для J=1.

A.N. Petrov, L.V. Skripnikov, A.V. Titov, N.R. Hutzler, P.W. Hess, B.R. O'Leary, B. Spaun, D. DeMille, G. Gabrielse, and J.M. Doyle, *Zeeman interaction in ThO* $H^3\Delta_1$ for the electron electricdipole-moment search, Phys.Rev.A **89**, 062505 (2014) Thank you!